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Abstract We have investigated the phytoplankton dynamics of the Senegalo-Mauritanian upwelling
region, which is a very productive region, by processing a 13 year set of SeaWiFS satellite ocean-color meas-
urements using a PHYSAT-like method. We clustered the spectra of the ocean-color normalized reflectance
(reflectance normalized by a reflectance dependent on chlorophyll-a concentration only) into 10 significant
spectral classes using a Self-Organized Map (SOM) associated with a hierarchical ascendant classification
(HAC). By analyzing a 13 year climatology of these classes, we have been able to outline a coherent scenario
describing the Senegalo-Mauritanian upwelling region in terms of spatiotemporal variability of phytoplank-
ton groups: during the onset of the upwelling (December–February), we mainly observed nanoeukaryote-
type phytoplankton in the coastal area; in April–May, the period corresponding to the maximum chloro-
phyll-a concentration, the nanoeukaryote types were replaced by diatom types. This scenario is in agree-
ment with microscope phytoplankton cell observations done during several past cruises.

1. Introduction

The Senegalo-Mauritanian upwelling off the west coast of Africa is the southern part of the Canary upwelling
system. It is a very active oceanic region in biological terms with strong economic impacts on fisheries in
Senegal and Mauritania. We focused our study on the region south of 208N between 88N and 248N and 148W
and 308W (Figure 1) where the upwelling presents a well-marked seasonal variability driven by the intensity
of the wind component parallel to the coast. This region has been intensively studied by analysis of SeaWiFS
ocean-color data and AVHRR sea surface temperature as reported in Demarcq and Faure [2000] and more
recently by Sawadogo et al. [2009] and Farikou et al. [2013]. These authors have noted the presence of an
intense upwelling, both in the ocean-color signal and in the sea surface temperature (SST). They observed
very high chlorophyll-a concentration near the shore and a rapidly decreasing concentration offshore. The
upwelling intensity is maximum in March–April and weakens in July–August with the arrival of the inter-
tropical convergence zone (ITCZ) from the south and the decrease in the intensity of the trade winds [Farikou
et al., 2013]. Since this region has been poorly surveyed in situ, we have chosen to extract pertinent biologi-
cal information from ocean-color satellite multispectral measurements. Satellite sensors provide a tremen-
dous amount of data which remain unexploited due to the lack of adequate methods for processing large
data sets. This satellite information should help to improve understanding of the functioning of a poorly sur-
veyed region such as the S�en�egalo-Mauritanian upwelling region, to detect the points of interest on which
specific research efforts should be focused, and ultimately to contribute to the improved design of oceano-
graphic cruises and the optimization of the research vessel tracks for in situ sampling purposes.

Ocean-color measurements have been intensively used to investigate chlorophyll-a concentration (Chl-a;
mg m23) in the surface waters of the ocean [O’Reilly et al., 1998]. The main objective was first to compute
phytoplankton primary production [Longhurst et al., 1995; Antoine et al., 1996; Behrenfeld and Falkowski,
1997; Behrenfeld et al., 2006; Westberry et al., 2008]. Recently, it has been shown that it is also possible to
extract additional information such as phytoplankton size classes (PSC) [Uitz et al., 2006; Ciotti and Bricaud,
2006; Hirata et al., 2008; Mouw and Yoder, 2010] and even phytoplankton groups [Sathyendranath et al., 2004;
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Alvain et al., 2005, 2012; Hirata et al.,
2011], which is of fundamental interest
to understand the phytoplankton
behavior and to model its evolution.
Phytoplankton is the first element in
ocean food webs and consequently
drives the ocean productivity. It also
plays a fundamental role in climate
regulation by trapping atmospheric
CO2 through gaseous exchange at the
sea surface. With the growing interest
in a changing climate, one may ask
how the different phytoplankton popu-
lations will respond to changes in
ocean characteristics (temperature,
salinity) and nutrient supply, and what
will be their impact on the climate.

We propose to determine the seasonal
variability of some phytoplankton
groups in the S�en�egalo-Mauritanian

region by using a PHYSAT regional procedure. The PHYSAT method [Alvain et al., 2005] is based on the analy-
sis of ocean-color spectra. The phytoplankton species present different spectral signatures due to the absorp-
tion properties of their specific pigments and the backscattering of incoming solar radiation due to the
composition and the shape of their cell wall. By analyzing in situ measurements of phytoplankton pigments
in terms of SeaWiFS water-leaving spectral reflectances normalized to a reflectance depending on chloro-
phyll-a concentration only, these authors clustered the SeaWiFS normalized spectral reflectances into four
classes, each of them being related to a predominant phytoplankton group. The normalization procedure,
which is a key ingredient of the method, aims at focusing the analysis on the spectrum shape, independently
of the chlorophyll-a concentration, and should allow the detection of phytoplankton groups from space
observations. The PHYSAT method was first developed on collocation between 41 in situ measurements and
SeaWiFS observations at global scale (GeP&CO data base) [Alvain et al., 2005]. The clustering was done by a
visual inspection of the shape of the spectrum. A rationalization of the method was presented in Ben Musta-
pha et al. [2014], who used a one-step neural network clustering, which permitted an efficient partition based
on objective criteria of an extended database constituted by 1068 coincident in situ and satellite ocean-color
measurements and consequently to obtain an improved spectrum labeling.

Since we do not have concomitant in situ measurements in the studied region, our strategy is based on
group identification, such as those determined by Ben Mustapha et al. [2014] at global scale, on the one
hand, and on the coherence of the patterns of the different phytoplankton groups both in space and in
time with respect to the upwelling dynamics in that region, on the other hand.

