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Abstract

Two well-known models for drop-size distribution function during dropwise condensation
-called Rose model and Mei model- were examined in two different aspects, average and
differential point of view. It has been proved that these two models are able to describe
the relation between droplets size and distribution function at each time step. The goal
of this research is to investigate how these models can predict the relation between average
distribution function (Nave) and average radius (rave) of droplets during a complete procedure
of dropwise condensation and the relation between differential distribution function (dNdr ) and
drops radius (r) at each time step. The empirical parameters are drop size distribution
exponent (n) and fractal dimension (df) in Rose model and Mei model respectively. At first
these two parameters were calculated based on the experimental data and then the validity
of these calculations for our computer simulation was investigated. It was concluded that
Rose method fits the results of differential distribution function with exponent n between
0.33 and 0.35, and average distribution function with n of around 0.38. The Mei model
also can describe both differential and average results of simulation and experiments with
fractal dimension of 1.79<df<1.99. Also it was observed that the value of both n and df vary
with changing the ratio of radius of two following droplets generation (γ) in our computer
simulation.

Keywords:dropwise condensation, fractal geometry, drop-size distribution function , Mei
method, Rose method

1 Introduction

Dropwise condensation has been in the center of concentration during last few decades due to
its higher heat transfer coefficient with respect to filmwise condensation. It was said that heat
transfer coefficient of filmwise condensation is about 5 to 7 times smaller than in dropwise con-
densation [1]. Generally dropwise condensation includes five main steps: nucleation of initial
droplets, growth due to adsorption, growth due to coalescence, nucleation of new droplets, and
sliding of very big drops (that was not considered here). The result of the last three stages is
the change in number of droplets as well as their size. One can consider drop-size distribution
function (N) as the cumulative number of droplets bigger than a specified value per unit area
(or per unite area and size). It is obvious that both coalescence and nucleation of new droplets
change N during dropwise condensation.
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Changes of N with respect to droplets radius (r) attracted lots of attention specially, after
the works of Rose and his colleagues during 1990s. Le Fevre and Rose [2] were the first ones who
were able to describe N successfully and their model was used by a lot of scientists up to now.
Then, Rose and Glicksman [3] derived a power law model to describe the relation between N and
r as well. To investigate time-series features and the percentage of surface occupied by droplets,
Tanaka [4] numerically solved two equations relating to the spatial distribution of droplets .
Tanasawa and Ochiai [5] also derived an empirical distribution function and conducted a huge
amount of experiments and numerical investigations on dropwise condensation. More recently
Mei et al. [6, 7] developed a fractal model based on fractal geometry theory. They supposed
that since the pictures taken at different scales from droplets during dropwise condensation are
the same, the droplets will follow the law of fractal geometry theory. The importance of their
work is due to describing N by parameters that have physical meanings, such as droplets surface
fraction, fractal dimension of droplets pattern, and the maximum radius of droplets. Baojin
and his colleagues [1] developed the Rose model for all contact angles considering contact angle
hysteresis to be able to describe droplets growth in both hydrophobic and hydrophilic surfaces.
Wu et al.[8] introduced an algorithm to generate droplets based on the Rose model and calculate
the rate of heat transfer based on this algorithm. At last, Watanabe et al. [9] investigated the
results of all these methods with their experimental data.

Although lots of works have been done up to now for describing N in dropwise condensation,
two interesting aspects of this process remained still unclear: differential and average distribution
function. Differential distribution function (dNdr ) represents the differential changes in drop-size
distribution function and average distribution function (Nave) deals with total number of droplets
divided by total area and average radius of droplets (rave) at each time step. More precisely,
almost all of the scientific publications deal with the relation between N and r at each time step,
but the relationship between Nave versus rave and dN

dr versus r was not clearly discussed up to
now.

In this research we are going to introduce these two different approaches towards dropwise
condensation modeling and apply them to Rose and Mei models. In this regard at first a series of
experiments were conducted and the images were taken from droplets at ∆T = 1s. These images
were binarized and used to measure experimental parameters. Then we used a fractal generating
algorithm to produce different generations of droplets in computer simulation. The results of
experiments and simulation are compared with theory according to the two mentioned aspects.
Considering these two aspects for each of the theoretical formulas, we will represent four linear
equations as below

1. Differential Rose method, describing evolution of dNdr with respect to r at each time step

2. Average Rose method, describing evolution of Nave based on rave during the whole process
time

3. Differential Mei method, describing evolution of dNdr with respect to r at each time step

4. Average Mei method, describing evolution of Nave based on rave during the whole process
time

1.1 Rose Method [3]

This method is cited as empirical or Rose method in the specialized literature and is based on
the sequence of events occurring during the growth cycle. Rose [3] used a power law model to
describe the total area (A) covered by droplets with radius greater than a specified value of r .

