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Abstract 

This paper investigates the modelling of a vibrating structure excited by a turbulent boundary 15 

layer (TBL). Although the wall pressure field (WPF) of the TBL constitute a random excitation, 

the element-based methods generally used for describing complex mechanical structures 

consider deterministic loads. The response of the structure to a random excitation like TBL is 

generally deduced from calculations of numerous Frequency Response Functions. The result is 

that the process requires costly computational resources. To tackle this issue, an efficient 20 

process is proposed for generating realizations of the WPF corresponding to the TBL. This 

process is based on a formulation of the problem in the wave-number space and the 

interpretation of the wall pressure field as uncorrelated wall plane waves. Once the WPF have 

been synthesized, the local vibroacoustic responses are calculated for the different realizations 

and averaged together in the last step. A numerical application of this process to a plate beneath 25 

a TBL is used to verify its efficiency and ability to reproduce the partial space correlation of 

the excitation. Finally an application on a stiffened panel modelled with the finite element 

method is proposed to illustrate the interest of the proposed process. 

 

Running title: Numerical synthesis of random pressure field 30 

Keywords: Synthesis, random pressure field, turbulent boundary layer, vibroacoustic response 
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I. INTRODUCTION 

 

Structures excited by the turbulent boundary layer (TBL) are very common in practical 35 

applications. Cars, airplanes, trains and submarines may be excited by pressure fluctuations due 

to the turbulent flow caused by their movements. In order to reduce the noise radiated from or 

transmitted by these structures, it is important to understand at the design stage how the 

structure reacts to TBL excitation. It is then necessary to develop numerical tools to predict the 

vibration or the pressure radiated from the complex panels excited by the turbulent flow. This 40 

topic has been the purpose of many works in the literature and it remains an important research 

topic. To be convince, the reader can find a recent state of the art on this topic in the book [1] 

published after the FLINOVIA symposium held in 2013 at Roma. 

 

Usually, the calculation process is decomposed into 3 steps: 45 

- First, a hydrodynamic model is used to estimate the TBL parameters (convective 

velocity, boundary layer thickness, wall shear stress, etc.) over the surface of the structure on 

the basis of its geometry and the flow conditions. 

- Second, the spectrum of the wall pressure fluctuations is evaluated from the TBL 

parameters estimated previously and by using one of the models proposed in the literature. 50 

Some of them are expressed in the space - frequency domain (like the well-known Corcos 

model [2]), whereas others are in the wavenumber - frequency domain (like the equally well-

known Chase [3] and Smolyakov [4] models). Discussions on different models and 

comparisons with experiments can be found in [5-8] for the Auto Spectrum Density (ASD) 

function and in [8-10] for the normalized Cross Spectrum Density (CSD) function. 55 

- Finally, a vibro-acoustic model is used to estimate the response of the structure to the 

pressure fluctuations.  

 

Many studies were carried out in the past to develop this type of calculation process for 

predicting the vibro-acoustic response of structures excited by fully developped TBL. The 60 

former ones concerned generally simple plates excited by a turbulent flow. In the end of the 

60th, Strawderman [11] gave a review of existing models (at this period) of finite and infinite 

plates under turbulence. Although neither the finite nor infinite model agrees wholly with the 

experimental results, he indicated that the vibration statistics computed from the finite plate 

model are in better agreement with the experimental results than those computed from the 65 
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infinite panel model. He also investigated with Christman [12] the effect of heavy fluid loading 

on the vibratory response. Davis [13] proposed a space integration method including the light 

fluid loading effect to estimate the power density functions of the displacement of the finite 

plate and of the radiated acoustic pressure. Graham [14] reviewed statistical models of the 

boundary layer and investigated the more specific case of aircraft statistical models of TBL. 70 

The response of a finite panel under boundary layer excitation was determined by using the 

modal superposition method and a wavenumber integration technique. For naval applications, 

Ko and Schloemer [15, 16] proposed a method for evaluating the transmitted flow noise 

received by a rectangular hydrophone embedded in an infinite extended viscoelastic layer. The 

wavenumber filtering effects of both the elastomer layer and the rectangular hydrophone were 75 

highlighted by their approach. Mazzoni [17] proposed a deterministic model to approximate the 

response of an elastic rectangular plate at a low Mach number. The approximation was based 

on the observations of numerical studies showing that the subconvective region of the turbulent 

excitation power spectrum contributes significantly to the response of the panel. Rumerman 

[18-20] derived different expressions giving broad band estimations of the acoustic power 80 

radiated from a ribbed plate excited by TBL. He assumed a wavenumber-white pressure 

excitation and that the ribs radiated independently, that leads the formulations to be more 

accurate in the high frequency domain. Recently, Ciappi and al. [21] studied numerically and 

experimentally the response of two composite panels under TBL excitation for nearly subsonic 

flow conditions. They use literature empirical models for the WPF with the input date obtained 85 

from the analyses of experimental wall pressure data. The comparison between finite element 

and experimental results showed a good agreement between the different results. 

 

For the prediction of the vibratory response of complex panels under TBL excitation, the 

element-based methods considering deterministic harmonic excitations are generally 90 

considered for describing the vibro-acoustic behavior of the panel. Finite Element Modeling 

(FEM) can be used for a pure structural problem whereas FEM coupled with Perfectly Matched 

Layers (PMLs) [22], the Boundary Element Method (BEM) [23], or the Infinite Element Model 

(IEM) [24] can be used for an acoustic radiation problem. The coupling between the statistical 

model used to describe the wall pressure fluctuations and the deterministic vibroacoustic model 95 

represent a difficulty in the calculation process described above. Generally, this coupling is 

established thanks to a formulation of the random excitation problem in the frequency-space 

domain [25]. The ASD function of the system response (i.e. structure acceleration, acoustic 

pressure) at a receiving point is then linked to the CSD function of the wall pressure fluctuations 
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through Frequency Response Functions (FRFs) [24]. These FRFs are defined between the 100 

receiving point and a set of points distributed on the excited surface. In order to correctly 

describe the partial correlation of the excitation, it is necessary to consider a large number of 

points on the excited surface and compute a large number of FRFs [24-25]. A study can be 

found in [26] which highlights the issues induced by the transformation of the pressure 

distribution into discrete locations (i.e. nodes), in particular the aliasing effect. Hong and Shin 105 

[25] examined in details the maximum mesh size required for reliable finite element analysis. 

They showed that the mesh size should be defined under consideration of the spatial distribution 

of the CSD function of the WPF in addition to the dynamic characteristic of the considered 

structure. This may lead to consider a very fine finite element mesh and it results that the finite 

element calculations are both time and memory consuming.  110 

 

Different alternatives have been proposed for overcoming these drawbacks. Ichchou et al. 

[27] were developed an equivalent “rain on the roof” excitation model for the high frequency 

range which largely simplified the Finite Element calculations. Hong and Shin [25] proposed 

an uncorrelated loading model of the WPF which was based on the compensation of the wall 115 

pressure correlation lost due to the coarse mesh. A good accuracy with an exact solution was 

obtained with this approach on a simply supported beam. The proposed loading model can also 

be applied on more complex structures. In the same time, De Rosa and Franco [28] proposed a 

scaling procedure in order to reduce the computation cost which can be induced by a high modal 

density. It consists to reduce the dimensions not involved in the energy transmission whereas 120 

the damping is increased in order to keep the same dissipated energy. The same authors and 

others [29] have also analyzed scaling laws from experimental data involving four plates in air 

or in water flow. More recently, the same team [30] proposed a frequency modulated pseudo-

equivalent deterministic excitation. This approach named PEDEM is derived from the pseudo-

excitation method [31-32]. This latter involves a modal decomposition of the load matrix related 125 

to the CSD function of the WPF and it converges to the exact response if all the eigensolutions 

are considered. Different PEDEM approximations were studied for overcoming the drawback 

of the modal decomposition of the load matrix at each frequency step. The approximations 

depended on the considered frequency ranges (i.e. low, mid or high) which could be identified 

with a general criterion given by the authors. They were validated on a chain of linear oscillator 130 

and on a flexural plate. Another type of approaches [24, 33] which has been developed recently 

consists in synthetizing realizations of the wall pressure fluctuations corresponding to the CSD 

function in the frequency-space domain. The process is based on a Choslesky decomposition 
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of the wall pressure CSD matrix [34]. Once the pressure fields corresponding to the different 

realizations have been obtained, the vibroacoustic model is used to calculate the system 135 

response at the receiving point for each realization, separately. The response to the TBL 

excitation is finally deduced by an ensemble average on the different realizations. With this 

process, the number of load cases considered in the vibroacoustic calculations corresponds to 

the number of realizations, which is generally much lower that the number of FRFs considered 

with the standard approach described above. This is the advantage provided by this approach. 140 