In the present paper, we analyze the ocean-color spectrum provided by the SeaWiFS daily observations
with a special focus on the identification of phytoplankton groups and their seasonal variability in the stud-
ied region. Section 2 describes the ocean-color data we processed. Section 3 presents the classification
methodology we used. Since we analyzed a very large amount of data (13 years of SeaWiFS daily observa-
tions), we used an efficient two-step clustering method to evidence the most significant spectra. Section 4
is devoted to the analysis of the ocean-color spectra. Section 5 analyses the results in the region studied. In
section 6, we attempt to attribute phytoplankton groups to the spectral classes and to describe an upwell-
ing scenario for these phytoplankton groups as revealed by our SeaWiFS analysis. Section 7 is devoted to a
discussion and a conclusion.

2. The Data

We used the daily water-leaving reflectances, qW(k), at a 4 km resolution, computed by Diouf et al. [2013],
which are available at: http://poacc.locean-ipsl.upmc.fr/. These water-leaving reflectances were obtained by

Figure 1. Mauritania and Senegal coastal topography. The land is in brown and
the ocean depth is represented by the color scale in meters (right-hand side of
the figure).
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processing the SeaWiFS daily reflectances, qobs
TOAw(k), provided by the NASA/GSFC/DAAC observed at the

top of the atmosphere (TOA) with the SOM-NV (SOM-NeuroVaria) algorithm [Diouf et al., 2013] from 1998 to
2010. This algorithm was specifically trained to take desertic dusts into account in the atmospheric correc-
tion process. The desertic dusts which are abundant in the studied region, absorb the sun light, and influ-
ence the TOA spectra and consequently may perturb the measurements of ocean reflectance spectra,
which depend on the absorption properties of the phytoplankton-specific pigments. It is therefore impor-
tant to efficiently compute the effect of desertic dusts in the atmospheric correction process in order to
obtain ocean reflectrance spectra which depend on phytoplankton only. In the present study, we used
water-leaving reflectances at five wavelengths (412, 443, 490, 510, and 555 nm). In order to extract the
second-order effect due to specific water characteristics other than phytoplankton abundance, we com-
puted a reflectance ratio, Ra(k), defined following Alvain et al. [2012] as:

RaðkÞ5qWðkÞ=qref
W ðk; Chl-aÞ (1)

where qW
ref(k, Chl-a) is a simple model of qW(k) that only accounts for the SeaWiFS standard chlorophyll-a

concentration provided by the NASA.

The computation of Ra(k) (see equation (1)) implies the knowledge of qW
ref(k, Chl-a). Such a model has been

estimated by Alvain et al. [2005] by collocating in situ observations of chlorophyll-a and high-quality Sea-
WiFs qW(k) measurements. But this model is only valid for chlorophyll-a concentrations in the range 0.03–
3 mg m23, whereas we have to deal with chlorophyll-a concentrations reaching values greater than 10 mg
m23 in the studied region. We therefore decided to compute a new qW

ref(k, Chl-a) model valid for chloro-
phyll-a concentrations up to 10 mg m23. These very high chlorophyll-a concentrations may be spoilt by
errors as they are outside the limit of validity of the OC4V4 algorithm used in the SOM-NV method; the cor-
responding data will be used with care. Moreover, as the Alvain et al. [2005] model is given in the form of a
discrete array (LUT), which implies interpolation of the actual chlorophyll-a concentration values between
two discrete chlorophyll-a values, we chose to build a new qW

ref(k, Chl-a) model as a continuous function of
SeaWiFS chlorophyll-a concentration values by using a specific class of neural networks, the so-called MLP
(Multi-Layer Perceptron), which are well-suited estimators for nonlinear continuous regression [Bishop,
2006; Thiria et al., 1993]. As the function Chl-a! qW

ref(k, Chl-a) is very different for each k, we computed an
MLP for each of the five visible SeaWiFS k values (412, 443, 490, 515, and 555 nm). This model was cali-
brated on 127 daily SeaWiFS images in the studied region from the year 2003. In order to reduce the num-
ber of vectors, which was enormous, we only sampled one pixel-line over 10 of the daily SeaWiFS images
from the year 2003. We then computed the Ra(k) from the SeaWiFS daily values from 1998 to 2010.

We now propose to cluster the Ra(k) spectra into different classes to try to evidence different phytoplank-
ton groups.

3. The Classification Methodology

The classification methodology is similar to that used by Farikou et al. [2013] in the study of the Senegalo-
Mauritanian upwelling and by Lachkar and Gruber [2012] for the eastern boundary upwelling regions. First
we used a specific classification model based on a neural network, the so-called Self-Organizing Map (SOM
in the following), which was first introduced by Kohonen [1982]. The SOM is an unsupervised classification
method made of a competitive neural network structured in two layers (Figure 2). The first layer (or input
layer) receives the vector data R (the five Ra(k) values). Each neuron j of the second layer (Figure 2) is associ-
ated with a particular reference vector (Rv) representing a typical Ra(k) spectrum and thus corresponds to a
cluster (a set of Ra(k) spectra) [Jouini et al., 2013, Niang et al., 2003, 2006]. The referent vectors Rvs are deter-
mined from a learning data set L statistically representative of the analyzed data set through an iterative
learning process. The referent vectors are first initialized to evenly distributed values of the Ra(k) values in
the range of the learning set and then computed by minimizing a nonlinear cost function as in the k-means
algorithm [Badran et al., 2005]. Then, for each Ri of the learning set presented to the SOM, the Euclidian dis-
tance between Ri and the referent vectors Rvs are computed and the closest referent vector Rvj is selected.
The referent vectors Rvs of the SOM are then updated and their topological neighbors are changed in order
to better match the input vector. Each neuron j is associated with a subset J (or a cluster) of L that gathers
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data, which are close together accord-
ing to the cost function and have com-
mon characteristics. The referent
vector Rvj synthesizes the data charac-
teristics of the subset J.