A = 1 − (
r

rmax
)n (1–1)

where n is an empirical parameter known as the drop size distribution exponent and must be
determined experimentally. Rose and Glicksman [3] reported n = 0.382 based on the theoretical

2



evidences . Wu [8, 6] assumed n = 1
3 based on the experimental works of Graham and Griffith

[10] and Tanaka [11] that reported n laying in the real number range [0.313-0.350]. Mei[6] also
used n = 1

3 based on experimental results of other researchers . The most frequently reported
value for n in literature is around 1

3 = 0.33. Maximum radius of each generation of droplets
before sliding (rmax) can be derived by force balance between surface tension and droplet weight
and for hemisphere droplets is [12]:

rmax =

√
3σ

(ρl − ρv)g
(1–2)

where σ is liquid surface tension, ρl and ρv are liquid and vapor density respectively, and g is
earth acceleration. If we consider N as the number of drops per unit size which have radius
greater than r, then the differential distribution function of droplets size will be as below:

f(r) =
−dN
dr

=
−1

πr2
dA

dr
=

n

πr3max
(
r

rmax
)(n−3) (1–3)

Most of the time the logarithmic version of this equation is used to describe the spatial
distribution pattern of droplets:

log(
−dN
dr

r3max) = log(
n

π
) + (n− 3)log(

r

rmax
) (1–4)

The logarithmic scale is more preferable because the terms are dimensionless and thus easier to
compare. Moreover droplets nucleation function is normalized for size of droplets and area of
fractal zone and thus the results will be independent of experimental situation. From equation
1–3, if we consider N as the total number of droplets of each generation per unit area and unit
radius, the time average version of Rose method will be [6]:

log(Nave) = log(
n

π
) − nlog(rmax) + (n− 3)log(rave) (1–5)

where rave here is the average radius of droplets of each generation. Equations 1–4 and 1–5
represent differential and average Rose method, respectively. It has been frequently said that if
we take pictures of droplets at different scales over time or space, all of them are similar and
follow the same spatial pattern. This is known as the rule of self-similarity. According to the
concept of self-similarity, we can say that droplet size distribution obeys the same rule in all size
ranges and this is apparent by comparing equations 1–4 and 1–5.

1.2 Mei Method [6, 7]

The second method applied to describe dropwise condensation based on fractal units comes from
the fractal geometry theory. According to this theory, in a fractal zone if we assume the size of
the biggest particle equal to lmax made up of smaller units with size of l, the number of fractal
units bigger than l is [13]:

N = (
lmax
l

)df (1–6)

df = lim
r→0

log(N)

log( rmax
r )

(1–7)

where df is the fractal dimension and is different for each of fractal patterns. For 2-dimensional
droplets growing on a flat surface df is smaller than 2, while for 3-dimensional ones df is smaller
than 3 [7]. Based on fractal geometry theory, the cumulative number of droplets bigger than a
specified value of r on a flat surface during dropwise condensation is:

N = (
rmax
r

)df , for rmin < r < rmax (1–8)
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By differentiating from equation 1–8 with respect to r, the differential distribution function
of droplets size will be:

f(r) =
−dN
dr

=
df
rmax

(
rmax
r

)df+1 (1–9)

The negative sign indicates opposite relation between size and number of droplets. Equation
1–9 in log-log system is a straight line with slope and intercepts that are function of df :

log(rmax
−dN
dr

) = log(df) − (df + 1)log(
r

rmax
) (1–10)

To be able to derive an average model comparable with equation 1–5, this equation must be
divided by the total area occupied by fractal particles. Total area of a fractal zone was calculated
by Mei [6] by integrating equation 1–10 :

A =

∫ rmax

rmin

−dNπr2 =
πdf (1 − φ)r2max

(2 − df )φ
(1–11)

where φ is the fraction of covered area by a fractal zone and is equal to:

φ = (
rmin
rmax

)2−df (1–12)

where rmin is the size of the smallest viable droplets and must be calculated based on physical
evidences [14]:

rmin =
(2σTs)

Hfgρ(∆Tt)
(1–13)

It is obvious that rmin is just a function of the process conditions and physical properties
of liquid. Dividing equation 1–9 by equation 1–11 and next taking logarithm, we will get the
average distribution function of droplets for Mei model:

log(Nave) = log(
(2 − df)φ

π(1 − φ)
) + (df − 2)log(rmax) − (df + 1)log(rave) (1–14)

This equation represents a straight line with slop and intercept as functions of df and surface
coverage(φ). Both of these parameters are depended on temperature difference between cold
substrate and hot air. Equations 1–10 and 1–14 are differential and average Mei distribution of
droplets during dropwise condensation. These two formulas are based on the fractal geometry
theory and assume the droplets as fractal particles growing in a fractal zone with area equal to
equation 1–11.

