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ABSTRACT 

Modal-based acoustoelastic formulation is regarded as the cornerstone of vibro-

acoustics and has been widely used for coupling analyses of structure-cavity systems. 

The controversy and the skepticism surrounding the acoustic velocity continuity with 

the surrounding vibrating structures have been persistent, calling for a systematic 

investigation and clarification. This fundamental issue of significant relevance is 

addressed in this paper. Through numerical analyses and comparisons with wave-based 

exact solution, an oscillating convergence pattern of the calculated acoustic velocity is 

revealed. Normalization of the results leads to a unified series truncation criterion 

allowing minimal prediction error, which is verified in three dimensional cases. The 

paper establishes the fact that the modal based decomposition method definitely allows 

correct prediction of both the acoustic pressure and the velocity inside an acoustic 

cavity covered by a flexural structure upon using appropriate series truncation criteria. 

 

PACS numbers: 43.20.Tb; 43.55.Br. 

 

 

 

 

 



I. INTRODUCTION 

The panel-cavity system, comprising a parallelepiped acoustic cavity with a 

rectangular flexible panel subjected to external excitations, has been used as a 

benchmark problem for studying the fundamental problems in a vibro-acoustic system 

for more than half a century. The issue of the pressure and velocity continuity at the 

structure-cavity interface using modal-based method has been arousing persistent 

interest and long-lasting debate among researchers. This paper intends to clarify this 

issue of fundamental importance.  

The vibration response of a cavity-backed rectangular panel was first investigated 

by Dowell and Voss.1 Since then, there has been a continuous effort in improving the 

modeling of such system as well as its physical understanding, exemplified by the work 

of Pretlove2-4 and Guy5, 6, mainly focusing on quantities like the panel vibration, 

acoustic pressure, acoustic velocity and the reverberant time inside the cavity etc. 

Without any doubt, the most convenient and presumably the most commonly used 

method is the modal-based approach using acoustic pressure (or potential) 

decomposition over acoustic modes of the rigid-walled cavity. Its general framework, 

also referred to as acoustoelasticity theory, was elegantly summarized by Dowell7 and 

Fahy8. This approach, however, suffers from the seemingly “flaw” in that the velocity 

continuity over the panel cannot be mathematically satisfied due to the use of the rigid-

walled acoustic modes, expressed in Cosine functions in the case of parallelepiped 

cavity.9 This problem arouses continuous interest and endless debate in the vibro-

acoustic community, even up to now. The advocators of the method argue that the 



method allows accurate acoustic pressure and reasonable acoustic velocity prediction if 

a sufficient number of acoustic modes are used. Nevertheless, there is no ruling 

conclusions due to the lack of quantified assessment and criteria. Various techniques 

were also developed in an attempt to increase the calculation accuracy such as the use 

of extended mode shape functions for a single cavity or the coupling between two 

overlapped adjacent sub-cavities.10 Meanwhile, the skepticism on the modal-based 

method has always been persistent as evidenced by some recent papers. For example, 

the deficiencies of the method based on rigid-walled modes were reiterated by 

Ginsberg11, who employed an extension of Ritz series method to the problem, and the 

modified formulation is found to be accurate above the fundamental rigid-cavity 

resonance frequency for light fluid loading. More recently, various series expression 

with added terms were also proposed to accommodate the velocity continuity.12, 13 

Modal-based acoustoelastic formulation allows elegant and clear physical 

representation and, to the eye of many, is the cornerstone of the vibroacoustics in 

dealing with structure-cavity coupling problems. As originally formulated and the way 

it has been used in the literature, the theory applies to light fluid, leading to a weak 

fluid-structural coupling. The controversy and the skepticisms surrounding the velocity 

continuity call for a systematic investigation and clarification, which constitutes the 

main motivation of the present work. This issue is addressed in this paper by 

investigating both acoustic pressure and particle velocity predictions through 

comparisons between the modal-based approach and the exact solutions using a system 

of simple regutangulay geometry. For the particle velocity prediction in the vicinity of 



the panel, an oscillating convergence pattern is observed when the number of acoustic 

modes increases. Normalization of the results leads to a unified criterion allowing 

minimization of the prediction error, which is then verified in three dimensional cases. 