In the present study, we deal with a
two-dimensional SOM map with quite
a large number of neurons (20 3 20)
and thus of Rvs, providing a highly dis-
criminating representation of the
observations. The Ra(k) of the analyzed
data set is thus partitioned into 400
clusters. We used the SOM version
available on the web site http://www.
cis.hut.fi/projects/somtoolbox/down-
load/. The topological map was trained
according to the procedure described
in Kohonen [2001]. The number of neu-
rons was determined empirically from
solutions of similar problems and then
adjusted as described by Badran et al.
[2005]. The learning data set L is com-

posed of the Ra(k) daily values for the year 2003, a year in which the cloud coverage was the lowest with
respect to the 13 years of observations.

The large number of clusters allowed us to take into account the complexity of the data set but may have
prevented us from synthesizing some geophysical information embedded in the data, such as spatial or
seasonal specificities. To counteract this difficulty, we decided to aggregate this large number of clusters
into a smaller number of classes based on the similarities of the clusters. We thus extracted a few pertinent
classes from the clusters by merging clusters with similar statistical properties, expecting the classes to be
associated with similar geophysical characteristics. For this, we used a hierarchical ascendant classification
(HAC in the following), which is a bottom-up hierarchical classification [Jain and Dubes, 1998]. This method
iteratively computes a partition hierarchy of the clusters. From the initial partition (the neurons or clusters
on the map), two subsets of the computed partition are gathered at each iteration. These two subsets are
selected by measuring their similarity according to the Ward criterion.

We aggregated the 20 3 20 neurons into 10 significant classes. The resulting clustering of the five dimension
vectors, Rvs, associated with the neurons of the topological map is given in Figure 3. The map represents a topo-
logical space associated with the neurons: the closer the neurons on the map, the more similar the Rvs. We note
that the topological map 1 HAC clustering is very coherent, since the classes represent clusters whose neurons
are contiguous on the topological map. Moreover, the spectra associated with each neuron (or Rv) determine
homogeneous fields on the SOM. The number of classes (10) was selected because it presented the most signifi-
cant discriminative partition with respect to the full dendrogram of the HAC (Figure 4), on the one hand, and to
the spectrum homogeneity (Figure 5), on the other hand. Ten classes correspond to statistically well-defined
entities whose patterns are well marked. Moreover during the exploratory phase of that exercise, it is wise to
use a quite high number of classes. At the end of our research, it shall be possible to merge some classes accord-
ing to their statistical (dendogram structure) and geographical attributes as discussed in section 7.

This two-step clustering method (SOM1HAC) is different from this of Ben Mustapha et al. [2014] who used a
one-step method (SOM) which does not allow some analysis linking the different classes permitted by our
method (see section 7).

4. Ra(k) Spectrum Significance

The spectra of the different classes are well defined, each spectrum presenting a well-marked shape not
overlapping any others (Figure 5). The different class spectra (spectrum associated with each neuron of a

Figure 2. Structure of the self-organizing map (SOM). The network comprises
two layers: an input layer used to present observations (Ra(k) spectrum) and an
adaptation layer (whose neurons are represented in red), which is an active layer
for which a neuron neighborhood system is defined (schematized by the blue
arrows). Each neuron i is fully connected to the input layer by its synapses whose
weights are set to the input layer values. Each neuron of the adaptation layer is
associated with a reference vector, rv, representing a set of Ra(k) spectra having
close similarities and computed following Kohonen [2001].
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class) are close together, the intraclass variance being small (except at 412 nm for class-4, class-5, and class-7).
This shows that the SOM clustering has functioned well and that the different spectra are probably associated
with well-marked phenomena.

Class-8, class-9, and class-10, which are close together on the SOM map (Figure 3a), are associated with very
high chlorophyll-a (Figure 3b) and with three dendogram branches (Figure 4) connected to the same node.

They are characterized by a low-
spectrum value at 412 nm (Figure 5).
This low 412 nm value is due to a num-
ber of factors that include the presence
of absorption of blue photons by col-
ored dissolved organic matter of vari-
ous origins, by phytoplankton
pigments and also by possible inaccur-
acies in atmospheric correction in this
wavelength region (see below). As an
example, if atmospheric correction is
subtracting off too much blue radiance,
this may depress the blue end of the
spectrum. The high values of the class-
10 spectrum at wavelengths of 510
and 555 nm correspond to backscatter-
ing due to suspended particles. The
pixels of these three classes are locatedFigure 4. Dendogram of the HAC.

Figure 3. (a) Representation of the 10 classes on the SOM map. Each class is represented by a different color. (b) Chlorophyll-a concentra-
tion associated with each reflectance anomaly captured by each neuron. (c) Mean optical depth associated with each reflectance anomaly
captured by each neuron of the SOM. The color bar on the right is the AOT value scale.
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Figure 5. Representation of the 10 reflectance ratio spectra. The solid black line represents the mean ratio spectrum of each class.
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in geographical regions corresponding to coastal waters, such as the Arguin Bank (208N) and the continen-
tal shelf off the Sin�e-Saloum, Casamance, and Guinea coasts (88N–138N) (Figure 1), which are very shallow
regions, presenting dissolved terrigenous material responsible for high absorption at 412 nm and sus-
pended particles due to bottom erosion and responsible for backscattering light (class-10 spectrum). Due to
the very coastal location of their pixels and their spectral shape, class-8, class-9, and class-10 correspond to
case-2 waters [Morel, 1980; Prieur and Sathyendranath, 1981]. In such waters, the PHYSAT method for identi-
fying phytoplankton groups cannot apply, since we used the calibration of PHYSAT given by Ben Mustapha
et al, [2014], which was developed for case-1 waters only. This is why we decided to focus our analysis only
on class-1 to class-7, whose spectra correspond to case-1 waters [Ben Mustapha et al, 2014], and which are
located in areas whose depth is deeper than areas corresponding to class-8, class-9, and class-10. Moreover
class-1 to class-7 are associated with low AOT values (less than 0.35 in the average, Figure 3c), which mini-
mize the influence of atmosphere on the spectra characteristics. We also removed observations of neuron 1
of class-1 whose data are highly contaminated by the atmosphere, as shown by the high value of its mean
AOT (Figure 3c).