However, it always requires a fine finite element mesh of the panel for frequencies above the 

hydrodynamic coincidence frequency and the Choslesky decomposition is time consuming. In 

order to tackle these issues, this paper proposes an alternative process to the ones described in  

[24, 33]. It is based on a formulation of the random excitation problem in the frequency-

wavenumber domain and the interpretation of the wall pressure field as uncorrelated wall plane 145 

waves. Realizations of the WPF are directly generated from an analytical expression depending 

on the wavenumber-frequency spectrum of the WPF. The Cholesky decomposition is then not 

be required. For each realization, the panel response induced by the deterministic WPF (of the 

considered realization) can then be estimated from a low-frequency deterministic vibro-

acoustic model of the panel. For instance, it can be achieved by using a finite element model 150 

when dealing with a complex panel. The stochastic response of the panel is then obtained from 

an ensemble average of the different panel responses. The interest of this type of approach is 

that it requires a relatively small number of realizations for estimating the stochastic response 

of the panel. This point will be studied on the basic case of a simply supported plate. Moreover, 

we will highlight how in some situations, the well-known filtering effect of the panel [35, 36] 155 

can be considered in the process in order to reduce the mesh size of the panel. The accuracy of 

the proposed process will be studied in function of the WPF model (i.e. Corcos or Chase), the 

convective velocity of the flow and the panel thickness. A stiffened plate modelled with the 

finite element solver MSC/NASTRAN will also be considered to illustrate the interest of the 

present approach for practical application. 160 

 

The paper is organized as follows: 

- Section 2 gives a description of the problem considered and presents the outlines of 

its mathematical formulation in the frequency-wavenumber space; 

- Section 3 introduces the concept of uncorrelated wall plane waves and proposes the 165 

process for synthetizing realizations of the WPF; 



6 

 

- The numerical process for estimating the panel response to TBL excitation is 

summarized in Sec. 4.  

- Then, in Sec. 5, numerical applications are proposed for a basic case of studying the 

influence of different parameters on the accuracy of the approach proposed. 170 

- Finally, before the concluding remarks, an application on a stiffened plate is 

proposed in Sec. 6. 

 

II. VIBRATING PANELS EXCITED BY RANDOM 

PRESSURE FLUCTUATIONS 175 

 Presentation of the problem 

 

 

Fig. 1. Baffled simply supported plate excited by a homogeneous and stationary TBL. 

 180 

Let us consider a baffle panel of surface p  excited by a TBL as shown in Fig. 1. We assume 

that the TBL is fully developed, stationary, and homogeneous over p . Moreover, the panel and 

the boundary layer are assumed to be weakly coupled. It is then assumed that the vibration of 

the plate does not interfere with the wall pressure. The spectrum of the wall pressure 

fluctuations over a rigid surface can then be considered for charactering the panel excitation. 185 

This can be estimated from the parameters characterizing the turbulent boundary layer (i.e. 

convective velocity, cU ; boundary layer thickness; wall shear stress), and one of the wall 

pressure models proposed in the literature [2-7]. The space-frequency cross spectrum of the 

Lx 

h 

Ly 
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wall pressure fluctuations  ,xx TBL

ppS  may be written on the specific form proposed by Graham 

[10] and reused by different authors ([5, 37]):  190 

     


 ,,

2

xxxx 







 TBL

pp
c

pp

TBL

pp S
U

SS , 

 

 

 

(1) 

where: 

-  ppS  (in Pa2/Hz) is the Auto Spectrum Density (ASD) function of the WPF 

depending on the angular frequency , and; 

-  ,xx TBL

ppS  (in rad2/m2)) is the normalized Cross Spectrum Density (CSD) function 

of the WPF depending on the spatial separation between two points, xx  , and the 195 

angular frequency. 

 

This form can be used with different models for the ASD function and for the normalized 

CSD function, independently one from each other. For example, the Goody [6] or Rozenberg 

[7] models can be used for the ASD function whereas the Corcos [2] or Chase [3] models can 200 

be considered for the normalized CSD functions.  

 

It is assumed that the panel has a linear vibroacoustic behavior that can be represented by a 

deterministic model (like FEM). It may be complex. That is to say, for example, that it could 

be made of different layers of different materials. It could also be stiffened by ribs on the side 205 

opposite the flow.  

 

The goal for us consists in estimating the vibrations of this panel when it is excited by the 

wall pressure fluctuations induced by the TBL. In the next section, we give the outlines of the 

formulation of this problem in the frequency-wavenumber space. Details of the formulation can 210 

be found in the literature [38-40]. 

 

 Mathematical formulation 

 ,~xbp  represents the wall-pressure fluctuations due to the TBL on the plate at point x  as a 

function of time t. The plate acceleration at point x  due to wall-pressure fluctuations,  t,x , 215 

can be expressed as the convolution product 
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      








p

ddptht b xxxxx ~,~,~,,   , 

 

(2) 

where  th ,~, xx  is the acceleration impulse response at point x  for a normal unit force at point

x~ . 

As the turbulent flow induces a random process, the plate response is characterized by the 

auto correlation function of the acceleration, R . Assuming that the process is stationary and 220 

ergodic (i.e. expectation replaced by the limit of a time average), R can be written as: 

     





2/

2/

,,
1

lim,

T

T
T

dtt
T

tR  xxx . 

 

 

 

(3) 

By introducing (2) in (3) and taking the time Fourier transform of the result, we obtain the 

Auto Spectrum Density (ASD) of the acceleration at point x (see details in [38-40]): 

        
 



p p

ddHSHS TBL

pp xxxxxxxxx
~~~,

~~,,
~~~,~,,

*
  , 

 

(4) 

where    




 dtethH tj

  ,~,,~, xxxx  is the Frequency Response Function (FRF) in terms of 

acceleration at point x  for a normal force at point x~  and the asterisk denotes the complex 225 

conjugate. 

 

Now, let us consider the space Fourier transform of the wall pressure spectrum,   ,k
TBL

pp . 

This is related to the wall pressure spectrum in the physical space  ,xx TBL

ppS  by  

     
kkxx

xxk deS iTBL

pp

TBL

pp





 .

2
,

4

1
, 


 . 

 

(5) 

 230 

Introducing Eq. (5) in Eq. (4) gives  

     


 kkxkx dHS TBL

pp

2

2
,,

~
,

4

1
, 


  , 

 

(6) 

with 

   




p

deHH j
xxxkx

xk ~,~,,,
~ ~

  . (7) 
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  ,,
~

kxH  is generally called the sensitivity function [41]. The interpretation of Eq. (7) 

indicates that this quantity corresponds to the acceleration at point x  when the panel is excited 

by a unit wall plane wave of wavevector k  (i.e. by a WPF   p

j

b ep  xx
xk ~,~ ~

).  235 

 

In Eq. (5-6), improper integrals exist over the wavenumber space. In the following, it is 

assumed that they can be approximated by considering the rectangular rule and by truncating 

and regularly sampling the wavenumber space. The criterion for defining the cut-off 

wavenumbers and the wavenumber resolutions will be discussed later. However, it should be 240 

underlined here that the cut-off wavenumbers can be different between Eq. (5) related to the 

wall pressure and Eq. (6) related to the panel vibration due to the well-known filtering effect of 

the panel [35]. p  and  denote the sets of wavenumbers selected to estimate Eq. (5) and (6), 

respectively. Thus the following can be written: 

     
kkxx

xxk
 





p

iTBL

pp

TBL

pp eS








.

2
,

4

1
, , 

 

(8) 

     





 


 kkxkx
2

2
,,

~
,

4

1
, HS TBL

pp , 

 

(9) 

where k represents the wavenumber resolutions. 245 

 

The outlines of the formulation for estimating the vibratory response of the panel have been 

presented here. One can emphasize that these developments can be easily adapted for evaluating 

the noise radiated by the panel (see the details of the formulation in [38-40]). It is however 

outside the scope of the present paper which focus on the synthetize of the WPF and the 250 

prediction of the panel vibration. 