II. THEORY AND ANALYSES 

Consider a parallelepiped acoustic cavity with one of walls covered by a vibrating 

plate, as shown in Fig.1. The plate, simply supported along all four edges, is subjected 

to a prescribed sound pressure excitation. The rest of the cavity walls are assumed to be 

acoustically rigid. The acoustic field inside the cavity is described by the Helmholtz 

equations whereas the flexural motion of the plate is governed by the Kirchhoff 

equation and the damping is introduced in the model by considering complex Young’s 

modulus and complex acoustic velocity, for the plate and the cavity, respectively.  

 

Fig. 1. The cavity-panel configuration and coordinate system 

The system is modelled using two approaches, which are briefly described below 

and subsequently compared and investigated through numerical analyses. Under the 



modal expansion framework7, the acoustic pressure inside the cavity 𝑝  and the 

transversal displacement of the panel 𝑤  are decomposed over the rigid-walled 

acoustic modes of the cavity and the in-vacuo plate modes, respectively, namely, 𝑝 =

∑𝑃𝑛𝑚𝑝𝜑𝑛𝑚𝑝  and 𝑤 = ∑𝑊𝑟𝑠𝜓𝑟𝑠 , where 𝑃𝑛𝑚𝑝  and  𝜑𝑛𝑚𝑝  are respectively the 

modal amplitude and the pressure mode shape of the cavity; 𝑊𝑟𝑠  and 𝜓𝑟𝑠  are the 

modal amplitude and displacement mode shape of the plate, respectively. 𝜑𝑛𝑚𝑝 and 

𝜓𝑟𝑠 write  

𝜑𝑛𝑚𝑝 = cos⁡(
𝑛𝜋𝑥

𝐿𝑥
)cos⁡(

𝑚𝜋𝑦

𝐿𝑦
)cos⁡(

𝑝𝜋𝑧

𝐿𝑧
)                   (1) 

𝜓𝑟𝑠 = sin (
𝑟𝜋𝑥

𝐿𝑥
) sin⁡(

𝑠𝜋𝑥

𝐿𝑦
)                        (2) 

in which n, m and p = 0, 1, 2, … and r and s = 1, 2, …. Applying the decomposition 

expressions in the equations of motion of the plate-cavity system and using the 

orthogonality property of the mode shapes, a set of linear equations with the modal 

amplitudes as unknowns are obtained as:  

𝑃̈𝑛𝑚𝑝 + 𝑗𝜂𝑎𝜔𝑛𝑚𝑝𝑃̇𝑛𝑚𝑝 + 𝜔𝑛𝑚𝑝
2 𝑃𝑛𝑚𝑝 = −

𝐴𝐹

𝑉
∑ 𝐿𝑛𝑚,𝑟𝑠𝑊̈𝑟𝑠𝑟,𝑠         (3) 

𝑀𝑟𝑠[𝑊̈𝑟𝑠 + 𝑗𝜂𝑝𝜔𝑟𝑠𝑊̇𝑟𝑠 + 𝜔𝑟𝑠
2 𝑊𝑟𝑠] = 𝜌0𝑐0

2𝐴𝐹 ∑ 𝑃𝑛𝑚𝑝
𝐿𝑛𝑚,𝑟𝑠

𝑀𝑛𝑚𝑝
𝑛,𝑚,𝑝 + 𝑄𝑟𝑠

𝐸     (4) 

where V is the volume of the cavity; 𝐴𝐹 the area of the vibrating panel; 𝜂𝑎 and 𝜂𝑝 

the damping loss factor of the air and vibrating panel, respectively; 𝜔𝑛𝑚𝑝 and 𝜔𝑟𝑠 

the natural frequencies of the nmp acoustic mode and the rs panel mode, respectively; 

𝑀𝑛𝑚𝑝 and⁡ 𝑀𝑟𝑠 the generalized acoustic and panel modal mass, respectively; and 𝑄𝑟𝑠
𝐸  

the generalized excitation force which can either be a point force or distributed pressure. 

𝐿𝑛𝑚,𝑟𝑠 is the modal coupling coefficient between the rs panel mode and the nmp cavity 

acoustic mode, defined as 𝐿𝑛𝑚,𝑟𝑠 =
1

𝐴𝐹
∫𝜑𝑛𝑚𝑝𝜓𝑟𝑠𝑑𝑉. The index p is eliminated in the 



present configuration since the integral is calculated over the panel surface with z = 0. 

Detailed expressions of these quantities can be found in Ref. [7]. 