Class analysis is very sensitive to spectra that may have been contaminated by small defects in the
atmospheric correction. In order to check that point, we have represented the mean atmospheric optical
thickness (AOT in the following) that is associated with the reflectances captured by each neuron (Figure
3c) of the SOM. In that figure, we see that class-1, class-4, class-5, class-6, and class-7 are associated with
low AOT values, class-2 and class-3 with quite moderate AOT values. We found that the shapes of the
spectra were not distorted due to inaccurate atmospheric correction, and truly represented the optical
properties of the water. In order to confirm this, we averaged the spectra captured by each neuron of a
class for which AOT< 0.35 and compared them to the mean spectrum of that class whatever its AOT,
for class-1 to class-7. Comparison between the mean spectrum for which AOT< 0.35 and the spectrum
assigned to a class shows that the two categories of spectrum are close together (Figure 6). This is partly
due to the computation of the ocean reflectance, qW(k), with the SOM-NV method which is specially
designed to take into account absorbing aerosols such Saharan dusts. This supports the ability of a spec-
trum to retrieve ocean parameters independently of the AOT value of the analyzed pixel. We note that
the form of the class-2 spectrum is somewhat affected by the procedure, showing a well-marked peak
at 510 nm for a spectrum corresponding to observations whose AOT is less than 0.35, which is charac-
teristic of diatoms [Alvain et al., 2012].

5. Seasonal Evolution of the Different Classes

In order to study the seasonal variability of the different Ra(k) classes with some statistical confidence,
we constructed a monthly climatology of the classes for 13 years (1998–2010) of the SeaWiFS observa-
tions. Each pixel of the geographical map was associated with 10 counters corresponding to the ten
classes. The counters were set to zero at the beginning of each month of 1998. The first day of the
month was projected onto the SOM; the counter of the class associated with each pixel was incre-
mented by unity. Then the second day was projected onto the SOM; the counter of the class associated
with each pixel was incremented by unity. This iteration was continued until the last day of each month
of 2010. At the end of each month, the pixel class was the class of the winning counter. The resulting
climatology is presented for November and December in Figure 7a, for January, February, and March in
Figure 7b, and for April, May, and June in Figure 7c. To better visualize the class variability, we show the
monthly evolution of the seven classes in two figures, one for class-1, class-4, and class-6 (Figures 7a–7c,
left) and the other for class-2, class-3, class-5, and class-7 (Figures 7a–7c, right). Most of the time, the
class pixel is determined without ambiguity: i.e., the winning counter having a much higher score than
the others. We note that the classes are represented by contiguous pixels on the geographical maps,
defining well-structured patterns. Moreover, the classes present a well-marked seasonality. In the center
of a geographical patch of a class, the class is very dominant; its relative frequency of occurrence is
higher than 90%, as found on the class histogram (not shown).

Class-1 (Figure 7a, left) starts developing in November in the northern part of the Mauritanian upwelling
region where the chlorophyll extends far offshore, transported by eddies and filaments [Lathuilière et al.,
2008]. In the Senegal region (128N–168N), class-1 is well marked in the coastal area in January and February
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Figure 6. Comparison between the reflectance (left) ratio spectra 1, 2, 3, and 4 given by SOM whatever the AOT value is, and (right) ratio
spectra given by SOM for observations for which AOT< 0.35. The two ratio spectra are very similar showing that AOT does not affect the
ratio spectrum shape too much. Note the small peak at 512 nm for class-2 spectrum, which is typical of diatom spectra.
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(Figure 7b, left) and disappears in March (Figure 7b, left) until November. Class-4 is associated with offshore
waters bounding the western part of class-1 waters and can occupy the coastal area in February, replacing
class-1 waters in some places (Figure 7b, left). It is still encountered in the northern part of the studied
region in April, May, and June far offshore (Figure 7c, left) and then disappears until January.

Class-3 (Figure 7b, right) is encountered in offshore regions in March mainly north of 148N. It is well devel-
oped in the coastal area in April (Figure 7c, right) when the upwelling intensity is maximum (Figure 8),
replacing class-1 waters. Class-3 waters are associated with some patches of class-2 waters. In May, there is
a narrow strip of class-2 and class-3 waters which follows the coastal upwelling in the southern part of the
studied region between 108N and 148N, while well-developed patches of class-3 waters are encountered
offshore North of 148N. These class-2 and class-3 patterns are still present offshore in June (Figure 7c, right).
A well-defined patch of class-7 water is visible in May between 168N and 208N replacing the class-3 water
(Figure 7c, right). The signature of this patch is still visible in June. Class-2, class-3, and class-7 disappear until
the following March.

Class-6 water (Figures 7a–7c, left) is present in all seasons. It is found in the south part of the studied region
in January–February and, starting in March, it moves northward and occupies the whole region in April.

