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A common limit in large rank for Markov chains

de�ned from representations of classical Lie

algebras

Vivien Despax∗

Abstract

From the datum of an integer partition and a classical Lie algebra, one

can de�ne a Markov chain on an associated multiplicative graph. For each

classical family A,C,B,D, we thus obtain a sequence of Markov chain which

is indexed by the rank of the considered algebra. In this article we show that,

for each type, the transition kernel of the Markov chain has a limit when the

rank tends to in�nity. Moreover, the limit kernel does not depend on the

considered type.

1 Introduction

In what follows, δ is a nonzero partition. For all r su�ciently large, δ is regarded
as a dominant weight of gr = glr, sp2r, so2r+1 or so2r. For �xed r, it is then possible
to de�ne a graph G(δ,gr) re�ecting the multiplicative structure that arises when one
decomposes the successive tensor powers

V gr (δ) , V gr (δ)⊗2 , V gr (δ)⊗3 , . . .

into irreducible components. Introducing then a stochastic matrix Π(δ,gr) on G(δ,gr),
we now have a Markov chain M(δ,gr). The aim of our article is to study what
happens when r tends to in�nity.

The Markov chainM(δ,gr) originally appears in [O, LLP1, LLP2] as a random
walk on the weight lattice of gr conditioned to never exit the cone of dominant
weights. In these articles, it is shown that the transition matrix of such condi-
tioned process can be expressed in terms of specializations of the corresponding
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normalized Weyl characters. The determination of the harmonic functions on the
graph G(δ,gr) is a closely connected subject which is studied in [LT]. It is then
natural to ask what happens when r tends to in�nity.

Roughly speaking, we prove in this article that the four classical families

A = (glr)r , C = (sp2r)r , B = (so2r+1)r , D = (so2r)r

give rise to the same limit Markov chain. Our result intersects with a similar
phenomenon observed by Nikitin and Vershik in [NV] for some graded graphs and
their Pascalized versions. Nevertheless, the graphs that we consider in this article
cannot be seen in general as Pascalized versions of simpler graded graphs.

To give sense to this statement, we start by observing that the sequence of
multiplicative graphs

(
G(δ,gr)

)
r
admits a natural limit. This is a consequence of

the stabilization of the tensor multiplicities for large rank. Next, we prove that
the sequence of stochastic matrices

(
Π(δ,gr)

)
r
is convergent. To accomplish this, we

establish the result in type A by showing that the specializations of the normalized
Schur functions used to de�ne Π(δ,glr) converge when r tends to in�nity. This
mainly follows from the Weyl character formula. By using the notion of Kashiwara-
Nakashima tableaux, we show the convergence to the same limit in type C,B,D.
This stabilization in large rank and the existence of a common limit when this rank
tends to in�nity illustrates a general phenomenon in the combinatorics of classical
root systems. For example each tensor product multiplicity cλδ,κ(gr) appearing in
the decomposition

V gr(δ)⊗ V gr(κ) =
⊕
λ

V gr(λ)c
λ
δ,κ(gr)

stabilizes in large rank and the common limit when r tends to in�nity is the
Littlewood-Richardson coe�cients cλδ,κ (see for example [L]).

The article is organized as follows. Section 2 introduces the required mate-
rial and notation on representation theory. Section 3 describes the Markov chain
M(δ,gr) on �nite rank multiplicative graph. Section 4 is concerned with the limit
Markov chains. We �rst de�ne the limit graph (� 4.1) and then study the asymp-
totic behaviour of

(
Π(δ,gr)

)
r
(� 4.2). We start with the type A case (� 4.2.1) and

pursue with types C,B,D (� 4.2.2). Our main theorem is then stated in � 4.2.3.
Finally in Section 5 we link our results to the generalized Pitman transform de�ned
in [BBO] and to the study of the extremal harmonic functions on multiplicative
graphs achieved in [LT].
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2 Background on representation theory and com-

binatorics

In this article, we only consider complex Lie algebras and their �nite-dimensional
representations. Let X = (gr)r be one of the four classical families A = (glr)r , C =
(sp2r)r , B = (so2r+1)r or D = (so2r)r. Let us �x a positive integer r for the whole
section. We introduce some objects de�ned from gr. Nevertheless, we do not
include this parameter in our notation for the moment.