For comparisons, the same problem is also modelled to get the exact solution of 

the problem, referred to as wave approach, in which the acoustic modes used in the 

modal decomposition approach is replaced by 

𝜑𝑛𝑚 = cos (
𝑛𝜋𝑥

𝐿𝑥
) 𝑐𝑜𝑠 (

𝑚𝜋𝑦

𝐿𝑦
) ℎ𝑛𝑚(𝑧)                   (5) 

where ℎ𝑛𝑚(𝑧) = 𝛼𝑐𝑜𝑠ℎ(𝜇𝑛𝑚𝑧) + 𝛽𝑠𝑖𝑛ℎ(𝜇𝑛𝑚𝑧).  Note that the last term represents 

any wave propagating back and forth along the z direction, perpendicular to the panel. 

By satisfying the boundary conditions at z = 0 and z = Lz, 𝛼 , 𝛽  and 𝜇𝑛𝑚  can be 

determined. Different strategies are implemented to solve this equation set, which have 

been extensively discussed in literatures 5, 6 so that they are not detailed here. Note that 

in z direction, imaginary wavenumber may exist. This corresponds to waves which 

decay exponentially along z direction, known as evanescent waves. 

In the following numerical investigations, the dimension of the cavity is set to be 

0.2m×0.2m×0.5m. A simply supported brass panel is 1.5 mm thick, located at z = 0. 

The air density is 1.29 kg/m3; the sound speed is 343 m/s; the Young’s modules of the 

panel is 110×109 Pa; the panel’s Poisson’s ratio is 0.357; the panel density is 8.9×103 

kg/m3; 𝜂𝑎  and 𝜂𝑝  are set to 0.001 and 0.01, respectively. A harmonic acoustic 

excitation is uniformly impaging on the flexible panel along z direction. The purpose 

of using normal incident excitation is to simplify the modal response within the panel-

cavity system, while retaining its internal physical characteristics.  

A. Sound pressure 



The sound pressure level (SPL) at a receiving point inside the cavity is calculated, 

with the external excitation pressure 𝑝𝑖  fixed to 1 Pa. To ensure a fair comparison 

between the modal approach and the wave approach, the number of modes used in the 

transverse directions x and y are kept identical. The frequency band of interest is [0, 

1000] Hz. It is well accepted that in order to ensure the correct sound pressure 

calculation, the truncated modal series should contain all these modes, for both the 

cavity and the panel, with their natural frequencies below 1.5fmax or 2fmax, where fmax is 

the highest frequency under investigation (1000 Hz in the present case). This rule is 

referred to as the pressure criterion in this paper. It should be pointed out that this 

pressure convergence criterion (even by including all lower-order modes) is not a 

universally accepted robust one. In some cases, especially at frequencies where the 

system is not very dynamic, like the anti-resonance regions between two well-separated 

modes, more terms maybe needed. In the modal-based and wave methods used in the 

analyses here, the mode indices are chosen up to n = m = p = 8 and r = s = 8, which 

satisfy the pressure criterion. The first few lower order modes of the uncoupled cavity 

and the plate are tabulated in Table 1. A receiving point is randomly chosen at (0.04, 

0.17, 0.01) m. The SPL results are given in Fig. 2, in which the exact solution (named 

wave method in this paper) and the one from the modal method are compared. It can be 

seen that, upon using the pressure criterion, the pressure predictions by the two methods 

agree well, although slight differences are observable at some anti-resonance 

frequencies. Should the SPL be averaged within the entire cavity, these differences 

should disappear (not shown here). Similar observations were observed at other points 



inside the cavity, including those close to the vibrating panel (not shown here). 

Therefore, it is verified that the modal method can provide sufficient accuracy for 

acoustic pressure predictions everywhere throughout the cavity by using the well 

established pressure criterion. 

Table 1. Uncoupled resonance frequency of the system 

Plate in-vacuo Resonance Cavity Resonance 

r s 𝑓𝑟𝑠(Hz) n m p 𝑓𝑛𝑚𝑝(Hz) 

1 1 128 - 

1 2 319.9 0 0 1 340 

2 2 512 0 0 2 680 

1 3 640 1 0 0 850 

2 3 832 2 0 0 915.5 

 

 

Fig. 2. SPL predictions at point (0.04, 0.17, 0.01) m. 