Class-5 is situated between class-7 and class-6 in the SOM (Figure 3a); its Ra(k) spectrum shape is similar to that of
the latter two classes, but it is associated with a dendogram branch far away from these two classes (Figure 4).

Figure 7a. The 13 year climatology of the classes for November and December. (left) We have represented class-1 (orange), class-4 (green), and class-6 (light blue). (right) We have repre-
sented class-2 (blue), class-3 (red), class-5 (light green), and class-7 (yellow).
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Class-5 is encountered during winter (December, January, February) quite far offshore, mainly in the
northern part of the studied region; it disappears in March. Its behavior seems closely related to that
of class-4.

Figure 7b. The 13 year climatology of the classes for January, February, and March. (left) We have represented class-1 (orange), class-4 (green), and class-6 (light blue). (right) We have rep-
resented class-2 (blue), class-3 (red), class-5 (light green), and class-7 (yellow).
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6. Upwelling Scenario and Class Labeling

The well-marked seasonality of the different classes and the stability of their patchiness from one year to
another incited us to assign a specific phytoplankton group to each class. The difficulty, when trying to

Figure 7c. The 13 year climatology of the classes for April, May, and June. (left) We have represented class-1 (orange), class-4 (green), and class-6 (light blue). (right) We have represented
class-2 (blue), class-3 (red), class-5 (light green), and class-7 (yellow).
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attribute such a group to a spectrum class, is that we do not have enough in situ measurements collocated
with satellite ocean-color observations permitting a statistically significant labeling of the classes. This is why
we decided to tentatively label the classes according to the shape of their spectrum following the labeling
given by Ben Mustapha et al. [2014], on the one hand, and from their ecological properties, on the other hand;
i.e., by studying the location and the seasonal occurrence of the different classes. This is supported by the fact
that the spectral shapes of the different classes are well identified, their intraneuron variance is quite small, as
seen in Figure 5, and the seasonal and spatial evolution of the patterns of the different classes is well defined.
Additionally, these spectra are very little affected by the atmospheric characteristics, as shown in Figure 6.

In order to understand the impact of the upwelling on the classes, we computed the monthly mean meridio-
nal wind stress component at Dakar (Figure 8), which is a good estimate of the mean wind stress component
parallel to the coast. This mean stress component is responsible for the Senegalo-Mauritanian upwelling by
generating an offshore Ekman transport which drives an upward vertical velocity transporting nutrients from
the deep layers of the ocean to the surface, and consequently activating the development of phytoplankton
[Farikou et al., 2013]. The upwelling starts developing in October when the trade winds begin to blow; its
physical intensity (i.e., the vertical velocity) is maximum in April (highest meridional wind stress component),
as well as its biological activity (highest chlorophyll-a concentration in the coastal zone) (Figure 8). Then, the
upwelling intensity (both physical and biological components) begins to weaken when the trade winds
decrease. It disappears in July, August, and September, a period corresponding to the African monsoon, and
starts increasing again in October.

From the shape of the Ra(k) spectra associated with the classes (Figure 6), the class climatology (Figures 7a–
7c), and the seasonal variation of the wind (Figure 8) which triggers the upwelling and determines its intensity,
we can outline the following scenario for the phytoplankton groups and consequently tentatively label the
groups:

Figure 8. Seasonal variability of the (top) meridional wind stress component at Dakar and (bottom) chlorophyll-a concentration averaged
over the studied zone for the different years.
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The Senegalo-Mauritanian upwelling begins to develop at the end of October with the onset of the trade
winds, which intensify (Figure 8) as the season progresses. In November, we note the development of class-
1 waters in the northern part of the region associated with the extent of the Mauritanian upwelling. Class-1
water is predominant in December off the Mauritanian coast, in the northern part of the studied region (Fig-
ure 7a) where they extend far offshore, which is a characteristic of the Mauritanian upwelling [Lathuilière
et al., 2008]. Class-1 water is then encountered along the coast of Senegal in January (down to 128N) and in
February (Figure 7b) where it forms quite large patches which are still present in March and completely dis-
appear in April. Their Ra(k) spectrum is lower than one, meaning that the associated phytoplankton absorbs
light more than it scatters it (the associated phytoplanktons do not have a skeleton). Class-1 can be consid-
ered as the signature of a phytoplankton bloom associated with haptophytes, later on reported as nanoeu-
karyotes by Alvain et al. [2012]; these tiny algae have a high specific absorption of light and respond to
moderate nutrient supply. Abundance of nanoeukaryotes in this region was also noted by Tarran et al.
[2006] during AMT 13 and AMT 14 cruises, using flow cytometry.

Class-1 water is associated with class-4 water, which can extend quite far offshore west of class-1
water in the northern part of the studied region. Its Ra(k) spectrum is around 1.25 and may corre-
spond to Prochlorococcus, which dominate in oligotrophic tropical waters [Partensky et al., 1999].
Indeed, this genus is dominant everywhere in the tropical oligotrophic zones of the ocean [Partensky
et al., 1999]. Class-1 disappears in March while class-4 is still present along the coast. These two
classes are completely absent in April.

Class-6 Ra(k) spectra water is abundant in the southern part of the studied region and may correspond to
equatorial oligotrophic waters origining in the North Equatorial Counter-Current and the Guinea dome.
These waters progress northward from April to November associated with the displacement of the ITCZ
[Siedler et al., 1992]. Owing to its quite high Ra(k) value (mean around 2), class-6 water may be associated
with Synechococcus-like Cyanobacteria (SLC) which are abundant in oligotrophic tropical waters, but may
benefit from small nutrient enrichment, as reported by Partensky et al. [1996].