 

III. UNCORRELATED WALL PLANE WAVE FIELD 

The basic idea of the proposed approach is to represent the TBL pressure CSD function as the 

result of a combination of uncorrelated wall pressure plane waves. This approach may be related 255 

to room acoustics, where a diffuse field can be represented by summing the effect of an infinite 

number of acoustic plane waves originating from all spatial directions and having the same 

amplitude [42].  

This section is organized as follow: we define first the concept of uncorrelated wall plane 

waves. Then, we establish the link between the uncorrelated wall plane waves and the TBL 260 
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excitation. Finally, we propose a process for synthetizing realizations of the WPF induced by 

uncorrelated wall plane waves. As the uncorrelated wall plane waves can be representative of 

the TBL excitation when the wave amplitudes are correctly defined, the process which will be 

described in this section will permit to synthetize realizations of the WPF induced by a TBL 

excitation. 265 

 

 Definition 

 

Let us define the concept of uncorrelated wall plane waves. One recalls that the term wall 

plane wave refers to the blocked pressure acting on a panel surface varying spatially as 270 

p

je x
kx, where k  is the wavevector of the wave considered. It is assumed that this wave has 

a stochastic amplitude. The blocked pressure induced by a wall plane wave  of wavenumber 

k can then be written 

    xk
x 



j
etAtp Re,  , 

 

(10) 

where  tA  is a random variable.  

This wall plane wave is clearly a surface wave in the sense that it is only defined at the surface 275 

of the panel. Moreover, we underline that the wavevector k may be arbitrary in the 2-D real 

space k ℝ2. It does not depend on the acoustic propagation as it is the case for an acoustic 

plane wave. 

The pressure CSD function corresponding to this wall plane wave is therefore: 

     xxk
xx


 




j

AApp eSS , , 
 

(11) 

where  
 AAS  is the ASD function of the wave amplitude. 280 

Now, let us consider a set of Uncorrelated Wall Plane Waves (UWPW) of wavenumbers

  ,k .  The total blocked pressure  tp ,x  is given by: 

   





 tptp ,, xx . (12) 

As the wall plane waves are assumed to be uncorrelated, the CSD function between the 

amplitudes of two different waves is null:   





 if  0AAS . Hence the CSD function of the 

pressure induced by this set of uncorrelated wall plane waves is therefore: 285 
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     













xxk
xx

j

AA

UWPW

pp eSS , . 
 

(13) 

 

 Uncorrelated wall plane wave field and TBL excitation 

Now let us establish a link between the UWPW and the TBL excitation. To do that, one 

considers a set of UWPW defined such that p  and the ASD functions of the wave 290 

amplitudes are given by: 

 
 




 








  ,

4

,
2

kk
TBL

pp

AAS . 

 

 

 

(14) 

By introducing Eq. (14) in Eq. (13) and by comparing the results with Eq. (8), it can be seen 

immediately that     ,, xxxx  TBL

pp

UWPW

pp SS . This clearly demonstrates that the TBL 

excitation can be represented as a superposition of uncorrelated wall pressure plane waves. 

 295 

It is possible to verify that this representation of the TBL excitation remains consistent with 

the panel response. Indeed, if we consider a set of UWPW with  , the ASD function of 

the panel acceleration in response to the set of UWPW may be written as: 

        
 




 



 

  ,,
~

,,
~

, kxkxx HSHS AA

UWPW
, 

 

(15) 

which is simplified because the wall plane waves are uncorrelated: 

     









 
2

,,
~

, kxx HSS AA

UWPW
. 

 

(16) 

When defining the wave amplitudes by Eq. (14), the direct comparison of Eq. (16) and Eq. 300 

(9) gives      ,, xx
TBLUWPW SS  .  

In conclusion, the TBL excitation can be represented by a set of UWPW when the wave 

amplitudes are defined with Eq. (14). 

 Realizations of uncorrelated wall plane wave fields  

Let us now define a process for synthetizing realizations of the WPF induced by UWPW. A set 305 

of UWPW as defined in the previous section constitutes a random excitation. One way of 

approximating it is to consider different realizations of the random pressure field. Using the 

physical interpretation of uncorrelated wall plane waves, it is possible to define the wall 

pressure field of the kth realization,  ,x
kp  by, 
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    xk
x 








jj

AA

k eeSp
k




, , 

 

 

(17) 

 where 
k

 ,  are random phase values uniformly distributed in  0,2 .   310 

In this expression, the terms 
kj

e   express the fact that the wall plane waves are uncorrelated and 

the terms   
 AAS  represent the wave amplitudes. The root square of the ASD function of the 

wave amplitudes is used to counteract the second-moment related to the ASD function.  

It can be easily demonstrated that the CSD function of the wall pressure corresponding to an 

infinite number of these realizations,  ,xx S

ppS , corresponds well to the CSD function of the 315 

uncorrelated wall pane wave field,  ,xx UWPW

ppS . Indeed,  ,xx S

ppS  can be written by 

definition: 

     
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jj

AA

jj
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S

pp eeSeeSES
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
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
xkxk

xx 
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











, , 

 

 

(18) 

where  
k

E represents the ensemble average over the realizations and the upper bar denotes the 

complex conjugate of the complex number. 

 320 

By rearranging the different terms,  

          kjj

AAAA

S

pp

kk

eEeSSS 





 

 





 




xkxk

xx , , 

 

(19) 

and by considering an infinite number of realizations, 

  


 



   otherwise,  ,0

, if   ,1 
 

k

j kk

eE  

 

 

(20) 

we obtain     ,, xxxx  UWPW

pp

S

pp SS . 

 

This demonstrates well that when considering an infinite number of realizations, the CSD 325 

function of the WPF defined by Eq. (17) is equivalent to the CSD function of the uncorrelated 

wall pane wave field.  

 

To summarize this section 3, one can emphasize that: (a), the TBL excitation can be 

represented by a set of uncorrelated wall plane waves when the wave amplitudes are defined 330 

by Eq. (14); (b), Realizations of the random pressure field corresponding to a set of uncorrelated 

wall plane waves can be obtained using Eq. (17); (c), The CSD function of the WPF 
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corresponding to these realizations converge to the CSD function of the set of uncorrelated wall 

plane waves when the number of realization tends to infinity. 

It results that realizations of the random pressure field corresponding to a TBL excitation 335 

can be obtained by using Eq. (17) when the wave amplitudes are defined by Eq. (14). The CSD 

function of the WPF corresponding to an infinite number of realizations is then equal to the 

CSD function of the TBL excitation. An infinite number of realizations of the WPF as described 

previously are then equivalent to the TBL excitation. In consequence, the response of the panel 

under TBL excitation can be estimated from the response of the panel excited by the WPF 340 

corresponding to these realizations. In practice, a finite number of realizations K will be 

considered to approximate the TBL excitation. The accuracy of the calculation process 

summarized in section 4 will be studied in section 5 in function of the number of realizations.  

 

IV. PROCESS FOR ESTIMATING THE PANEL RESPONSE 345 

FROM THE WALL PRESSURE REALIZATIONS 

 

The following is a description of the numerical process for estimating the panel response to a 

TBL excitation from the realizations of the uncorrelated wall plane wave field. This process is 

directly derived from the previous section. One has seen that the realizations of the WPF defined 350 

by Eq. (17) with Eq. (14) are representative of the WPF of the TBL excitation. The proposed 

process consist then to estimate the panel response to the WPF of each individual realization 

and then to average the obtained panel responses over the different realizations.   

 

 Let us consider a deterministic vibroacoustic model of the panel in order to estimate the 355 

panel response to deterministic load cases. This model can be an analytical model for an 

academic structure or an element-based model for a complex panel (as it will be illustrated in 

section 6 for a stiffened plate represented by a finite element model within the MSC/NASTRAN 

code). 

  360 

The numerical process proposed can be decomposed into three steps: 

- The first step consists in calculating the WPF of K realizations of the uncorrelated wall 

plane wave field representing the TBL excitation. It is carried out by using the formula (17) and 

considering the wave amplitudes defined by Eq. (14). When using an element-based method 

for describing the vibro-acoustic behavior of the panel, the WPF should be applied to the nodes 365 
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of the mesh belonging to the interaction surface between the panel and the flow. For the node i 

of this set of nodes, the pressure corresponding to the kth realization (deduced from Eq. (14) and 

(15)) is given by: 

 
   ki

y
i

x ykxkjyxyx

TBL

ppiik e
kkkk

yxp 
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
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
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 24

,,
,, , 

 

 

 
 

(21) 

where: 

- x  and y represent the axis in the streamwise direction and the crosswise direction, 370 

respectively;  

-  

yx kk ,  are the coordinates of the wavevector k ; 

-  ii yx ,  are the coordinates of node i.   