2 Experimental Apparatus

Experimental setup consists of a chamber containing hot air and cold substrate and a compressor
to adjust relative humidity about 40 percent inside the chamber. Temperature of hot air is set
to 86◦F , while substrate temperature is around 62◦F . Nucleation and growth of droplets are
recorded by a high resolution CCD camera installed outside the chamber in time intervals of 1s.
The images taken by CCD camera then are binarized and used to model droplets nucleation and
growth.
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Figure 1: Illustration of how to generate droplets of each generation in fractal simulation
algorithm (γ = 3)

3 Fractal Simulation Algorithm

Present simulation develops the model proposed by Wu et al. [8] both in time and space domains.
According to this model the square substrate with length l is divided itteratively to γ2 small
squares and p percent of these small squares are chosen completely randomly as new generation
droplets. The idea behind this simulation is indicated in figure1.

In other words consider a square of length l. At the first step each side of this square is
divided to γ, so now there are γ2 small squares in the whole area. If we consider p as the
fraction of available area for each generation of droplets, in the first step p × γ2 small squares
must be randomly chosen as the first generation droplets. The choice of droplets was done based
on Poisson point process, which generates completely random spatial distribution of points in
the whole domain. In the second step each length of each small squares is divided by γ again
and p percent of resulted squares are chosen as the second generation of droplets. This process
continues till reaching the size of smallest viable droplets.

The fraction of available area p is the same for all generations and can be referred to as the
probability of finding a droplet in a elementary square at each step. At each step, the chosen
squares are assumed as hemispherical droplets so a correction factor equal to p = p×π/4 must be
considered in calculations. Procedure of generating random droplets of each generation is shown
in figure 2. Although for generation k available area is fewer than generation k − 1, since there
are more squares available to find droplets, there are more droplets in generation k with respect
to k− 1. In the other words, in each generation available area reduces, while number of droplets
increase because droplets are smaller and need smaller amount of area to locate. This is the
concept of linear relation between log(N) and log(r) during time. Analysis of droplets nucleation
and growth was carried out based on each image at steady state time as well as based on average
parameters during procedure.

The droplets are located one by one to avoid any overlap between them. In reality, if a pair of
droplets touch each other they will coalesce and form a bigger drop in their mass center. Thus,
in the current method the droplets are added one by one and for each droplets there is a check
to insure that the cell is not occupied by another droplets.

4 Results and discussion

4.1 Model Validation, Comparison With Experimental Results

Figures 3 and 4 compare the results of equations 1–4 and 1–10 with data obtained from exper-
iments, at different time intervals. In these two figures Rose and Mei models are calculated for
experiments of t = 60s and t = 100s. The time intervals were chosen after starting coalescence
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Figure 2: Illustration of generating random droplets, whose centers obey Poisson spatial point
process in 6 different generations, k = 1, 4, 8, 16, 20, 26. At first the biggest droplets are formed
by dividing substrate in to γ2 squares and choosing p percent of them completely randomly. Then
in each step smaller droplets are generated with the same pattern.

in order to have both adsorbing -or small- and coalescence -or big- drops. The concept of small
and big droplets comes from the critical radius (rc), which was introduced as the half-spacing
between active sites on substrate [15]. For square substrate with A = L× L it will be:

rc =

√
L2

4N̂
(4–15)

where N̂ here is the number of droplets. Droplets smaller than rc grow mainly due to adsorbing
water molecules from humid air, while the main reason of growth of droplets bigger than rc is
coalescence. Figure 3 shows good agreement between experimental results and differential Rose
model with n between 0.33 and 0.35, especially for bigger droplets. The same deviations near
small drops was described before by Wu et al. [8] and Baojin et al. [1] while studying experimental
results of dropwise condensation. Due to deviation around small droplets Rose method usually
introduces as a method to describing evolution of coalescing droplets. Obtaining rmax from
equation 1–2 and rc from equation 4–15, we will have −1.9 < log rc

rmax
< −2.9 -depending on the

experiment time- that is exactly the point after which the deviations from straight line start in
figure 3. So, it can be claimed that equation 1–4 that has been used before, to describe N , has
also a good understanding of dNdr , especially for droplets bigger than rc.