2.1 Root system and weight lattice

The Cartan subalgebra of gr consisting of the diagonal matrices is denoted by h.
There exists an Euclidean space (E, 〈 . , . 〉) endowed with an orthonormal basis
(ε1, ε2, . . . , εr) such that the root system R of gr (with respect to h) is identi�ed
to the following �nite subset of E:

R =


{± (εi − εj) : 1 ≤ i < j ≤ r} if gr = glr
{±2εi : 1 ≤ i ≤ r} ∪ {± (εi ± εj) : 1 ≤ i < j ≤ r} if gr = sp2r
{±εi : 1 ≤ i ≤ r} ∪ {± (εi ± εj) : 1 ≤ i < j ≤ r} if gr = so2r+1

{± (εi ± εj) : 1 ≤ i < j ≤ r} if gr = so2r

.

Denote by F the subspace of E spanned by R. The Weyl groupW of R is regarded
here as the subgroup of O (F ) generated by the orthogonal re�ections with �xed
points the {α}⊥ , α ∈ R. Let I be {1, 2, . . . , r − 1} if gr = glr and {1, 2, . . . , r} in
the other cases. We introduce the simple system S = (αi)i∈I such that αi = εi−εi+1

if 1 ≤ i < r and

αr =


2εr if gr = sp2r
εr if gr = so2r+1

εr−1 + εr if gr = so2r

which yields the partition R = R+ t (−R+) where

R+ =


{εi − εj : 1 ≤ i < j ≤ r} if gr = glr
{2εi : 1 ≤ i ≤ r} ∪ {εi ± εj : 1 ≤ i < j ≤ r} if gr = sp2r
{εi : 1 ≤ i ≤ r} ∪ {εi ± εj : 1 ≤ i < j ≤ r} if gr = so2r+1

{εi ± εj : 1 ≤ i < j ≤ r} if gr = so2r

.
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The family of fundamental weights Ω = (ωi)i∈I associated to S is such that
ωi =

∑i
j=1 εj, i ∈ I if gr = glr, sp2r

ωi =
∑i

j=1 εj, 1 ≤ i < r, ωr = 1
2

∑r
j=1 εj if gr = so2r+1

ωi =
∑i

j=1 εj, 1 ≤ i < r − 1, ωr−1 = 1
2

(∑r−1
j=1 εj

)
− 1

2
εr, ωr = 1

2

∑r
j=1 εj if gr = so2r

.

If we set ω∨i = 2
〈αi,αi〉ωi, then the family Ω∨ = (ω∨i )i∈I is such that

〈ω∨i , αj〉 = δi j i, j ∈ I.

Notice that ω∨i = ωi when X = A. Introduce the weight lattice of gr

L =


⊕r

i=1 Zεi if gr = glr⊕r
i=1 Zωi =

⊕r
i=1 Zεi if gr = sp2r⊕r

i=1 Zωi =
⊕r

i=1 Zεi + Z
(
1
2

∑r
i=1 εi

)
if gr = so2r+1, so2r

and set

P =

{⊕r
i=1 Z+εi if gr = glr

L if gr = sp2r, so2r+1, so2r.

The weights of the (polynomial if gr = glr) representations of gr are identi�ed with
the elements of P : if V is a representation of gr, then it admits a weight space
decomposition

V =
⊕
ω∈P

Vω =
⊕

ω∈P (V )

Vω

where
Vω = {v ∈ V : hv = ω (h) v for any h in h}

and
P (V ) = {ω ∈ P : Vω 6= {0}} .

2.2 Irreducible representations and characters

Introduce the set of dominant weights of gr

P+ =


{
∑r

i=1 λiεi ∈ P : λ1 ≥ λ2 ≥ . . . ≥ λr} if gr = glr⊕r
i=1 Z+ωi = {

∑r
i=1 λiεi ∈ P : λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0} if gr = sp2r⊕r

i=1 Z+ωi = {
∑r

i=1 λiεi ∈ P : λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0} if gr = so2r+1⊕r
i=1 Z+ωi = {

∑r
i=1 λiεi ∈ P : λ1 ≥ λ2 ≥ . . . ≥ λr−1 ≥ |λr|} if gr = so2r

.
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The set P+ parametrizes the irreducible (polynomial if gr = glr) representations
of gr and every representation V of gr decomposes into irreducible components
appearing with multiplicities

V =
⊕
λ∈P+

V (λ)⊕mV λ

where V (λ) is the irreducible representation of gr corresponding to λ. In partic-
ular, for any δ in P+, the tensor powers V (δ)⊗n (n > 0) and the tensor products
V (λ)⊗ V (δ) (λ ∈ P+) admit such decomposition:

V (δ)⊗n =
⊕
µ∈P+

V (µ)⊕fnµ V (λ)⊗ V (δ) =
⊕
µ∈P+

V (µ)⊕mλµ .