 - yx kk    and  are the wavenumbers resolutions in the spanwise and streamwise directions, 

respectively, and; 375 

- 
k

 , are random phase values uniformly distributed in  0,2 ; 

 

- In the second step, the vibroacoustic model is used to estimate   ,x
k

, the panel 

acceleration at point x  when the panel is excited by the deterministic WPF,  ,x
kp  calculated 

in the previous step. When an element-based model is considered, expression (21) is directly 380 

used to prescribe the pressure on the nodes at the interface between the panel and the flow. A 

direct frequency analysis can then be performed for example to estimate the panel acceleration 

k .  This calculation is repeated for the different realizations  Kk  ,...,1  . The number of load 

cases considered in the vibroacoustic simulations therefore corresponds to the number of 

realizations; 385 

 

- Finally, in the last step, the ASD of the acceleration at point x  is estimated by an 

ensemble average of the acceleration responses,    Kkk  ,...,1 ,,  x  estimated in the previous 

step: 

        Kk

kkS ES  ,...,1,,,   xxx . 

 
 

(22) 

 390 

   ,x
SS  corresponds then to the ASD of the acceleration at point x  induced by the WPF of 

the K realizations. As the CSD function of the WPF of the K realizations converges to the CSD 
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function of the WPF of the TBL excitation when K ,   ,x
SS  converge to the ASD 

function of the plate acceleration at point x  induced by the TBL excitation. In practice, a finite 

number of realizations K will be considered to approximate the ASD function of the plate 395 

acceleration. This will be studied in the next section.  

 

 

V. NUMERICAL APPLICATIONS  

For evaluating the numerical process described in the previous section, we are going to compare 400 

its results on a basic application case with the results obtained by a direct calculation of Eq. (9). 

In the following, the latter calculation is named the sensitivity function method whereas the 

numerical process described in section 4 is called the sampling method.  

 

 Presentation of the test case 405 

The test case considered for this numerical application is composed of a rectangular thin plate 

simply supported along its four edges and excited by a turbulent air flow. This academic plate 

was chosen because the modal base can be obtained analytically and the vibratory response can 

be easily interpreted.  The plate is made of aluminum and the flow direction is parallel to the 

longest edges of the plate (i.e. about the x-axis). The effect of the air on the plate vibrations are 410 

neglected. The numerical values of the physical parameters considered for this nominal test 

case are given in Tab. 1. To study the influence of different parameters on the accuracy of the 

presented approach, one will be led to modify the physical parameters of the nominal case. This 

will be indicated in the text. For the sake of compactness, one limits however the study to the 

cases presenting a hydrodynamic coincidence frequency (i.e. frequency for which the flexural 415 

wavenumber is equal to the convective wavenumber) lower than the higher frequency of 

interest (i.e. frequency for which the flexural wavenumber is equal to the convective 

wavenumber). In particular, one does not study the cases concerning by a frequency band of 

interest below the hydrodynamic coincidence frequency. For the nominal case, the 

hydrodynamic coincidence frequency is 86.7 Hz and the higher frequency of interest has been 420 

fixed to 300 Hz.  
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Parameters Numerical value 

Panel thickness mm 3h  

Panel length in the streamwise direction m 5.1xL  

Panel length in the crosswise direction m 0.9yL  

Panel Young’s modulus E 67 109 Pa 

Panel Poisson’s ratio  0.34 

Panel mass density  2700 kg/m3 

Panel damping loss factor  0.01 

Receiving point coordinates    m 0.212 m, 0.133, MM yx  

Convective velocity 
cU = 50 m/s 

TBL displacement thickness mm 3.5*   

Friction velocity m/s 6.2* u  

 425 

Table 1. Physical parameters of the nominal test case. 

 

Two different models of WPF will be considered in order to study the influence of the model 

on the accuracy of the results. From Eq. (1) and the definition of the space Fourier transform 

(5), the CSD function of the WPF in the wavenumber space 
TBL

pp can be written:  430 

     


 ,,,,

2

yx

TBL

pp
c

ppyx

TBL

pp kk
U

Skk 







 , 

 

 

 

 

(23) 

where   ,, yx

TBL

pp kk  is the normalized CSD function of the WPF in the wavenumber space 

which is a dimensionless quantity. 

 

The Corcos model is first considered because it provides an analytical expression of the CSD 

function both in the space-frequency domain  ,xx   [2] and in the wavenumber-frequency 435 

domain  ,k . The Corcos model is a semi-empirical model. Although the Corcos model is 

simple and it is frequently used in the literature, it has been pointed out by different authors that 

it may be deficient to represent accurately the subconvective domain of the WPF [44]. One can 

also notice that some improvements have been proposed recently to circumvent this issue [45]. 

We consider however the Corcos model in the following due its simplicity, without any 440 
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consideration on its ability to reproduce fairly the WPF induced by a TBL. The Corcos 

normalized CSD function of the WPF used in the following depends on the convective velocity 

given in Tab. 1 for the nominal case. It is given by ([10], [37]): 
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(24) 

with the Corcos’s parameters: 11.0x , 77.0y . 

 445 

The second model of WPF considered for the numerical applications is the Chase model [10, 

43]. It has been deduced from theoretical developments based on the Poisson equation and it 

depends on numerous empirical parameters. It is supposed to be more accurate in the low 

wavenumber region that the empirical models [45]. The Chase normalized CSD function of the 

WPF is expressed by Eq. (3.18) to (3.20) of Ref. [10]. The empirical constants given after these 450 

equations in this reference are also considered in the present paper. This model depends on the 

TBL displacement thickness, the friction velocity and the convective velocity which are given 

on Tab. 1 for the nominal case. 

 

For the sake of simplicity, the vibratory responses of the panel are normalized by 455 

  ,

2











 c

pp

U
S  which makes it independent of the ASD of the WPF. In others words, this 

normalized response corresponds to the vibratory response of the panel induced by the WPF 

defined by the normalized CSD function,   ,, yx

TBL

pp kk  (see Eq. (23)).  

 

 Numerical modelling 460 

The vibratory response of the plate to a given pressure field,  ,, yxpe  can be easily estimated 

by using the modal expansion method. The modal angular frequency, nm, , the modal shape,

nm,  and the modal mass, nmM , , are given for each couple of non-null integers  nm,  by: 

22
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(25) 

where D is the flexural rigidity given by
 2

3

112 


Eh
D . 
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For the modal expansion, the modes having a frequency in the extended angular frequency 465 

band  max /23 ,0   are considered, where max represents the highest angular frequency of interest. 

   nm, ℕ∗ × ℕ∗  max,  /23 ,0/  nm  denotes the set of modal order couples corresponding to 

these modes. 

 

To estimate the ASD function of the panel acceleration directly with Eq. (9), it is necessary 470 

to estimate the sensitivity functions H
~

 at point  MM yx ,  for each couple of wavenumbers

  yx kk , : 
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(26) 

 

nm,  represents the modal force given by 
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 475 

On the other hand, to estimate the ASD function of the panel acceleration with the numerical 

process described in Section 4, it is necessary to estimate   ,, MM

k yx , the acceleration 

response at point  MM yx ,  induced by the wall pressure (17) corresponding to the kth realization: 
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(29) 

where the modal forces are given by: 
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(30) 

The latter expression is well adapted for the present case for which we can calculate an 480 

analytical expression of nm,  (i.e. Eq. (27-28)). For a complex panel, the forced response or the 

mode shapes can be calculated by FEM and can be known at discrete points (i.e. the nodes of 
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the mesh). In the literature ([24-25], [28]), it has already been shown that the size mesh should 

be defined carefully for describing correctly the spatial variations of the WPF and for avoiding 

aliasing phenomenon [25]. In order to study the influence of this type of approximation in the 485 

framework of the proposed approach, we also perform an approximation of the modal forces 

by considering a spatial discretization of the mode shapes by S points along the streamwise 

direction and R points along the crosswise direction. The modal forces for the kth realization 

can then be approximated by using the rectangular rule: 

    yxysxrysxrpF
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r
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kk
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 0 0
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(31) 

with 
R

L
x x , 

S

L
y

y
 . 490 

The spatial resolutions x  and y  can be defined using a criterion based on the TBL 

characteristics or on the plate characteristics. This point will be studied in section V.D.4. 