B. Velocity 

As the main focus of the paper, the prediction accuracy of the particle velocity 

using modal method is investigated. The receiving point and all other physical 

parameters are kept the same as in the previous pressure calculation. Since more 

expansion terms would be needed in the velocity calculation14, the number of modes 

used in the modal method is varied. Note that the mode variation only applies to the 

cavity depth direction, z, whilst the mode terms used in x and y directions are kept the 

same. Three modal-based calculations use p up to 10, 20 and 40, respectively. Acoustic 

velocity u in the normal direction is obtained from −𝑗𝜔𝜌0𝑢 =
𝜕𝑝

𝜕𝑧
 and the results are 

shown in Fig. 3, in comparison with the reference result obtained from the wave method. 

Compared with the reference result, it can be seen that the accuracy of the velocity 

prediction of the modal-based method improves as the number of modes in z direction 

increases. It is not surprising that at cavity resonance frequencies, 340 Hz and 680 Hz, 

the convergence is quickly achieved due to the dominating role of the corresponding 

rigid cavity mode at these frequencies. For the other frequencies, however, the 

convergence speed is slower than the case of pressure prediction (see Fig.2 where only 

8 z-direction terms were used). Nevertheless, upon increasing the decomposition terms, 

sufficient accuracy can still be achieved.     



 

Fig. 3. Particle velocity predictions by wave method and modal based method: 

Different z-direction terms are used in the modal method. 

To further quantify this observation, a term describing the velocity prediction error, 

is defined as 𝛥𝑉 = 𝑉𝑚𝑜𝑑𝑎𝑙 − 𝑉𝑤𝑎𝑣𝑒 in dB, calculated and shown in Fig. 4, in terms of 

different truncated series in z direction at an arbitrarily chosen frequency of 210 Hz. It 

can be observed that the modal-based method quickly approaches to the exact result 

with a relatively small but increasing number of terms, overshoots and then converges 

to the exact solution. The convergence, however, is not monotonous with the number 

of terms used, but in an oscillating manner.  

A close examination of the modal expansion expression of the particle velocity 

allows to better understand this and eventually to establish a convergence criterion. 

Derived from the coupling equations Eq. 3 and Eq. 4, the particle velocity can be 

expressed as: 



𝑣(𝑥, 𝑦, 𝑧) =
1

𝜌0
∑

𝑈𝑛𝑚(𝑥,𝑦)

𝑀𝑛𝑚𝑝(−𝜔2+𝜔𝑛𝑚𝑝
2 +𝑗𝜂𝑎𝜔𝜔𝑛𝑚𝑝)

𝑝𝜋

𝐿𝑧
sin (

𝑝𝜋𝑧

𝐿𝑧
)𝑛,𝑚,𝑝        (6) 

where n, m and p are the modal indices corresponding to x, y and z directions, 

respectively, and 𝑈𝑛𝑚(𝑥, 𝑦) is the velocity contributions related to nm cavity modes, 

expressed by 𝑊𝑟𝑠, 

𝑈𝑛𝑚(𝑥, 𝑦) = −𝑗𝜔
𝐴𝐹

𝑉
cos⁡(

𝑛𝜋𝑥

𝐿𝑥
)cos⁡(

𝑚𝜋𝑦

𝐿𝑦
)∑ 𝐿𝑛𝑚,𝑟𝑠𝑊𝑟𝑠𝑟,𝑠

.         (7) 

Since only z direction is our focus, upon fixing m and n, the above expression can then 

be simplified to a 1-D case as: 

𝑣(𝑧) = ∑ 𝛾𝑝(𝜔) sin (
𝑝𝜋𝑧

𝐿𝑧
)𝑝 ,                      (8) 

with 

𝛾𝑝(𝜔) =
1

𝜌0
∑

𝑈𝑛𝑚(𝑥,𝑦)

𝑀𝑛𝑚𝑝(−𝜔2+𝜔𝑛𝑚𝑝
2 +𝑗𝜂𝑎𝜔𝜔𝑛𝑚𝑝)

𝑝𝜋

𝐿𝑧
𝑛,𝑚,𝑝 ⁡ ,             (9) 

For a given frequency of interest, 𝜔  is a constant. In order to ensure a reasonable 

calculation accuracy, it is well accepted that the modes which need to be included in the 

calculation should be such that 𝜔𝑛𝑚𝑝 ≫ 𝜔. Therefore, 𝛾𝑝 can be approximated by 

𝛾𝑝(𝜔)~
1

𝜌0

𝑈𝑛𝑚(𝑥,𝑦)

𝑀𝑛𝑚𝑝𝜔𝑛𝑚𝑝
2

𝑝𝜋

𝐿𝑧
.                     (10) 