Given a list of variables (xi)1≤i≤r and ω in L, we set xω =
∏r

i=1 x
〈ω,εi〉
i . For λ

in P+, the Weyl character of the irreducible representation V (λ) is

sλ (x) =
∑
ω∈P

Kλωx
ω =

∑
ω∈P (λ)

Kλωx
ω

where Kλω = dimV (λ)ω and P (λ) = P (V (λ)). Recall the Weyl character for-
mula:

sλ (x) =
aλ+ρ (x)

aρ (x)

where
aω (x) =

∑
σ∈W

ε (σ)xσω ω ∈ L

ε being the sign character of W and ρ =
∑

i∈I ωi. The dominator aρ (x) can be
expressed as

aρ (x) = xρ
∏
α∈R+

(
1− x−α

)
.

2.3 Partitions

De�nition 2.3.1 Any weakly decreasing sequence of nonnegative integers with a

�nite number of nonzero terms is called a partition.

Each partition is identi�ed to its Young diagram. Given a partition λ, we denote
by ` (λ) the number of its parts, that is the number of its nonzero terms. We denote
by |λ| the sum of its terms, that is its number of boxes. The set of partitions with
at most ` parts is denoted by P`. The sequence (P`)`∈N is increasing and the set of
all partitions is P∞ =

⋃
`∈NP`. If λ = (λ1, λ2, . . . , λ`, 0, 0, . . .) is in P` with ` ≤ r,
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then we identify λ with the element λ1ε1 + λ2ε2 + . . . + λ`ε` of P+. According to
this, one has then Pr = P+ if gr = glr, sp2r and Pr ⊂ P+ if gr = so2r+1, so2r.

If δ and λ are in Pr, it can be shown that we have in fact

V (δ)⊗n =
⊕
µ∈Pr

V (µ)⊕fnµ V (λ)⊗ V (δ) =
⊕
µ∈Pr

V (µ)⊕mλµ . (1)

We can be even more precise by showing that we can restrict the above direct
sums to µ in Pr such that |µ| ≤ n |δ| and |µ| ≤ |λ|+ |δ|, respectively.

Given λ in Pr, the representation V (λ) appears with a positive multiplicity in

the decomposition of V ( )⊗|λ| into irreducible. One deduces in particular

dimV (λ) ≤ (dimV ( ))|λ| =


r|λ| if gr = glr
(2r)|λ| if gr = sp2r
(2r + 1)|λ| if gr = so2r+1

(2r)|λ| if gr = so2r

.

One also observes a stabilization and independence phenomenon of the ten-
sor multiplicities in large rank. We record it now for later use in the following
proposition.

Proposition 2.3.2 Let δ, λ be in Pr. Let n be a positive integer.

1. If δ, n are such that r ≥ n` (δ), then one has

f (δ,gr)
nµ = f (δ,gr+1)

nµ µ ∈ Pr.

2. If δ, λ are such that r ≥ ` (λ) + ` (δ), then one has

m
(δ,gr)
λµ = m

(δ,gr+1)
λµ µ ∈ Pr.

If δ, λ, µ are such that r ≥ ` (λ) + ` (δ) and |µ| = |λ|+ |δ|, then one has

m
(δ,gr)
λµ = m

(δ,glr)
λµ .

2.4 Brief review on the Kashiwara-Nakashima tableaux

Let λ be in Pr and set ` = ` (λ): λ = (λ1, λ2, . . . , λ`, 0, 0, . . .). To the irreducible gr-
module V (λ) is associated its crystal graph B(λ), a combinatorial object encoding
many informations on V (λ). Here, we only mention the features and properties
that are useful for our purposes and refer the reader to the articles [K], [KN] and
the book [HK] for a complete exposition.
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The graph B (λ) is �nite and connected, its number of vertices being equal
to the dimension of V (λ). It is also a colored and oriented graph, the arrows
being labelled by the simple roots S = (αi)i∈I . There exists a weight graduation
wt : B (λ)→ P such wt (B (λ)) = P (λ) and

v
αi−→ v′ =⇒ wt (v)− wt (v′) = αi v, v′ ∈ B (λ) , i ∈ I.