 

 Definition of the sets of wavenumbers  

 495 

Before evaluating the sampling method, one defines the sets of wavenumbers which intervene 

Eq. (8) and (9) for the sensitivity method and in Eq. (17) and (21) for the sampling method. 

They were introduced as the results of the truncation and the sampling of the wavenumber space 

in order to approximate the integrals of Eq. (5) and (6).  

 500 

The criterion for defining the cut-off wavenumbers in the streamwise and the crosswise 

directions should be defined such that the significant contributions of the integrands of these 

equations are taken into account well.  

 

- Definition of the cut-off wavenumber in the streamwise direction 505 

To highlight the different contributions in the wavenumber space for the nominal test case, 

we plotted on Fig. 2 the two quantities which intervene in the integrands of Eq. (5) and (6). 

They are expressed as a function of the streamwise wavenumber xk , and the frequency f 

 f 2 , in the case of the crosswise  wavenumber yk , fixed at 0.  

 510 



20 

 

Fig. 2a shows the normalized CSD function of the wall pressure spectrum of the Corcos 

model. It exhibits the highest values for wavenumbers close to the convective wavenumber .ck  

Furthermore, in Fig. 2b, the highest values of the sensitivity functions (calculated with Eq. (26)) 

can be observed for frequency and wavenumbers close to the modal frequencies and the modal 

wavenumbers in the streamwise direction, respectively. To illustrate this, we have indicated the 515 

modal frequencies and the modal wavenumbers of the first 10 modes of the plate in Tab. 2. The 

frequency and wavenumber of the highest amplitudes in Fig. 2b correspond well to the modal 

frequency nmf ,  and the modal wavenumbers mk  of the plate modes with n=1. It should be 

emphasized that only these particular modes have the most significant contributions in the 

sensitivity functions shown in fig. 2b because the crosswise wavenumber is equal to 0 for this 520 

figure (i.e. 0yk ). Whatever the case, it can be however concluded that the highest values of 

the sensitivity functions can be observed for wavenumbers below or close the natural flexural 

wavenumber of the plate Dhk f   (see Fig 2b). 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

 

Fig. 2. (a), The normalized CSD function of wall pressure spectrum given by the Corcos 

model,    ,0,x

TBL

pp k  (dB, ref. 1); (b), The sensitivity function of the plate at point  MM yx , , 525 

 
2

,0,,,  xMM kyxH   (dB, ref. 1). 
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nmf ,  (Hz) 

 

m 
x

m
L

m
k


  (m-1) 

 

n 
y

n
L

n
k


 (m-1) 

12.1 1 2.09 1 3.49 

21.7 2 4.18 1 3.49 

37.7 3 6.28 1 3.49 

38.7 1 2.09 2 6.98 

48.4 2 4.18 2 6.98 

60.1 4 8.37 1 3.49 

64.4 3 6.28 2 6.98 

83.2 1 2.09 3 10.47 

86.8 4 8.37 2 6.98 

88.9 5 10.47 1 3.49 

 

Table 2. Modal information for the first ten modes of the plate: nmf ,  , the modal frequency 

 nmnm f ,, 2  ; m, n, the modal orders in x and y directions, respectively; mk , nk , the modal 530 

wavenumbers in the x and y directions. 

 

For defining the set of wavenumbers p  related to the wall pressure field (i.e. Eq. (8)), the 

cut-off wavenumbers should be defined only from the characteristics of the wall pressure 

spectrum (as the blocked pressures are independent of the panel). The truncation of the 535 

wavenumber space should include the convective ridge in the streamwise direction. Then, one 

defines the cut-off wavenumber by: 

max

c

p

x kk  , 
 

(32) 

where max

ck is the convective wavenumber at the higher frequency of interest and   is a margin 

coefficient greater than one. In the following, 2.1  will be considered.  

 540 

For defining the set of wavenumbers   related to the panel acceleration, the truncation of 

the wavenumber space should be done by considering, both, the excitation characteristics and 

the panel characteristics. Fig. 3a shows the result of the product between and the wall pressure 

spectrum (i.e. Fig 2a) and the sensitivity function (i.e. Fig 2b). It should be underlined that this 

product appears in the summation of Eq. (9) to evaluate the ASD function of the plate 545 
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acceleration. It can be observed on Fig. 3a that the contribution of the convective domain is 

negligible. This is due to the well-known filtering effect of the pressure fluctuations by the 

panel [35, 36]. Thus, for this case, the truncation of the wavenumber space in the streamwise 

direction can be achieved without considering the convective ridge. The cut-off wavenumber 

in the streamwise direction used to define the set of wavenumbers   in Eq. (9) or in Eq. (17) 550 

can then be given by: 

max1

fx kk   , 
 

(33) 

 where max

fk is the convective wavenumber at the higher frequency of interest. 

  

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

 

 

Fig. 3.  Values of the product between the sensitivity function and the wall pressure spectrum, 

   
2

,0,,,,0,   xMMx

TBL

pp kyxHk (i.e. integrand of Eq. (6), dB, ref. 1). Results for two models of 555 

wall pressure spectrum: (a), Corcos model; (b), Chase model. Dashed line: convective 

wavenumber; Solid line: flexural wavenumber.  

 

It should however be mentioned that it is not a general result. The filtering effect of the 

structure is not always enough important to vanish the contributions of the convective ridge. It 560 
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depends in particular on the frequencies of interest [35], the panel boundary conditions [36], 

and the considered model of the WPF. This latter dependency is highlighted on Fig. 3b showing 

the same type of results than Fig. 3a when considering the Chase model. One can observe that 

the contributions of wavenumbers above the flexural wavenumber are more important with the 

Chase model than for the Corcos model. This is due to a stronger decrease of the CSD function 565 

in the low wavenumber domain of the Chase model compared the Corcos model. For the 

considered case, the criterion defined by Eq. (33) may be in its limit of validity with the Chase 

model. This will be verified in the section 5.D.1 In the case of the filtering effect of the structure 

is not dominant, the criterion (34) based on the TBL characteristics should be applied to 

estimate the panel response:  570 

max2

c

p

xx kkk   . 
 

(34) 

 

- Definition of the cut-off wavenumber in the crosswise direction 

For the crosswise direction, it can be observed in general that the wall pressure spectrum 

decreases monotonically when the crosswise wavenumber yk increases. The cut-off 

wavenumber p

yk  related to the wall pressure field (i.e. Eq. (8)) has been fixed at 1rad/m 300   575 

with a trial-and-error process. For the panel response, the result of the product between the 

sensitivity functions and the wall pressure spectrum is dominated by the wavenumbers below 

or close to the natural flexural wavenumber of the plate (results not plotted here). The cut-off 

wavenumber in the crosswise direction can then be defined as the one in the streamwise 

direction: 580 

max

fy kk   . 
 

(35) 

 

- Wavenumber resolutions 

The wavenumber resolutions in the two directions should be defined such that they correctly 

represent the spatial variations in the wavenumber space of the wall pressure spectrum and the 

sensitivity function. The analytical expression of the sensitivity functions for the panel 585 

considered (i.e. Eq. (26-28)) gives an order of magnitude of these spatial variations (inversely 

proportional to the panel lengths) whereas the wall pressure spectrum varies relatively slowly 

as a function of the wavenumbers. In the following, the wavenumber resolutions are then fixed 

at 0.25 rad/m, independently of the frequency. For a more complex panel, a trial and error 

process can be used to fix these parameters. 590 
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 Analysis of results 

1. The sensitivity method 

 

The ASD function of the panel acceleration at the receiving point M has been evaluated with 595 

the sensitivity method for the nominal test case. Calculations have been performed for the two 

cut-off wavenumber criterions (33) and (34) (i.e. rad/m 3.241 
xk and rad/m, 2.452 

xk

respectively) and for the two models of WPF described in section 5.A (i.e. Corcos and Chase 

models). The results are plotted on Fig. 4 in function of the frequency. For the Corcos model, a 

very good agreement between the two calculations are observed on the whole frequency band 600 

of interest. This confirms that the structure filters sufficiently the convective ridge of WPF in 

order that this latter can be neglected. For the Chase model, the agreement between the two 

calculations is very good up to around 200 Hz. Above this frequency, the calculation 

considering the criterion (33) underestimates slightly the panel response. A difference of 2.5 

dB can be observed at 300 Hz. This can be explained from the observations made on Fig. 3b in 605 

the previous section. These results highlights well that the criterion (33) should be used with 

carefully. We reach its limit of validity for the present case with the Chase model. However for 

the present case, the prediction remains globally a correct estimation of the plate response. 