Moreover, when p is large (i.e. p≫max[m, n]) as in this paper, the modal frequency can 

be approximated by: 𝜔𝑛𝑚𝑝~𝑐0
𝑝𝜋

𝐿𝑧
. Under these conditions, one has: 

𝛾𝑝(𝜔)~
1

𝜌0

𝑈𝑛𝑚(𝑥,𝑦)𝐿𝑧

𝑀𝑛𝑚𝑝𝑐0
2𝜋

1

𝑝
.                     (11) 

Since 𝑀𝑛𝑚𝑝 is independent of p for p>0, 𝛾𝑝(𝜔) is a decreasing function of p and 

satisfies lim
𝑝→∞

𝛾𝑝 = 0. Therefore, according to Abel’s theorem, the serie 𝑣(𝑧) should 

converge. Meanwhile, an oscillation behavior is expected due to the term sin (
𝑝𝜋𝑧

𝐿𝑧
). 

Therefore, the modal method should guaranty the required calculation accuracy of the 

particle velocity prediction, at the expense of increasing the decomposition terms up to 



a sufficient level, in an oscillating but converging manner.   

 

Fig. 4. Velocity prediction error at point (0.04, 0.17, 0.01) m with respect to the 

number of modes in z direction  

From the above analyses, it can be surmised that a larger number of modes may 

improve the accuracy for particle velocity, but not necessarily in a monotonous manner. 

Owing to the oscillating feature of the convergence curve shown above, it is desirable 

then to find the suitable number of modes to be used, with which the prediction error 

can be locally minimal. On the other hand, it goes without saying that the so-called 

criterion shall also depend on the distance of the observation point from the vibrating 

plate. To further investigate this, 𝛥𝑉  is calculated for different z coordinates, with 

results shown in Fig. 5. One can observe that, for all z values, all 𝛥𝑉 curves exhibit 

similar variation trend with respect to z, as described above. However, the convergence 

become increasingly slower as the observation point gets closer to the vibrating plate 

(when z gets smaller), along with a larger oscillation period. For the smallest z analyzed 



(z = 0.00625 m), for example, it requires 80 z-direction modes for 𝛥𝑉 to approach zero.  

 

Fig. 5. Velocity prediction error with respect to the number of modes in z direction 

The oscillating nature of the convergence curves suggest that, for a given distance 

from the panel z, it should be possible to employ a small number of p terms to get the 

local minimum 𝛥𝑉. The so-called truncation criterion, if exists, should depend on the 

relationship between the number of modes in z direction p and the coordinate z. To 

establish this relationship, a generalized mode number G is defined to connect the 

wavelength of mode p, 

2 z
p

L

p
 

, and the coordinate z, as: 

2
p z

z pz
G

L
 

                              (11) 

Using this definition, different curves shown in Fig. 6 are normalized with respect to G 

and the results are shown in Fig. 6a. It is clear that the normalized curves show highly 

consistent trend for all z values considered. On can observe that 𝛥𝑉 approaches local 

maximum values at every integer of G (1, 2, 3…). The first oscillation point starts at G 



= 1. Deriving from Eq. 10, this corresponds to z =1/2 p, which is the half acoustic 

wavelength. The local minima of 𝛥𝑉  are obtained roughly at the middle of two 

extreme values, starting from G = 1.5, followed by 2.5, 3.5 etc. Taken the first minima 

as an example, G = 1.5 corresponds to z = 3/4 p. Note that p is the highest mode index 

that is included in the calculation. Therefore, to minimize the accurate acoustic velocity 

prediction error, a rule of thumb would be to increase the number of acoustic modes in 

the z direction, until reaching the one with its 3/4 wavelength falling into z. In another 

word, for a given the distance from the vibrating plate, all the lower-order modes in the 

cavity depth direction whose 3/4 wavelength is larger than that distance should be used 

in the series decomposition to ensure a good prediction accuracy for the particle velocity.  

Mindful of the possible dependence of the aforementioned on the frequency, the 

above proposed truncation criterion is checked for one of the plate resonances 

frequencies at 128 Hz, with results shown in Fig. 6b. Once again, the normalized 𝛥𝑉 

curves show identical variation trend as the previous non-resonance cases, which lead 

to exactly the same conclusions in terms of velocity convergence criterion. Nevertheless, 

it is found that the oscillation amplitude of the 𝛥𝑉 curves at the resonance frequency 

is somehow smaller than that of the non-resonance one. On all accounts, the proposed 

criterion on oscillating convergence seems to apply to all frequencies.  