There is a unique source vertex v0 and one has wt (v0) = λ.
When gr = glr, we have P+ = Pr and the crystal graph B (λ) admits a re-

alization in terms of semistandard Young tableaux of shape λ over the alphabet
A = {1 < . . . < r}, that is the �llings of λ with letters from the totally ordered
set A such that the rows are weakly increasing as we move to the right and such
that the columns are strictly increasing as we go down.

When gr = sp2r, so2r+1 or so2r, there exists a similar parametrization by anal-
ogous objects, the so-called Kashiwara-Nakashima gr-tableaux. A Kashiwara-
Nakashima gr-tableau with shape λ is a �lling of λ by letters of the ordered
alphabet

A =


{

1 < 2 < . . . < r < r < . . . < 2 < 1
}

if gr = sp2r{
1 < 2 < . . . < r < 0 < r < . . . < 2 < 1

}
if gr = so2r+1{

1 < 2 < . . . < r − 1 < r, r < r − 1 < . . . < 2 < 1
}

if gr = so2r

according to combinatorial rules depending on gr. The set of Kashiwara-Nakashima
gr-tableaux with shape λ contains then all the ordinary semistandard tableaux with
shape λ along with some generalizations that we do not detail here. One can show
that the weight of a Kashiwara-Nakashima gr-tableau T of shape λ is then the
element wt (T ) of P such that the coordinate on εi is the number of occurrences
of the letter i minus the number of occurrences of the letter ī. The source vertex
v0 is identi�ed to

T0 =

1 . . . . . . . . . 1 (λ1 boxes)
2 . . . . . . 2 (λ2 boxes)
...
` . . . ` (λ` boxes)

.

Given two adjacent vertices T
αi−→ T ′ in B (λ), they only di�er by one letter,

the letter in T being replaced in T ′ by its immediate successor in A. The Weyl
character corresponding to λ can be computed with these tableaux:

sλ (x) =
∑

T∈B(λ)

xwt(T ). (2)
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3 Markov chains on the �nite rank multiplicative

graphs

In this subsection we �x a nonzero partition δ. We now introduce the multiplicative
graph on which the Markov chains we consider are de�ned.

3.1 Finite rank multiplicative graphs

Let r be an integer such that r ≥ ` (δ). De�ne

V(δ,gr) =
⊔
n>0

V(δ,gr)
n

where
V(δ,gr)
n =

{
(µ, n) ∈ Pr × N∗ : f (δ,gr)

nµ > 0
}

n > 0.

Given (µ, n+ 1) in Pr × N∗, one has

(µ, n+ 1) ∈ V(δ,gr)
n+1 ⇐⇒ ∃λ ∈ Pr (λ, n) ∈ V(δ,gr)

n m
(δ,gr)
λµ > 0.

Let us introduce a set of weighted arrows E (δ,gr) on V(δ,gr): for (λ, n) in V(δ,gr)
n and

(µ, n+ 1) in V(δ,gr)
n+1 , we set

(λ, n)
m

(δ,gr)
λµ−−−−→ (µ, n+ 1)

if and only if the multiplicity m
(δ,gr)
λµ is positive.

De�nition 3.1.1 The graph G(δ,gr) =
(
V(δ,gr), E (δ,gr)

)
is called the multiplicative

graph for (δ, gr).

Example 3.1.2 1. The multiplicative graph for ( , glr) is the Young lattice of

partitions with at most r parts: (λ, n) in Pr ×N∗ is a vertex of this graph if

and only if |λ| = n. The second component of a vertex is then useless. Each

arrow has weight 1. Below are represented some levels of the multiplicative

graph for ( , gl2):

↙ ↘

↙ ↘ ↙

↙ ↘ ↙ ↓
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2. The multiplicative graph for ( , sp2r) is the Pascalized graph of the previous

one: starting from the multiplicative graph for ( , glr), we complete the level

n + 1 by re�ecting the level n − 1 with respect to the level n, with the cor-

responding arrows. Each arrow has weight 1. Then (λ, n) in Pr × N is a

vertex of this graph if and only if |λ| ≤ n and |λ| = n mod 2. Below are

represented some levels of the multiplicative graph for ( , sp4):

(
, 1
)

↙ ↘(
, 2
)  , 2


↙ ↓ ↙↘ ↓(

, 3
) (

, 3
)  , 3



3. Let (λ, n) be in Pr × N∗. If it is a vertex of the multiplicative graph for

( , so2r+1), then it must satisfy |λ| ≤ | | × n = 2n and |λ| = 0 mod 2.