 

In the following, the results of the sensitivity method using the criterion (34) will be used as 610 

a point of comparison in order to evaluate the accuracy of the sampling method.    
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(a) 

 

 

 

 

 

 

 

 

 

(b) 

Fig. 4.  ASD function of the panel acceleration at the receiving point M as a function of the 

frequency,   MS10 log 10  (dB, ref. 1 m/s2/Hz0.5). Comparison of results obtained with the 

sensitivity function method with different criterion of the truncation of the wavenumber 615 

space: Full line, criterion (34) based on the TBL characteristics; dash line, criterion (33) based 

on the plate characteristics. Results for two models of wall pressure spectrum: (a), Corcos 

model; (b), Chase model. 

 

2. Synthesis of the wall pressure field  620 

 

The realizations of the wall pressure field are achieved using Eq. (17). By way of illustration, 

the WPF of two realizations at 300 Hz are given in Fig. 5 considering the Corcos model: 

-  The first one (Fig. 5a) has been obtained when the wavenumber set  is defined with the 

TBL characteristics (i.e. p ). Spatial variations due to wave propagations in the 625 
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streamwise direction appear. The wavelength of these waves is around 0.2m, which correspond 

roughly to the convective wavelength (  16.0/2  cc k rad/m at 300 Hz).  

- The second one (Fig. 5b) considers the wavenumber set defined from the panel 

characteristics (  ). In particular, the criterion (33) is applied to define the cut-off 

wavenumber in the streamwise direction. One can notice that the spatial variations present 630 

higher wavelengths and the amplitudes are lower than in Fig. 5a. This is directly due to the 

truncations of the wavenumber space which is more restrictive when considering the panel 

characteristics than the TBL characteristics. The WPF of Fig. 5b does not represent the 

convective ridge of the TBL. It explains why the amplitudes are lower. However, it represents 

the part of the pressure field induced by the TBL that contributes to the panel vibration.  635 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

Fig. 5.  Two realizations of the WPF at 300 Hz obtained with Eq. (17): (a), using the 

wavenumber set defined with the TBL characteristics (i.e. p ); (b), using the 

wavenumber set defined with the plate characteristics (i.e.  ). 

 640 

In order to study the WPF synthetized with Eq. (17), one will compare the spatial coherence 

estimated from the WPF of K realizations with the one given by the analytical expression of the 
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Corcos model. The spatial coherence between point x  and  x'  can be estimated from K 

realizations by: 

 
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(36) 

where  ,x
kp  is obtained with Eq. (17). 645 

The results of this equation for K=30 and K=900 are plotted in Fig. 6 for the streamwise and 

crosswise directions. It is clear that the small coherence length in the crosswise direction 

compared to the streamwise direction is well represented by the stochastic process even if only 

30 realizations are considered. It can also be seen that a large number of realizations should be 

considered to correctly represent the small coherences corresponding to a relatively large 650 

separation. This seems to indicate that a relatively large number of realizations should be 

necessary to represent the wall pressure fluctuations finely. However, as the panel filters the 

wall pressure fluctuations, it is not evident that a large number of realizations remain necessary 

to evaluate the panel response. This will be the subject in the next sections.  

 655 

 

Fig. 6. Spatial coherence of the TBL pressure field as a function of the spatial separation in 

the streamwise direction (Upper) and in the crosswise direction (Lower). Full line, analytical 

formula of the Corcos model; dotted line, numerical estimation considering 30 realizations; 

dash line, numerical estimation considering 900 realizations. 660 
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3. Results of the sampling method on the nominal test case 

 

The process described in section 4 is applied to evaluate the ASD function of the panel 

acceleration at the receiving point. The nominal test case with the Corcos model and 30 

realizations are considered. The cut-off wavenumber criterion based on the TBL characteristics 665 

(34) is applied. For each realization, the panel acceleration has been obtained using the modal 

expansion Eq. (29-30). One recalls that the modal forces resulting of the WPF is then calculated 

analytically. To illustrate the process, one has plotted on Fig. 7 the results of the 30 realizations 

(grey line). One can observe a relatively large dispersion of the plate response in function of 

the realizations. The ensemble average of these acceleration responses (i.e. Eq. (22)) is then 670 

calculated in order to estimate the ASD function of the panel acceleration. The result (dash line) 

has been plotted on Fig. 7. 

 

 

Fig. 7.    MS10 log 10  (dB, ref. 1 m/s2/Hz0.5). Calculations with the sampling method: Grey 675 

lines, results of 30 realizations; dashed-dotted line, Results obtained with averaging on the 30 

realizations. Calculation parameters: Corcos model, cutoff wavenumber criterion (34) based 

on the TBL characteristics. 

 

For studying the accuracy of the sampling method, one compares the previous result (dash 680 

line) with the result of the sensitivity method (full line) on Fig. 8. A very good agreement 

between the two calculations can be observed. This indicates that although the panel response 

of the 30 realizations exhibits an important dispersion, an average over only 30 realizations is 

sufficient to give a correct estimation of the ASD function of the panel acceleration.  
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 685 

Fig. 8.   MS10 log 10 in function of frequency (dB, ref. 1 m/s2/Hz0.5). Comparison between 

three calculations: full line, the sensitivity function method (used as reference); dash line: the 

sampling method with the modal forces calculated analytically; dashed-dotted line, the 

sampling method with the modal forces estimated using the fine mesh (25 x 9). Calculation 

parameters: Corcos model, cutoff wavenumber criterion (34) based on the TBL 690 

characteristics. 

 

For this first result of the sampling method, Eq. (17) were used to synthetize the WPF and 

the modal forces were calculated analytically with Eq. (30). This is appropriate for academic 

cases. For more complex cases, the WPF will be defined on a point mesh and it will be 695 

introduced in the numerical model of the panel. In the literature, different authors considering 

different spatial methods ([24], [25], [28]) already showed that the mesh of a finite element 

model should be defined carefully in this case for describing both, the structure behavior and 

the aerodynamic field. For studying the influence of the definition of the WPF on a discretized 

mesh in the framework of the proposed approach, let us considered a first mesh of points on the 700 

plate. This will be called the fine mesh and it is defined by the spatial resolutions x  and y  

defined by (as proposed in Ref. [25]): 





yx k
y

k
x    and 

2
, 

 

 

(37) 

where 
2

xk  and 


yk  are defined by the criteria (34) and (35), respectively. 
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For the nominal test case, the mesh is composed of 25 points in the streamwise direction and 

9 points in the crosswise direction. The modal forces used to estimate the plate acceleration 705 

(29) can then be approximated using Eq. (31). The result of the sampling method considering 

the modal forces estimated on the fine mesh has been plotted (dashed-dotted line) on Fig. 8. 

One can observe that the discretization of the WPF using this fine mesh does not introduce 

significant discrepancy which is consistent with the works proposed in the literature. 

 710 

4. Influence of the cut-off wavenumber criterion and the mesh size 

 

Now, the accuracy of the sampling method is studied in function of the cut-off wavenumber 

criterion and the mesh size. To do that, a second mesh called the coarse mesh is considered with 

the spatial resolution in the streamwise direction defined by: 715 

, 
1



xk
x  . 

 

 

(38) 

where 
1

xk   is defined by the criterion (33). 

For the nominal test case, this coarse mesh is composed of 14 points in the streamwise 

direction. The spatial resolution in the crosswise direction remains unchanged compared to the 

fine mesh. 

 720 

Results of the sampling method are compared to the sensitivity method on Fig. 9 when 

considering the coarse mesh and the two cutoff wavenumber criteria (33) and (34). Fig. 9a 

corresponds to the Corcos model whereas as Fig. 9b corresponds to the Chase model.  