Figure 4 shows acceptable agreement between experimental results and equation 1–10 with
df between 1.79 - 1.99 in all time intervals. The deviations around very small and very big
droplets were observed by Mei himself [16]. For very small and very big droplets the number of
droplets depends on the physical properties of process like contact angle hysteresis and starvation
of substrate for growing small droplets in vacant area around bigger ones. So, these deviations
maybe seen frequently.

The predicted results for Nave by Rose method (equation 1–5) and Mei method (equation 1–
14) is presented in figure 5 as well as experimental results. This figure highlights that experimental

6



log(r/rmax)
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

lo
g(

-r
m

ax
3

 d
N

/d
r)

)

-2

0

2

4

6

8

10

Experimental results at t=60s
Experimental results at t=70s
Experimental results at t=80s
Experimental results at t=90s
Experimental results at t=100s
Rose model, n=0.35, t=60s
Rose model, n=0.33, t=100s

Figure 3: Comparison of the results of Rose model (equation 1–4) and experimental results at
5 different steps of t = 60, 70, 80, 90, 100s.
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Figure 4: Comparison of the results of Mei model (equation 1–10) and experimental results at
5 different steps of t = 60, 70, 80, 90, 100s.

Naves are fitted by the two models very well with n = 0.38 and df = 1.99. Figure 5 shows that
both Rose and Mei methods can describe droplets growth by adsorption and coalescence from
minimum to maximum radius. Also, it can be said that according to this figure droplets nucleation
and growth during the whole process from rmin to rmax obeys the same pattern in which fractal
particles grow.

4.2 Examination Simulation Procedure With The Two Methods

Comparison of the results from simulation with the two models are presented in figure 6. It can
be seen that predicted line of differential Mei model fits the simulation results with df = 1.99,
while the line of differential Rose model fits them with n = 0.35. These values for n and df agree
very well with experimental results discussed in section 4.1. Figure 7 also shows that both average
Mei and Rose models fit simulation results with n = 0.38 and df = 1.79. The surprisingly good
agreement between simulation and predicted values from both differential and average models
with expected values of n and df validates the method that was used for simulating dropwise
condensation. All of these graphs indicate that the process of dropwise condensation obeys the
rule of fractals in both differential and average scales.

It is worth to point out here that the grid number is an important parameter in simulation
that can affect the values of n and df . Grid number refers to the number of small squares in
each iteration from which the number of droplets are chosen. So, it has a direct influence on the
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Figure 6: Comparison of the results of both models and results from fractal simulation (a) Rose
model(equation 1–4) (b) Mei model (equation 1–10).

distribution function of each generation of droplets. For simplification, instead of grid number
we can investigate the effect of γ that is the side length reduction coefficient in each step.

1

γ
=
rk+1

rk
(4–16)

Whit this definition the grid number will be γ2. Choosing bigger values for γ will lead to smaller
size but higher number of droplets in each generation (bigger γ, smaller r, bigger N). This will
change the values of both right and left hand sides of equations 1–4 and 1–10 and changes in both
parameters n and df . Figure 8 shows that by increasing γ the slope of both lines of equations 1–4
and 1–10 increase but the intercept does not change significantly. This is because intercept of
both lines are in log scale (log(nπ ) and log(df)) and are not sensible enough to show the changes.
From these two graphs, it is expected to see the sharp increase in both n and df .

The predictions for increase in n and df are supported by figure 9. According to this figure,
increase in γ will lead to a jump in the value of n and then a constant trend around 0.75. The same
pattern is apparent in figure 9 (b), for df that increases rapidly from 0.9 to 1.99 by changing γ
from 2 to 6. These figures indicate that the accuracy of simulation proposed in section 3 depends
on the value of γ. Depending on the value of γ n can vary from 0.04 to around 0.75 and the
most reported value that is n = 0.33 can be obtained by γ = 2.5. In the case of differential Mei
method df varies from 0.9 to 1.99 and the best value that is 1.99 is calculated with γ = 6.
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Figure 8: Results of both methods at different γ (a) Rose model (b) Mei model

5 Conclusion

The aim of this research was to investigate drop-size distribution function of droplets during
dropwise condensation in both differential and average scales. In this regard, two sets of data were
extracted from experimental set up and from our computer simulation algorithm. The models
used here were Rose and Mei models that have powerful theoretical basis. It was concluded that
both differential and average Rose models were able to describe coalescing droplets evolution with
exponent (n) between 0.33 and 0.35 and 0.38 respectively. While for differential and average Mei
models the important parameter is fractal dimension (df) and was between 1.79-1.99 for both
experimental and simulation data. Also the effect of side length reduction coefficient (γ) on n
and df was investigated and it was found that the best γ for Rose model is around 2.5 and for
Mei model is around 6.
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