This condition is not su�cient since

(
, 2

)
is not a vertex of the multi-

plicative graph for ( , so7). Beside this, there are adjacent vertices with the

same number of boxes and some weights are greater than 1: in the multi-

plicative graph for ( , so7), one has the weighted arrow(
, 2
)

2−→
(

, 3
)
.

In particular this last multiplicative graph is not the Pascalized version of a

braching graph of type A.

3.2 Markov chains on the �nite rank multiplicative graphs

Let r be an integer such that r ≥ ` (δ). In this paragraph, we introduce the
normalized Weyl characters and then use them to de�ne a stochastic matrix on
the adjacent vertices of G(δ,gr).

Let λ be in Pr. We have

x−λsgrλ (x) =
∑

ω∈P gr (λ)

Kgr
λωx

−(λ−ω).

If ω is in P gr (λ), then there exists T in Bgr (λ) such that wt (T ) = ω and there is
a path in Bgr (λ) starting at T0 and ending at T . Then λ− ω = wt (T0)− wt (T )
must be a linear combination of the simple roots S = (αi)i∈I with nonnegative
integer coe�cients: more precisely, the coe�cient of αi in wt (T0)−wt (T ) is equal
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to the number of browsed arrows
αi−→ in any path from T0 to T . Using the family

Ω∨ = (ω∨i )i∈I , one can also write

λ− ω =
∑
i∈I

〈λ− ω, ω∨i 〉αi.

De�ne a family of variables (yi)i∈I by setting yi = x−αi . If we introduce y[ω] =∏
i∈I y
〈ω,ω∨

i 〉
i for ω in L, then we can write∑

ω∈P gr (λ)

Kgr
λωx

−(λ−ω) =
∑

ω∈P gr (λ)

Kgr
λωy

[λ−ω].

Thus Sgr
λ (y) =

∑
ω∈P gr (λ)K

gr
λωy

[λ−ω] is a polynomial in (yi)i∈I with nonnegative

integer coe�cients. Given a �nite sequence of positive reals θ = (θi)i∈I and ω in L,
the real number obtained by letting yi = θi in y

[ω] (respectively Sgr
λ (y)), is denoted

by θ[ω] (respectively Sgr
λ (θ)). When b is a positive real, we write Sgr

λ (b, b, . . . , b)
for the real number obtained by replacing each yi by b in S

gr
λ (y). In other words:

Sgr
λ (b, b, . . . , b) =

∑
ω∈P gr (λ)

Kgr
λωb

〈λ−ω,ρ∨〉 (3)

where ρ∨ =
∑

i∈I ω
∨
i .

For any �nite sequence of positive reals θ = (θi)i∈I , we de�ne a matrix Π
(δ,gr)
θ

on G(δ,gr): for any (λ, n) , (µ, n+ 1) in Pr × N∗ such that

(λ, n)
m

(δ,gr)
λµ−−−−→ (µ, n+ 1) ,

set

Π
(δ,gr)
θ ((λ, n) , (µ, n+ 1)) = m

(δ,gr)
λµ

Sgr
µ (θ)

Sgr
λ (θ)Sgr

δ (θ)
θ[λ+δ−µ].

It is a stochastic matrix because (1) implies

sgrλ (x) sgrδ (x) =
∑
µ∈Pr

m
(δ,gr)
λµ sgrµ (x) λ ∈ Pr.

For every �xed parameter θ, we thus obtain a Markov chainM(δ,gr)
θ associated to

the pair
(
G(δ,gr),Π(δ,gr)

θ

)
.

4 Markov chains on the in�nite rank multiplicative

graphs

Let us �x once for all a nonzero partition δ. Let X = (gr)r be A,C,B or D.
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4.1 In�nite rank multiplicative graphs

For �xed (µ, n) in P∞ × N∗, the �rst point of Proposition 2.3.2 shows that the

sequence of integers
(
f
(δ,gr)
nµ

)
r
eventually becomes constant. Denote by f

(δ,X)
nµ this

stabilized multiplicity. So f
(δ,X)
nµ is positive exactly means that, for all r su�ciently

large, (µ, n) is an element of V(δ,gr)
n . This naturally leads us to de�ne a limit set

of vertices by setting

V(δ,X) =
⊔
n>0

V(δ,X)
n

where
V(δ,X)
n =

{
(µ, n) ∈ P∞ × N∗ : f (δ,X)

nµ > 0
}

n > 0.