Class-2 and class-3 waters, which are quasi-absent at the beginning of winter, are quite abundant offshore
in March mainly north of 148N and predominate in the coastal area in April (mainly class-3 waters; Figure
7c) when the upwelling intensity is maximal (Figure 8). They are still present in May (mainly as class-3) along
the coast. In April, these two classes are located in coastal regions where the chlorophyll-a concentration is
high; their Ra(k) spectrum is greater than 1.6, meaning the phytoplankton species constituting these classes
have a skeleton reflecting the light; they may correspond to diatoms, which grow very fast when nutrients
are abundant, producing blooms, and actively export organic carbon to depth. Class-2 and class-3 are close
together on the SOM map (Figure 3) and are associated with two connected dendogram branches (Figure
4). In May, class-2 and class-3 begin to vanish in the coastal area but are still present offshore where they
mix with class-6 water. We observe a large patch of class-7 water in the coastal area between 178N and
208N replacing class-3 water. Classe-2 and class-3 are still present offshore in June, and are mainly encoun-
tered offshore north of 148N. Then these two classes disappear from the coastal upwelling area until the fol-
lowing March. Diatoms are in fact the group that responds best to upwelling conditions. It might be
surprising that diatoms are not seen in December–February when the upwelling intensifies. The statistical
method does not say that they are absent during that period but that they are not the most abundant spe-
cies. This is the major drawback of the classification methodology we used, which is an all-or-nothing
method. In fact, the diatoms are seen in March, at the end of the nanoeukaryote bloom, and cover large
oceanic surfaces in June at the end of the diatom bloom of April, showing that they are present as a back-
ground species in the studied region.

Satellite observations indicate that the biological response to the upwelling appears to be bimodal: we
note a first coastal phytoplankton bloom dominated by nanoeukaryotes during the onset of the upwelling
(January–February) coming from the Mauritanian waters and progressing southward, which weakens in
March. We note a second coastal bloom dominated by diatoms in April-May when the vertical velocities
associated with the upwelling are maximum, as shown in Figure 8a, representing the North-South compo-
nent of the wind stress.

This scenario, which was obtained from satellite observation only, is compatible with the known ecological
dynamics of upwelling regions: the nanoeukaryotes and the diatoms being the dominant species in the
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coastal upwelling area, the diatoms predominating when the chlorophyll-a concentration is maximum; i.e.,
when the nutrient concentration is maximum. The replacement of these phytoplankton groups by ‘‘SLC’’
(class-6) when the upwelling stops, is also in agreement with current knowledge of the biological

Figure 9a. (top) Spectrum pattern of class-1, class-4, and class-6, (middle) the associated chlorophyll-a concentration, and (bottom) AOT for the 16 and 17 January 2004, days for which
AOT coverage was very low. Class-1 (haptophytes) is in orange, class-4 (Prochlorococcus) in green, and class-6 (SLC) in light blue. AOT low values are in blue.
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functioning of the North Atlantic Canary upwelling from in situ observations [Gibb et al., 2000; Aiken et al.,
2009; Hirata et al., 2011]. Predominance of ‘‘Prochlorococcus’’ (class-4) immediately after the first upwelling
bloom in January–February is less convincing, as this cyanobacterium is known to be specific to poor

Figure 9b. (top) Spectrum pattern of class-1, class-4, and class-6, (middle) the associated chlorophyll-a concentration, and (bottom) AOT for the 24 and 26 January 2004, days for which
AOT coverage was very low. Class-1 (haptophytes) is in orange, class-4 (Prochlorococcus) in green, and class-6 (SLC) in light blue. AOT low values are in blue.
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Figure 10. (top) Spectrum pattern of class-2, class-3, and class-7, (middle) the associated chlorophyll-a concentration, and (bottom) AOT for 4 and 5 April, days for which AOT coverage
was low in the regions where we computed the classes. Class-2 and class-3 (diatoms) are in blue and red, class-7 in yellow. AOT low values are in blue.
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tropical waters, where it is often associated with SLC. Besides, class-4 ‘‘Prochlorococcus’’ spectra, which are
characterized by low values, may be caused by nanoeukaryotes in the upper range of their usual spectral
properties.

We were unable to label class-5 and class-7, which may be associated with a mixing of different groups.

In order to better understand this description, we isolated two sequences of several days, one dedicated to
class-1 bloom (a ‘‘nanoeukaryote’’ bloom), the other to class-2 and class-3 blooms (‘‘diatom’’ bloom), for
which we can follow the development of the pattern of the two classes.

We selected a 4 day period in January 2004 (16, 17, 24, and 26), which was characterized by the ‘‘nanoeukar-
yote’’ bloom (Figures 9a and 9b) for which the AOT is small. The chlorophyll-a concentration images (Figures
9a and 9b, middle) show a well-developed upwelling with a very high chlorophyll-a concentration at the
coast. The mean chlorophyll-a concentration decreases offshore. Chlorophyll-a is advected offshore by fila-
ments, which can persist for several days; see as an example the ‘‘hook-like meanders’’ off Cap Vert at Dakar
(158N) and off the mouth of the Senegal River (168N) in the 24 January image. We note very high chloro-
phyll-a concentrations over the Arguin Bank (208N) and south of Cap Vert on the Sin�e-Saloum Shelf (148N),
the Guinea Bank (138N–118N). The spectral signature maps (Figures 9a and 9b, top) show that class-1 water
is located near the coast (in a region extending several tens of kilometers offshore) forming a strip parallel
to the coast; this strip is surrounded by class-4 water (‘‘Prochlorococcus’’), which can extend quite far to the
west and is sometimes encountered near the coast replacing class-1 water. The interpretation of this image
sequence is in agreement with the upwelling scenario described above. The variation in the extent of class-
1 between 16 and 17 January and between 24 and 25 January is due to the clustering method; small varia-
tions in a group concentration may change its class assignment, depending on its concentration rating, and
consequently modifying its geographical distribution. There is no correlation between AOT (Figures 9a and
9b, bottom) and the classes. We also selected a 2 day period, 4 and 5 April 2002, for which the diatoms are
predominant according to the previous climatology. Class-2 and class-3 waters (Figure 10) indicate the pres-
ence of ‘‘diatoms’’ in the coastal upwelling area. These classes replace class-1 (‘‘nanoeukaryotes’’) observed
in January and February in the coastal area, which has completely disappeared. These daily images confirm
the analyses done on the monthly climatology. As for the January images, there is no correlation between
AOT (Figure 10, bottom) and the classes.