 

When the cut-off wavenumber criterion (34) based on the convective wavenumber is 725 

considered, one notices that the discrepancies are generally less than 2 dB when the fine mesh 

is considered, whereas large discrepancies above around 180 Hz can be observed when the 

coarse mesh is used. This is observed for the two WPF models. Although the contributions of 

the convective ridge are filtered by the panel and may be neglected as shown in section V.C, a 

fine description of them is required in order to obtain good convergence of the calculation. In 730 

contrary, when considering the coarse mesh and the cut-off wavenumber criterion (33) based 

on the flexural wavenumber, a good accuracy is observed on the whole frequency of interest, 

for both WPF models. This result confirm that the effect of the convective ridge is negligible 

on the panel vibration for the present case. Moreover, the coarse mesh is sufficient for 
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estimating the panel response because the pressure field of each realization (as shown on Fig. 735 

5b) varies slowly when the criterion (33) is considered (contrary to the rapid variations of the 

pressure field when the criterion (34) is considered, as shown in Fig. 5a). This explains why the 

results converge with a coarse mesh when the criterion (33) is considered rather than the 

criterion (34).  

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Fig 9.   MS10 log 10  in function of frequency (dB, ref. 1 m/s2/Hz0.5). Results with two 740 

different models of WPF: (a), Corcos; (b), Chase.  Full line, the sensitivity function method 

(used as reference); dash line, the sampling method considering the coarse mesh (14 x 9) and 

the cutoff wavenumber criterion (34) based on the TBL characteristics; dashed-dotted line: 

the sampling method considering the coarse mesh (14 x 9) and the cutoff wavenumber 

criterion (33) based on the plate characteristics. 745 
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Thus, when the panel filtering effect is dominant, there are two advantages in reducing the 

wavenumber space:  

- first, it reduces the number of wall plane waves to be considered (i.e.  card ) in the 

process of synthetizing the WPF (17). As the computing time of this process is directly 

proportional to the number of wall plane waves considered, the time saving can be easily 750 

deduced when using (33) instead of (34). However, it should be pointed out that this process, 

which consists in performing a summation, consumes relatively little time;  

- second, as it was observed previously, it permits to consider a coarser mesh than if the 

wavenumber space were not reduced. In the case of a panel represented by a Finite Element 

model, the size of the elements can be defined with a criterion on the panel characteristics and 755 

not the TBL ones. The number of degrees of freedom, and by consequence, the FEM computing 

times, can be significantly reduced.  

  

We should however underline that this panel filtering effect is not always dominant and it 

should be considered carefully. It is for instance the case when the frequency range of interest 760 

is close to the hydrodynamic coincidence frequency. The sampling method can however always 

be applied using the criterion (34) and a fine mesh described with (37).  

 

5. Influence of the number of realizations  

 765 

To evaluate the influence of the number of realizations on the accuracy of the sampling method, 

the discrepancies with the sensitivity function method are plotted in Fig. 10 for different 

numbers of realizations. An optimal compromise should be found between reasonable 

computing times and acceptable discrepancies. For the presented case, with 30 realizations, the 

average over the frequency range of the absolute discrepancies is less than 1 dB between the 770 

sensitivity function method and the sampling method. This seems acceptable from the practical 

point of view.  
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(a) 

 

 

 

(b) 

 

 

 

(c) 

 

 

 

(d) 

Fig. 10. Difference of   MS10 log 10  between the sensitivity function method and the 775 

sampling method as a function of frequency for different number of realization: (a), 3 

realizations; (b), 10 realizations; (c), 30 realizations; (d), 100 realizations. 

 

6. Computation times 

 780 

The calculations presented in this paper have been performed using the MATLAB software on 

a standard personal computer (Intel Core i5 3.2 GHz, 8 Go Ram). When the cut-off wavenumber 

criterion (34) were applied, 17738 points in the wavenumber space (or wall plane waves) were 

considered. For the sensitivity method, 815 seconds were used to calculate the entire spectrum 

whereas 331 seconds were used by the sampling method with the fine mesh. When the cut-off 785 

wavenumber criterion (33) were applied, 9604 points in the wavenumber space were 
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considered. The computation time are reduced to 689 seconds for the sensitivity method and 

114 seconds for the sampling method with the coarse mesh. This computing time have been 

given for indication but they should be relativized. It can be strongly depend on the 

vibroacoustic model used to describe the panel. When a commercial software is used, an 790 

important parameter can be the number of load cases being considered. In the case of the 

sensitivity method, this one corresponds to the number of wall plane waves whereas for the 

sampling method, it is the number of realizations. It is an important advantage of the sampling 

method compared to the sensitivity approach. Moreover, more than 90% of the computation 

time of the sampling method corresponds to the synthetize of the WPF with (17). The 795 

summation which appears in this equation is performed with a FOR loop in the MATLAB 

program, which is time consuming. The use of a programming language such as FORTRAN or 

C could certainly save computing time.   

Even if the numerical process related to the sampling process is not fully optimized, the 

computing times given previously clearly show that the sampling method permits to save 800 

computing times compared to the sensitivity method. 

 

7. Influence of the convective velocity and the panel thickness 

 

To verify the accuracy of the sampling approach in function of different physical parameters, 805 

we are going to modify two parameters of the nominal case: the convective velocity and the 

panel thickness. The others parameters will remain unchanged. The Chase model and 30 

realizations are considered in this section. The modification of these parameters will change the 

hydrodynamic coincidence frequency and the interaction between the pressure fluctuation of 

the TBL and the panel response. 810 

 

- Influence of the convective velocity  

Calculations with the sensitivity method and the sampling method have been performed for 

two convective velocities: 93 m/s and 25 m/s. For the first one, the hydrodynamic coincidence 

frequency is 300.1 Hz. At 300 Hz, the higher frequency range of interest, the flexural 815 

wavenumber is close to the convective wavenumber. The cut-off wavenumber in the 

streamwise direction can then be defined independently with criterion (33) or (34) which ensure 

to describe correctly the panel behavior and the WPF. A good agreement has been obtained 

between the sensitivity approach and the sampling approach (results no shows here). For the 

second convective velocities (i.e. 25 m/s), the hydrodynamic coincidence frequency is 21.7 Hz. 820 
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The cut-off wavenumber in the streamwise direction given by the criterion (34) is equal to 90.5 

rad/m and the fine mesh in the streamwise direction is composed of 45 points. The results are 

plotted on Fig. 11. We can notice a good agreement between the different results. Some slight 

discrepancies can be observed between the sensitivity approach (used as reference) and the 

sampling approach when considering the criterion (33). This can be attributed to the fact that 825 

the panel filtering effect is not sufficient to vanish completely the effect of the convective ridge. 

The results remains however acceptable from a practical point of view.   

 

 

Fig 11.   MS10 log 10 in function of frequency (dB, ref. 1 m/s2/Hz0.5). Results for the 830 

convective velocity, Uc=25 m/s. Chase Model. Full line, the sensitivity function method 

(reference); dash line, the sampling method considering the fine mesh (45 x 9) and the cutoff 

wavenumber criterion (34) based on the TBL characteristics; dashed-dotted line: the sampling 

method considering the coarse mesh (14 x 9) and the cutoff wavenumber criterion (33) based 

on the plate characteristics. 835 

 

- Influence of the panel thickness  

Now, the convective velocity is fixed to 25 m/s and two panel thickness are considered: 6 

mm and 1.5 mm. The values of the hydrodynamic coincidence frequency, the cut-off 

wavenumber defined by the criterion (33) and the number of points of the coarse mesh in the 840 

streamwise direction are respectively, 10.8 Hz, 17.2 rad/m, 10 for the 6 mm thick panel, and 

43.3 Hz, 34.4 rad/m, 18 for the 1.5 mm thick panel. The results shown on Fig. 12 indicates 
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again a good agreement between the different calculations. When using the coarse mesh, the 

differences are slightly more important for the 6 mm thick panel than for the 1.5 mm thick 

panel. It is always an effect of the weakness of the panel filtering effect. It should however 845 

notice that the size of the coarse mesh (i.e. 90 points) is significantly lower than the one of the 

fine mesh (i.e. 405 points). For this case, it can be accepted to lose slightly in accuracy in order 

to decrease the number of degree of freedom of the vibro-acoustic model. 

 

 850 

 

Fig 12. Same results than Fig. 11 with two different plate thickness: upper curves, h=1.5 mm; 

lower curves, h=6 mm. 