For �xed λ, µ in P∞, the second point of Proposition 2.3.2 shows that the sequence
of integers

(
m

(δ,gr)
λµ

)
r
eventually becomes constant. Denote bym

(δ,X)
λµ this stabilized

multiplicity. Let us introduce a set of weighted arrows E (δ,X) on V(δ,X): for (λ, n)

in V(δ,X)
n and (µ, n+ 1) in V(δ,X)

n+1 , we set

(λ, n)
m

(δ,X)
λµ−−−−→ (µ, n+ 1)

if and only if the stabilized multiplicity m
(δ,X)
λµ is positive.

De�nition 4.1.1 The graph G(δ,X) =
(
V(δ,X), E (δ,X)

)
is called the multiplicative

graph for (δ,X).

Example 4.1.2 1. The multiplicative graph for (δ, A) is the classical Young

lattice. Each arrow has weight 1. Here is represented some levels:

↙ ↘

↙ ↘ ↙ ↘

↙ ↘ ↙ ↓ ↘ ↙ ↘

2. The multiplicative graph for ( , C) is the Pascalized of the previous one.

3. The multiplicative graph for ( , B) is not a Pascalized version of a multi-

plicative graph of type A.
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4.2 A common stochastic matrix for the in�nite rank mul-

tiplicative graphs

Let θ = (θi)i≥1 be a sequence of positive reals and set

θ[r] = (θi)i∈I =

{
(θ1, θ2, . . . , θr−1) if X = A

(θ1, θ2, . . . , θr) if X = C,B,D

for any positive integer r.
Our aim is now, under a suitable hypothesis on θ, to establish the pointwise

convergence of the sequence of matrices
(

Π
(δ,gr)
θ[r]

)
r
on the set P∞ × N∗ and also

identify the limit.
We start by showing that the sequence

(
Sgr
λ

(
θ[r]
))
r
is convergent for any λ in

P∞. Our method consists in showing this result for X = A and then use it in the
other cases.

4.2.1 Case X = A

Let λ be in P∞ and set ` = ` (λ): λ = (λ1, λ2, . . . , λ`, 0, 0, . . .). Assume X = A.
Our �rst ingredient is the following proposition. Our proof is directly inspired by
the proof of the dimension formula given in [FH].

Proposition 4.2.1 Let b be a positive real. One has

S
glr
λ (b, b, . . . , b) =

∏
1≤i<j≤`

1− bλi−λj+j−i

1− bj−i
∏

1≤i≤`

∏
`<j≤r

1− bλi+j−i

1− bj−i
r > `.

Proof. In this proof, we omit to include the parameter glr in our notation. Let r be
an integer such that r > `. Let z be a variable. For any ω0 in L =

⊕r
i=1 Zεi, intro-

duce now the morphism φω0 : C [L]→ C [[z]] de�ned by φω0 (xω) = exp (〈ω, ω0〉 z)
for any ω in L.

Firstly, we have

Sλ (b, b, . . . , b) =
∑

ω∈P (λ)

Kλω exp (〈λ− ω, ρ〉 ln b)

since ρ∨ = ρ when X = A. Observe that Sλ (b, b, . . . , b) is obtained by letting
z = − ln b in φρ

(
x−λsλ (x)

)
.

Secondly, the Weyl character formula gives

x−λsλ (x) = x−λ
aλ+ρ (x)

aρ (x)
.

12



For any ω0, ω in L, observe that we have

φω0 (aω (x)) =
∑
σ∈W

ε (σ)φω0 (xσω) =
∑
σ∈W

ε (σ) exp (〈σω, ω0〉 z)

=
∑
σ∈W

ε
(
σ−1
)

exp
(〈
ω, σ−1ω0

〉
z
)

= φω (aω0 (x)) .

Then

φρ
(
x−λaλ+ρ (x)

)
= φρ

(
x−λ
)
φλ+ρ (aρ (x))

= exp (〈−λ, ρ〉 z)φλ+ρ

xρ ∏
α∈R+

(
1− x−α

)
= exp (〈ρ, ρ〉 z)

∏
α∈R+

(1− exp (−〈α, λ+ ρ〉 z))

and
φρ (aρ (x)) = exp (〈ρ, ρ〉 z)

∏
α∈R+

(1− exp (−〈α, ρ〉 z)) .