Our labeling, which is based on the results of Ben Mustapha et al. [2014], on the one hand, and on historical
in situ measurements, on the other hand [Blasco et al., 1980; Dia, 1985], is given with a high probability due
to the 13 years of satellite observations. It leads to a coherent seasonal scenario for the phytoplankton
groups in agreement with the upwelling dynamics. But the labeling may fail in some situations due to the
specificity of the studied region.

7. Discussion and Conclusion

Our neural classification procedure has led us to identify 10 classes of reflectance ratio spectra, Ra(k),
defined as the water-leaving radiance spectrum, qw(k), normalized by a qW

ref(k, Chl-a) spectrum, which is a
simple model of qW(k) depending on the SeaWiFS standard chlorophyll-a. The 10 classes are well character-
ized, most of them presenting a well-defined pattern with a small intraneuron dispersion (Figure 4). Their
patchiness is very coherent both in space and time, but their labeling is very challenging. A first analysis
permitted us to reject three classes (class-8, class-9, and class-10) of our study as corresponding to case-2
waters situated at very shallow coastal locations (Arguin Bank, shelves off the coast of Casamance and
Guinea; see Figure 1). The interpretation of these waters is beyond the scope of the present paper, as
argued in section 4. We therefore only analyzed the remaining seven classes. This is in agreement with Fari-
kou et al. [2013] who also noted the presence of waters whose ocean-color spectra correspond to case-2
waters at these coastal locations.

By generating a monthly climatology of Ra(k) associated with AOT< 0.35 for 13 years of observation and
after inspecting a large number of situations for which AOT is small, we were able to outline a scenario for
interpreting the spatial variability of the spectra in terms of phytoplankton groups in the Senegalo-
Mauritanian upwelling region. In this scenario we identified some Ra(k) spectral classes to phytoplankton
groups according to the labeling given by Ben Mustapha et al. [2014], on the one hand, and on the coherent
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geographical position and seasonal evolution of the pattern of the different classes, on the other hand. The
major feature of the Senegal upwelling is the bimodality of the phytoplankton bloom. We observe a first
bloom dominated by class-1 (labeled as ‘‘nanoeukaryote’’ type) occurring during a quite long period corre-
sponding to the onset of the upwelling (December to mid-March). This class predominates in the Maurita-
nian waters (north of 218N) in December (Figure 7a) and progresses southward until mid-March (Figure 7b)
reaching 128N. It is accompanied by class-4 (‘‘Prochlorococcus’’ type) water, which is mainly encountered off-
shore in January and replaces class-1 in March. We noted a second bloom close to the coast and much
shorter in April, May, when the chlorophyll-a concentration is maximum. It is dominated by class-2 and
class-3 (labeled as ‘‘diatom’’ type). In March, the coastal bloom of class-1 (‘‘nanoeukaryote’’) has vanished
and we note a northward progression of class-6 water (SLC type), which dominates in the southern part of
the region and corresponds to equatorial oligotrophic water originating in the NECC and the Guinea dome.
This water moves northward from April to November associated with the ITCZ displacement. The diatoms,
which present a maximal coastal bloom in April, seem to be present as a background type mixed with SLC
type (class-6 water) from March to June north of 148N.

This well-marked seasonal variability of the different classes is in agreement with in situ observations of
phytoplankton reported in Blasco et al. [1980] in March to May 1974 in this region during the JOINT I experi-
ment. These authors analyzed 740 water samples collected with Niskin bottles at 136 stations extending
along a line at 218400N (in the northern part of our study region) from 0 to 100 km offshore. The samples
were taken at several depths (mostly at 5, 15, 30, 50, and 100 m). Phytoplankton cells were counted and
identified by the Utermohl inverted microscope technique [Blasco, 1977]. They found that diatoms reach
their maximum concentration in April–May and are the most abundant group in that period, while the other
cells predominate in March. It is also interesting to notice that these other cells were generally situated in
the upper 30–40 m layer, making their detection by satellite ocean-color radiometry easier than for the dia-
toms which have a deeper distribution. This reinforces the fact that we observed a dominance of class-1
(nanoeukaryotes) from December to March, even if diatoms are abundant in that period. Similar microscope
observations have been reported in the ocean area south of Dakar by Dia [1985] during several ship surveys
in February–March 1982–1983. This latter study also mentioned the bimodality of the phytoplankton bloom
of the Senegal-Mauritanian upwelling system.

Our scenario is also in agreement with the phytoplankton types determined by measuring photosynthetic
pigments using high-performance liquid chromatography (HPLC) during two series of cruises in the region:
the EUMELI cruises in September–October 1991 and in May–June 1992 [Claustre and Marty, 1995], and the
Atlantic Meridional Transect (AMT) starting in 1995 up to 2005 [Robinson et al., 2006]. Observations made
during these cruises showed that the picoplankton (less than 2 mm) generally predominates [Partensky
et al., 1999; Gibb et al., 2000; Tarran et al., 2006; Aiken et al., 2009] and found as a background in our satellite
observations (class-4). Partensky et al. [1996] also noted the large abundance of Synechococcus at the
EUMELI mesotrophic station in the plume of the Mauritanian upwelling in June 1992. Diatoms, however,
often make up most of the biomass in the upwelling zone close to the coast of Mauritania, as indicated by
the relative abundance of the fucoxanthin pigment mainly at the end of the upwelling season [Aiken et al.,
2009] as in our satellite observations.