 

VI. EXAMPLE OF APPLICATION ON A STIFFENED PANEL 855 

 

Now let us illustrate one interest of the sampling approach with an application on a complex 

panel. Indeed, one has shown that the number of load cases which should be considered in the 

sensitivity method corresponds to the number of wall plane waves whereas for the sampling 

method, it corresponds to the number of realization which is small compared to the number of 860 

wall plane waves. The number of forced responses which should be calculated with the vibro-

acoustic model is then relatively small when using the sampling method. This can be of high 

interest when the vibro-acoustic calculations are performed by a commercial software for which 

h=1.5 mm 

h=6 mm 
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the calculation process cannot be easily modified. For highlighting this interest, one considers 

a complex panel composed by a rectangular plate orthogonally stiffened by ribs regularly 865 

spaced. The rectangular plate corresponds to the one of the nominal case (see Tab. 1). We recall 

that the plate is assumed to be simply-supported at its four edges and it is excited by a turbulent 

air flow with the flow direction parallel to the longest edges of the plate. The rib cross-section 

is rectangular, 3 mm thick and 60 mm high. The rib spacing in the direction of the longest plate 

edges is 500 mm whereas it is of 300 mm in the other direction. The plate and the ribs are both 870 

made of aluminum (see Tab. 1). The characteristics of the flow considered for this application 

are those of the nominal case (see Tab. 1) and the Chase model is used to describe the WPF.  

  

The stiffened panel is modelled using the finite element method and the MSC/NASTRAN 

software. The plate and the ribs are modelled with 2D shell elements (i.e. CQUAD4 elements 875 

with PSHELL properties) as shown on Fig. 13. A criterion of six elements by flexural 

wavelength at 300 Hz were considered. A direct analysis (i.e. SOL 108) in the MSC/NASTRAN 

software allows us estimating the forced response of the stiffened panel excited by a 

deterministic load. The sampling method is then used to estimate the panel response to the WPF 

induced by the TBL. The receiving point of interest is M’ of coordinates880 

   m 0.22 m, 0.14,  MM yx  which corresponds to the node of the mesh closest the point M of 

the nominal case of Sec. V. 

 

 

 885 

Fig. 13. Finite element mesh of the stiffened plate (view opposite side to the flow). 4216 

nodes, 4095 quadrilateral elements. 

 

60 mm 
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The numerical process were decomposed in 3 steps: 

- the WPF corresponding to 30 realizations were synthetized using Eq. (21) and a 890 

MATLAB program. The cut-off wavenumber criterion (33) was considered for this application 

as the ribbed panel was stiffer than the panel of the nominal case. For each realization, the WPF 

was exported in an ASCII file using the MSC/NASTRAN input data file format. The size of 

each file was 128 Mo; 

- A direct analysis was performed with the MSC/NASTRAN solver to calculate the 895 

forced responses induced by the WPF of the different realizations. To do this, multi-load cases 

were managed in the software by defining different SUBCASE. The 30 files containing the 

WPF of the 30 realizations were read in 170 seconds. The calculations were then performed in 

90 seconds on the computer described previously. The forced responses at the receiving point 

M’ were exported in a PCH ASCII file; 900 

- The PCH file of 8 Mo were read with a MATLAB program and the ensemble average 

over the 30 realizations (i.e. Eq. (22)) were performed to evaluate the ASD function of the panel 

acceleration at point M’ induced by the TBL excitation. 

 

In order to validate this numerical process, the calculations were performed first considering 905 

the unstiffened panel (which corresponds to the nominal case of Sec. V). The results are 

compared on Fig. 14 with the results of the sensitivity method. A good agreement between the 

two calculations can be globally observed on the whole frequency range that validate the 

numerical process. Above 250 Hz, slight shifts of the peaks can be noticed that can be attributed 

to the finite element discretization of the vibro-acoustic problem.   910 
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Fig. 14.   S10 log 10 in function of frequency (dB, ref. 1 m/s2/Hz0.5) for the panel without 

stiffeners. Full line, the sensitivity method at point M; dashed-dotted line, the sampling 

method at point M’ using MSC/NASTRAN FEM code (with averaging on 30 realizations). 915 

Grey lines, results of each one of the 30 realizations. Calculation parameters: Chase model, 

Uc=50 m/s, cutoff wavenumber criterion (33) based on the plate characteristics. 

 

 

The calculations were then achieved for the stiffened plate. We can underline that it was not 920 

necessary to perform again the first step of the numerical process described above because the 

characteristics of the flow are the same for the two cases. The WPF are then unchanged. The 

results of the sampling method are plotted on Fig. 15. Compared to the unstiffened plate, we 

observe that the vibratory levels are globally lower and the first peak appears at a higher 

frequency. The fact that the static stiffness of the ribbed plate is higher than the one of the bare 925 

plate explains this behavior. Moreover, some groups of peaks appears on the spectrum of the 

stiffened panel. These groups can be related to the behavior of an orthotropic plate [46]. Indeed, 

as the plate is stiffened by two ribs in one direction and three ribs in the other direction, the 

flexural stiffness is lower in one direction than the other one. The panel has then a behavior 

equivalent to an orthotropic plate in the low frequency range [46]. In higher frequencies, more 930 

complex phenomena like the propagation of Bloch-Floquet waves [40] would influence the 

panel behavior. It is however outside the scoop of the present application which has been 

proposed for highlighting the interest of the sampling approach.  
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 935 

Fig. 15.    ' log 10 10 MS in function of frequency (dB, ref. 1 m/s2/Hz0.5) for the stiffened 

panel. Dashed-dotted line, the sampling method using MSC/NASTRAN FEM code (with 

averaging on 30 realizations). Grey lines, results of each one of the 30 realizations. 

Calculation parameters: Chase model, Uc=50 m/s, cutoff wavenumber criterion (33) based on 

the plate characteristics. 940 

 

VII. CONCLUDING REMARKS 

 

The numerical process proposed in this paper is based on two main characteristics: 

 945 

- (a) on the formulation of the random excitation problem expressed in the frequency-

wavenumber domain. This permits using the analytical expression of the wall pressure spectrum 

directly in the wavenumber of the well-known models in the literature (Corcos [2], Chase [3], 

Smol’yakov [4], etc.). Moreover, the truncation of the wavenumber space can be achieved 

easily with cut-off wavenumbers defined from the panel characteristics when the panel filtering 950 

effect is predominant. This permits taking advantage of this well-known effect to optimize the 

numerical process. Indeed, when the cut-off wavenumber is based on the panel characteristics, 

it is not necessary to consider a fine spatial description of the pressure field, as discussed in Sec.  

V. We should however emphasize that the filtering effect of the structure is not always enough 
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important to vanish the contributions of the convective ridge. This depends in particular on the 955 

frequencies of interest, the panel boundary conditions, and the WPF model. In this case, the 

criterion (34) based on the TBL characteristics and a fine spatial description of the pressure 

field (see Eq. ((37)) should be considered; 

- (b) on the interpretation of the WPF as uncorrelated wall plane waves. This provides 

a simple way of synthetizing the realizations of the WPF corresponding to the CSD function. 960 

Indeed, Eq. (17) can be applied directly by considering the ASD functions of the wave 

amplitudes defined by Eq. (14). The WPF is then simply obtained by a summation of the wall 

plane waves defined from the CSD function of the wall pressure. The process is then easily 

implemented in a computer program and is not very time consuming.  

 965 

The numerical application showed than the sampling method gives a good estimation of the 

panel response even when a relatively small number of realizations (typically 30) are 

considered. This means that only a few deterministic load cases should be considered in the 

vibroacoustic calculations. This permits to save computing times compared to the classical 

approaches like the sensitivity method. As it has been highlighted on a stiffened panel, the 970 

process can be used with any commercial vibroacoustic software applications based on an 

element-based method. In this situation, a pre-processing program can be used to synthetize the 

pressure field on each node of the mesh for each load case (corresponding to one realization) 

and to export them in an input datafile adapted for the vibroacoustic software. As the number 

of load cases is relatively small, the size of this input datafile should also remain relatively 975 

small. After running the vibroacoustic code, a post-processing program read the output datafile 

containing the system responses and performed the ensemble averaging for the different load 

cases (i.e. realizations). The process proposed is therefore non-intrusive in the vibroacoustic 

software. 
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The proposed numerical process has been applied to estimate the vibratory response of a 

vibrating panel. From a theoretical point of view, there is no obstacle for extending it to predict 

the pressure radiated by the panel excited by a TBL. Indeed, the formulation in the frequency-

wavenumber domain of the radiated pressure can be achieved similarly to the panel vibration 

[39]. It is then easily to show that the ASD function of the radiated pressure can be estimated 985 

from the superposition of the uncorrelated wall pressure plane waves as for the panel vibration 

(see Sec. III). From a practical point of view, it remains however to study the convergence of 
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the process in function of the number of realization and to define cut-off wavenumber criteria 

adapted to the evaluation of the radiated noise. 
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