 

(a) 

 

(b) 

Fig. 6. Velocity prediction error with respect to the generalized mode number G: (a) 

Uncoupled non-resonance frequency at 210 Hz; (b) Uncoupled resonance frequency at 

128 Hz. 

 



As a final check, Fig. 7 compares the velocity prediction results using the proposed 

truncation criterion with G = 1.5 and the wave method in the 3-D configuration. 

According to Eq. 10, G = 1.5 results in 120 z-direction modes for z = 0.00625 m in Fig. 

7a and 30 z-direction modes for z = 0.025 m in Fig. 7b. While according to the pressure 

criterion, the number of z-direction modes is 8 for both cases. The result obtained with 

the pressure criterion is also added for reference. It is worth recalling that, the use of 

only pressure criterion would not be enough to guaranty the velocity calculation, 

although the use of a larger number of modes is definitely helpful. The proposed 

velocity convergence criterion, however, results in significant improvement to the 

particle velocity prediction. Additionally, comparisons between Fig. 7a and 7b also 

show that the proposed criterion holds well for different calculation point positions with 

different z coordinates.  

 

(a) 



 

(b) 

Fig. 7. Particle velocity predictions: (a) z = 0.00625 m; (b) z = 0.025 m. 

III. CONCLUDING REMARKS 

The prevailing conclusion of the present paper is the confirmation that the modal-

based decomposition method, as formulated in the classical work of Dowell and Fahy, 

allows correct prediction of both the acoustic pressure and the acoustic velocity inside 

an acoustic cavity covered by a flexural structure upon using appropriate series 

truncation criterion. The acoustic pressure prediction using modal method can be 

sufficiently accurate, throughout the cavity including vibrating interface as long as a 

sufficient number of cavity modes (prescribed by the pressure convergence criterion) 

are used, in agreement with the common understanding reported in the literature. The 

conventionally used pressure criterion, however, cannot guaranty the velocity 

prediction accuracy, especially when the calculation point is close to the vibrating 

structure, due to the inherent weakness of the modal shape functions. Nevertheless, 



numerical studies reveal an oscillating convergence pattern of the particle velocity 

when the decomposition terms in the cavity depth direction increases. More specifically, 

for a given calculation point, the calculated particle velocity using modal approach first 

monotonously approaches to the exact value with a relatively small but increasing 

number of terms, overshoots and then converges to the exact solution in an oscillating 

manner, starting roughly from the generalized mode number G = 1. For a given distance 

from the vibrating plate, the modal series in the cavity depth direction should be 

truncated up to G = 1.5, 2.5, 3.5… etc. Explained using the series decomposition 

theories and verified in both 1D and 3D configurations, this so-called velocity 

truncation criterion suggests to use all these lower-order modes in the cavity depth 

direction, whose 3/4 wavelengths are larger than the distance between the calculation 

point and the vibrating plate, to ensure a good prediction accuracy for the particle 

velocity. Therefore, when both the pressure criterion and the proposed velocity 

convergence rule are satisfied, a fast convergence of the particle velocity can be 

achieved. 
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Fig. 1. The cavity-panel configuration and coordinate system 

Fig. 2. SPL predictions at point (0.04, 0.17, 0.01) m. 



Fig. 3. Particle velocity predictions by wave method and modal based method: Different 

z- direction terms are used in the modal method.   

Fig. 4. Velocity prediction error at point (0.04, 0.17, 0.01) m with respect to the number 

of modes in z direction  

Fig. 5. Velocity prediction error with respect to the number of modes in z direction 

Fig. 6. Velocity prediction error with respect to the generalized mode number G: (a) 

Uncoupled non-resonance frequency at 210 Hz; (b) Uncoupled resonance frequency at 

128 Hz. 

Fig. 7. Particle velocity predictions: (a) z = 0.00625 m; (b) z = 0.025 m. 

 

 

 

 

 

 

 

 

 

 

 

TABLE Ⅰ. Uncoupled resonance frequency of the system 

Plate in-vacuo Resonance Cavity Resonance 



r s 𝑓𝑟𝑠(Hz) n m p 𝑓𝑛𝑚𝑝(Hz) 

1 1 128 - 

1 2 319.9 0 0 1 340 

2 2 512 0 0 2 680 

1 3 640 1 0 0 850 

2 3 832 2 0 0 915.5 

 

 

 

 

 

 

 

 

 

 

 

 