This shows

Sλ (b, b, . . . , b) =
∏
α∈R+

1− b〈λ+ρ,α〉

1− b〈ρ,α〉
.

As X = A, we have
R+ = {εi − εj : 1 ≤ i < j ≤ r}

and ρ =
∑r

i=1 (r − i) εi. Reminding that λj = 0 for any integer j such that j > `,
the result follows.�

Lemma 4.2.2 For any real t in (0, 1) and for any positive integers a, the in�nite
product

∏
n>0

1−ta+n
1−tn is convergent.

Proof. We have indeed ln
(

1−ta+n
1−tn

)
∼

n→∞
(1− ta) tn.�

Theorem 4.2.3 Assume θ is a bounded sequence of positive reals such that sup θ <

1. The sequence
(
S
glr
λ

(
θ[r]
))

r
is convergent. The limit is denoted by SAλ (θ) in the

sequel.
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Proof. Any semistandard tableau on the alphabet {1 < 2 < . . . < r} is also a semi-
standard tableau on the alphabet {1 < 2 < . . . < r < r + 1}, with same weight.

Then Identity (2) implies that the sequence
(
S
glr
λ

(
θ[r]
))

r
is weakly increasing.

Recall that, for any positive integer r such that r ≥ `, the polynomial S
glr
λ (y)

has nonnegative integer coe�cients. We have thus

S
glr
λ

(
θ[r]
)
≤ S

glr
λ (b, b . . . , b) r ≥ `

where b = sup θ. Since b < 1, Proposition 4.2.1 and Lemma 4.2.2 show that

the sequence
(
S
glr
λ (b, b . . . , b)

)
r
is bounded and so is

(
S
glr
λ

(
θ[r]
))

r
. It is thus

convergent.�

4.2.2 Case X = C, B, or D

Let λ be in P∞ and set ` = ` (λ). Assume X = C,B, or D. Assume θ is bounded
and sup θ < 1. Set b = sup θ.

Proposition 4.2.4 We have

0 ≤ Sgr
λ

(
θ[r]
)
− Sglr

λ

(
θ[r]
)
≤


br−`+1 (2r)|λ| if gr = sp2r
br−` (2r + 1)|λ| if gr = so2r+1

br−`+2 (2r)|λ| if gr = so2r

r ≥ `.

Proof. Suppose X = C, the arguments are similar in the other cases. Let r be
such that r ≥ `. We have

Sgr
λ

(
θ[r]
)

=
∑

T∈Bgr (λ)

θ
[λ−wt(T )]
[r] .

Since Bgr (λ) contains Bglr (λ) and since the simple roots α1, α2, . . . , αr−1 are the
same for gr and glr, the left inequality is clear.

Now let T be in Bgr (λ) \ Bglr (λ): there is at least one letter of T which is in{
r, r − 1, . . . , 1

}
. A path in Bgr (λ) starting at T0 and ending at T must browse

arrows
α`−→, . . . , αr−→, each of them at least one time, in order to change one letter

` into an element of
{
r, r − 1, . . . , 1

}
. So, looking at the weight graduation, we

have to substract at least one time each of the simple roots α`, . . . , αr in order to
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get wt (T ) from wt (T0). Since b < 1, one can write then

Sgr
λ

(
θ[r]
)
− Sglr

λ

(
θ[r]
)

=

(
r∏
i=`

θi

) ∑
T∈Bgr (λ)\Bglr (λ)

θ
[λ−wt(T )−

∑r
i=` αi]

[r]

≤ br−`+1
∑

T∈Bgr (λ)\Bglr (λ)

1

≤ br−`+1 dimV gr (λ)

≤ br−`+1 (2r)|λ| .

�

Corollary 4.2.5 We have

Sgr
λ

(
θ[r]
)
−−−→
r→∞

SAλ (θ) .

Proof. As b = sup θ < 1, we have

brr|λ| −−−→
r→∞

0

and the result is then a straightforward consequence of the previous proposition.�

4.2.3 Main result

Assume X = C,B, or D. Assume θ is bounded and sup θ < 1.

Lemma 4.2.6 Let λ, µ be in P∞. If |µ| = |λ|+ |δ|, then the sequence
(
θ
[λ+δ−µ]
[r]

)
r

eventually becomes constant. If |µ| < |λ|+ |δ|, then

θ
[λ+δ−µ]
[r] −−−→

r→∞
0.