Our analysis agrees with the original PHYSAT method reported in the recent works of Alvain et al. [2012] and
Ben Mustapha et al. [2014]. In the latter paper, we clearly see the predominance of nanoeukaryotes in January
(their Figure 11, top) and the presence of some diatoms in June (their Figure 12, top) off the coast of S�en�egal.
The major advantages of our processing with respect to that of Alvain et al. [2005, 2012] and Ben Mustapha
et al. [2014] is to use a more efficient atmospheric correction (SOM-NV), as described by Diouf et al. [2013],
than the one used in the standard SeaWiFS processing. SOM-NV is expected to give ocean spectra of better
quality, and consequently to increase the number of valid pixels by an order of magnitude.

The atmosphere does not seem to affect the spectrum shape dramatically, as shown in Figure 6 (except for
class-8, class-9, and class-10 associated with coastal waters, which could be strongly influenced by coastal
aerosols), nor the class patterns (Figures 9a, 9b, and 10). A class of reflectance spectrum ratio can be consid-
ered as a qualitative index of the presence (but not of the absence) of a specific phytoplankton group. In
fact, the passage from one class to another, which is an all-or-nothing process, does not take into account
the smooth variations in the natural environment, especially in the vicinity of a class boundary, where sev-
eral phytoplankton groups can coexist together in the same area at different concentrations.

Journal of Geophysical Research: Oceans 10.1002/2015JC010738

FARIKOU ET AL. PHYTOPLANKTONS IN THE SENEGAL UPWELLING 6598



The geographical pattern and seasonal behavior of the classes associated with their statistical properties
(dendogram and topology of SOM) led us to envisage merging some classes. Class-2 and class-3 (‘‘diatom’’
type) and class-7 and class-6 whose spectral shapes are similar and which are associated with two dendo-
gram branches both connected to the same branch, might be merged, although each class has its own eco-
logical dynamics, as shown by the monthly climatology. The merging of class-2 and class-3 is feasible, but
the replacement of class-3 (‘‘diatom’’ type) by class-7 water (and consequently by class-6 water if class-7 and
class-6 were merged) in May, as shown in Figure 7c, is difficult to justify.

A major advantage of our method is to use daily satellite observations to construct the monthly climatology
of the classes for 13 years (1998–2010) of the SeaWiFS observations. Due to the highly nonlinear
character of the algorithms for determining the classes, it is more rigorous mathematically to apply these
algorithms to daily data and to average the daily estimate of the classes for each month as described in sec-
tion 5 than to estimate the classes from monthly satellite data as many authors did [Uitz et al., 2010; Hirata
et al., 2011].

The PHYSAT method combined with an efficient clustering method like SOM and an advanced atmos-
pheric correction algorithm such as SOM-NV [Diouf et al., 2013] constitutes a powerful tool for extract-
ing biological information from satellite ocean-color observations at global scale [Ben Mustapha et al.,
2014] as well as at a regional scale, as in the present study. As in its latter version PHYSAT has been
calibrated on 1068 coincident in situ and satellite measurements [Ben Mustapha et al., 2014], it can be
used with some confidence to explore regions where no in situ observations have been made. The
method is easy to handle and could be used to quickly extract qualitative information on newly stud-
ied areas. But, as with many clustering methods, PHYSAT presents intrinsic limitations. It is an all-or-
nothing method, giving only the predominant group. Representation of an area where several groups
coexist with a close reflectance ratio poses a problem. To mitigate this drawback, it would be neces-
sary to develop a clustering method giving the probabilities of the different elements to belong to a
given class. Moreover, it would be interesting to combine PHYSAT and recent methods developed for
retrieving phytoplankton groups dealing with chlorophyll-a concentration, such as those described by
Devred et al. [2006] and Uitz et al. [2006, 2010] and revisited by Mouw and Yoder [2010] and Hirata
et al. [2011], which would offer the advantage of increasing the information content of the phyto-
plankton retrieval methodology.

Our processing could be improved by combining many field data such as cell size, dissolved colored
organic matter, phytoplankton absorption spectra, and of sea surface phenomena, such as wind intensity,
since we process second-order effects cleared of chlorophyll-a concentration.

In addition to the present PHYSAT processing, which considers only reflectance spectrum ratios that
decrease or increase regularly from 410 to 555 nm, we could also consider reflectance spectrum ratios with
peaks or troughs, which appear frequently in ocean-color data. Interpretation of such spectra however
remains difficult and will necessitate adequate methodological developments.

Our paper aimed to analyze a very active oceanic region in biological terms with strong economic impacts
on fisheries in Senegal and Mauritania. Since this region has been poorly surveyed in situ, we have chosen
to extract pertinent scientific information from the satellite measurements. Satellite sensors provide a tre-
mendous amount of data, which have remained unexploited due to the lack of scientists and of adequate
methods for processing large data sets. This satellite information should help to improve the understanding
of the functioning of this very productive region, to detect the points of interest such as the two phyto-
plankton blooms observed in the satellite data which are quite surprising and ultimately contribute to
defining new lines of research. It should also help to improve the design of oceanographic cruises and the
optimization of the research vessel tracks for in situ sampling purposes.
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