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Modélisation Mathématique et Analyse Numérique

A MULTISCALE METHOD FOR SEMI-LINEAR ELLIPTIC EQUATIONS WITH
LOCALIZED UNCERTAINTIES AND NON-LINEARITIES *

ANTHONY NoUY! AND FLORENT PLED?

Abstract. A multiscale numerical method is proposed for the solution of semi-linear elliptic stochas-
tic partial differential equations with localized uncertainties and non-linearities, the uncertainties being
modeled by a set of random parameters. It relies on an overlapping domain decomposition method
which introduces several subdomains of interest (called patches) containing the different sources of un-
certainties and non-linearities. An iterative algorithm is then introduced, which requires the solution
of a sequence of linear global problems (with deterministic operators and uncertain right-hand sides),
and non-linear local problems (with uncertain operators and/or right-hand sides) over the patches.
Non-linear local problems are solved using an adaptive sampling-based least-squares method for the
construction of sparse polynomial approximations of local solutions as functions of the random param-
eters. Consistency, convergence and robustness of the algorithm are proved under general assumptions
on the semi-linear elliptic operator. A convergence acceleration technique (Aitken’s dynamic relax-
ation) is also introduced to speed up the convergence of the algorithm. The performances of the
proposed method are illustrated through numerical experiments carried out on a stationary non-linear
diffusion-reaction problem.

Résumé. Une méthode numérique multi-échelle est proposée pour la résolution d’équations aux
dérivées partielles stochastiques elliptiques semi-linéaires avec incertitudes et non-linéarités localisées
en espace, ou les incertitudes sont modélisées par un ensemble de parameétres aléatoires. Elle repose
sur une méthode de décomposition de domaine avec recouvrement qui introduit des sous-domaines
d’intérét (appelés patchs) contenant les différentes sources d’incertitudes et non-linéarités. Un algo-
rithme itératif est ensuite proposé. Il demande la résolution successive de problémes globaux linéaires
(avec opérateurs déterministes et seconds membres incertains) et de problémes locaux non-linéaires
(avec opérateurs et/ou seconds membres incertains) définis sur les patchs. Les problémes locaux non-
linéaires sont résolus a ’aide d’une méthode des moindres carrés adaptative pour la construction
d’approximations polynomiales creuses des solutions locales en fonction des parametres aléatoires. Des
résultats de consistance, convergence et robustesse de ’algorithme sont obtenus sous des hypotheses
générales sur l'opérateur elliptique semi-linéaire. Une technique d’accélération de convergence (relax-
ation dynamique d’Aitken) est également introduite pour améliorer la convergence de ’algorithme.
Les performances de la méthode proposée sont illustrées a travers des expériences numériques sur un
probléeme de diffusion-réaction non-linéaire stationnaire.
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decomposition, Sparse approximation

* The financial support of the French National Research Agency - Agence Nationale de la Recherche (ANR) - under Grant
ICARE ANR-12-MONU-0002 is acknowledged by the authors.
1 Ecole Centrale Nantes, GeM UMR CNRS 6183, 1 rue de la Noé, BP 92101, 44321 Nantes Cedex 3, France ; e-mail:
anthony.nouy@ec-nantes.fr
2 Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454
Marne-la-Vallée, France ; e-mail: florent.pled@univ-paris-est.fr

© EDP Sciences, SMAI 1999



1991 Mathematics Subject Classification. 35R60, 60H15, 65N30, 65N55, 65D15.

April 13, 2017.

Uncertainty quantification has become a topical issue in computational science and engineering. Numerous
methods have been proposed to propagate uncertainties through models governed by partial differential equa-
tions (see e.g. [1-3]). While these methods have reached a certain degree of maturity and become nowadays
widespread, a major concern has emerged for multiscale models where uncertainties occur at various scales.

Several numerical methods dedicated to deterministic multiscale models have been extended to the stochas-
tic framework. For multiscale problems with global sources of uncertainties, spectral stochastic methods have
been combined with deterministic multiscale methods, e.g. the multiscale finite element method (FEM) [4],
the variational multiscale method [5] or the heterogeneous multiscale method [6], leading to the so-called mul-
tiscale stochastic FEM [7] and its variants [8-15]. These methods are well adapted to global uncertainties
and are proved to be efficient when assuming small random fluctuations and scale separation. Meanwhile,
traditional substructuring and domain decomposition methods have been introduced for stochastic monoscale
models [16-18] and recently extended to multiscale models [19,20] in order to benefit from scalable parallel
algorithms available in the deterministic framework. These methods are also well adapted to problems where
the uncertainties are scattered in the whole domain.