Proof. Suppose X = B, the arguments are similar in the other cases. Let
us �x a positive integer ` such that λ + δ − µ is in

⊕`
i=1 Zεi. As the family

(ε1 − ε2, . . . , ε`−1 − ε`, ε`) is a basis of
⊕`

i=1 Zεi, there exists integers a1, . . . , a`
such that

λ+ δ − µ =
`−1∑
i=1

ai (εi − εi+1) + a`ε`.
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Now observe that a` = |λ| + |δ| − |µ|. Recall that εi − εi+1 = αi for any integer i
such that 1 ≤ i < ` and ε` =

∑r
i=` αi for any integer r such that r ≥ `. We deduce

θ
[λ+δ−µ]
[r] =

`−1∏
i=1

θaii

(
r∏
i=`

θi

)a`

r ≥ `.

If a` = |λ|+ |δ| − |µ| = 0, then

θ
[λ+δ−µ]
[r] =

`−1∏
i=1

θaii r ≥ `.

If a` = |λ|+ |δ| − |µ| > 0, then the assumption sup θ < 1 implies

θ
[λ+δ−µ]
[r] ≤

r∏
i=`

θi r ≥ `

and
r∏
i=`

θi −−−→
r→∞

0.

�

Now, we state our main result for which X can be A,C,B or D.

Theorem 4.2.7 For any (λ, n) , (µ, n+ 1) in P∞ × N∗ such that

(λ, n)
m

(δ,X)
λµ−−−−→ (µ, n+ 1) ,

one has

Π
(δ,gr)
θ[r]

((λ, n) , (µ, n+ 1)) −−−→
r→∞

{
m

(δ,A)
λµ

SAµ (θ)

SAλ (θ)SAδ (θ)
θ[λ+δ−µ] if |µ| = |λ|+ |δ|

0 if |µ| < |λ|+ |δ|

Proof. Proposition 2.3.2 and Corollary 4.2.5 show the convergence of the sequences(
m

(δ,gr)
λµ

)
,
(
Sgr
δ

(
θ[r]
))
r
,
(
Sgr
λ

(
θ[r]
))
r
,
(
Sgr
µ

(
θ[r]
))
r

to the positive reals
m

(δ,X)
λµ , SAδ (θ) , SAλ (θ) , SAµ (θ) ,

respectively. When |µ| = |λ| + |δ|, Proposition 2.3.2 also mentions that we have

m
(δ,X)
λµ = m

(δ,A)
λµ . Then Lemma 4.2.6 gives the expected result.�
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5 Further results

5.1 Connection with the generalized Pitman transform

It was shown in [LLP2] that the Markov chains de�ned in 4 coincide with some
random Littelmann paths conditioned to stay in Weyl chambers and can also
be obtained from non conditioned such random paths by applying the generalized
Pitman transform introduced in [BBO]. For glr, this generalized Pitman transform
can also be described from the Schensted insertion algorithm on semistandard
tableaux. Similar algorithms on Kashiwara-Nakashima tableaux also exist for the
other classical types in �nite rank based on Kashiwara crystal basis theory.

The generalized Pitman transform essentially associates to each concatenation
of Littelmann paths for the representation V (δ) considered its corresponding high-
est weight path which entirely lies in the Weyl chamber. This construction cannot
be directly generalized in in�nite rank because the relevant representations to con-
sider are not then of highest weight. Nevertheless the crystal basis construction
can be adapted together with the insertion algorithms on tableaux (see [L]). It is
interesting to observe that the same kind of stabilization phenomenons then ap-
pear in large rank: the generalized Pitman transforms admit a limit in large rank
and the four limits so obtained in each classical types are essentially the same.

5.2 Extremal harmonic functions on the limit multiplicative

graphs

The extremal harmonic functions on the multiplicative graphs G(δ,gr) with gr of type
X have been characterized in [LT] in terms of the functions Sλ(θ[r]) introduced
in � 3.2. It follows from our main Theorem 4.2.7 that the extremal harmonic
functions on the limit multiplicative graphs G(δ,X) only depend on the partition
δ considered and not on the type X considered. It thus su�ces to consider the
extremal harmonic functions on G(δ,A) which can be expressed in terms of Schur
functions by re�ning the work of Kerov and Vershik on the Young lattice (see
[LT]).
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