The present work focuses on non-linear stochastic multiscale models where localized sources of uncertainties
and non-linearities may occur in some regions of interest. Concurrent approaches, initially developed in the
deterministic framework, have been proposed to couple numerical models. First of all, mono-model approaches
currently rely on adaptive remeshing strategies [21,22] or enrichment techniques (e.g. the eXtended FEM [23,24]
or the Generalized FEM [25]) and generally require high computational resources or specific (intrusive) imple-
mentations. Conversely, multi-model approaches based on patches have a high potential to manage complex
multiscale problems by operating a separation of scales. The separation of scales allows to capture the local
features of multiscale solutions at a micro scale (local level) while keeping a simplified global description at a
macro scale (global level). Several multiscale coupling methods have been developed within the deterministic
framework and some have been extended to the stochastic framework. They distinguish themselves by the
way of defining and constructing the coupling operator between global and local models. First, superposition
methods, such as the method of finite element patches [26,27] and the method of harmonic patches [28], consist
in adding a fine local correction to a coarse global solution. Second, surface coupling methods include the
Chimera-Schwarz method [29,30], the Semi-Schwarz method [31], the Semi-Schwarz-Lagrange method [32-35]
and the local multigrid method [36-39]. Both multiscale superposition and surface coupling methods are based
on global-local iterative algorithms originally developed for domain decomposition methods or multigrid meth-
ods. Nevertheless, the former can be interpreted as a local model refinement technique, while the latter can be
seen as a local model substitution technique. Third, volume coupling methods, such as the Arlequin method [40],
belong to the class of overlapping domain decomposition methods and require the definition of a coupling zone
between the different models. Among all these multi-model approaches, few have been explored in the stochas-
tic framework. The Arlequin (volume coupling) method has been applied to deterministic-stochastic coupling
in [41,42] for homogenization purposes. Besides, the Semi-Schwarz-Lagrange (surface coupling) method has
been recently extended to linear stochastic multiscale models with localized sources of uncertainties in [43].

This work extends [43] to a class of non-linear stochastic multiscale models. To this end, a dedicated
multiscale method based on an overlapping domain decomposition is proposed to exploit the localized side of
uncertainties and non-linearities. It relies on a global-local iterative algorithm which requires the solution of a
sequence of linear global problems (with deterministic operators and uncertain right-hand sides) at a macro scale
and non-linear local problems (with uncertain operators and right-hand sides) at a micro scale (over patches).
Appropriate approximation spaces and solvers can be considered to solve both types of problems efficiently. This
multiscale approach then appears to be flexible and non-intrusive in the sense that it requires no modification
of both global and local models and solvers, which makes possible the use of stand-alone codes. The main
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motivation is the deployment and transfer of methods towards complex large-scale industrial applications [44].
Besides, different types of uncertainties can be considered in the non-linear local models. They may be associated
with some variabilities of the operator but also of the geometry, the source terms or the boundary conditions.

The remainder of the paper is structured as follows. Section 1 introduces the initial formulation of the
semi-linear elliptic stochastic partial differential equation with localized uncertainties and non-linearities and
states suitable assumptions. Section 2 presents the global-local (two-scale) formulation with patches containing
localized variabilities and non-linearities. A global-local iterative algorithm is then introduced and analyzed in
Section 3. Consistency, convergence and robustness properties are deduced from the assumptions introduced
in Section 1. Subsequently, the computational aspects associated with the solution of both global and local
problems are detailed in Section 4. In particular, the stochastic local problems are solved using sampling-based
(non-intrusive) approaches and working sets algorithms proposed in [45] for the adaptive construction of sparse
polynomial approximations of local solutions. Finally, the proposed method is illustrated through numerical
examples in Section 5.

1. PROBLEM STATEMENT

Let £ denote a set of real-valued random variables modeling the different sources of uncertainties (on the
operator, geometry, source terms and boundary conditions). We assume that £ takes values in a set Z and we let
1t be the probability law of £. We consider the following semi-linear second-order stochastic partial differential
equation

=V B(u, Vu;2,8) + C(u, Vusz,§) = f(x,§) for z € Q(¢), (1a)
where Q(€) is an uncertain domain of R? with sufficiently smooth (e.g. Lipschitz) boundary 9Q(¢). Here
B(-, 5 2,8): RxR? = R and O(-,;2,€): RxR? = R, and f(-,£): Q(¢) — R is a given source term. For a
given value of &, the solution u(-,€) is a function from (&) to R. We supply equation (la) with the following
Dirichlet and Neumann boundary conditions

u=0 on I'p (&), (1b)
B(u, Vu;z,8) -n=g(x,§) onTn(£), (1c)

where I'p(§) and I'y(§) are disjoint and complementary parts of 9Q(§) such that I'p (&) UTn(§) = 92(€) and
I'p(€)NTn(€) =0, and meas(T'p(€)) # 0. g(-,€): In(€) — R is a prescribed normal flux on I'n(€), and n is
the unit outward normal to Ty ().

Example 1.1 (Non-linear diffusion-reaction equation). As a model example, we consider a non-linear diffusion-
reaction equation (la) in dimension d < 3, with

B(u,Vu;z,€) = K(2,6)Vu  and  C(u, Vu; z,€) = R(x, &)u®,
where K and R are respectively the diffusion and reaction coefficients. This example will serve as a guideline.

1.1. Localized uncertainties and non-linearities

We consider that non-linearities and uncertainties on operator and geometry only affect a given subdomain
of interest A, C Q.

First, the subdomain A, may depend on £ while the complementary subdomain Q\ A, is supposed independent
of &, which means that geometrical uncertainties are contained in A,. The boundary JA, of A, contains the
possible uncertainties of the boundary 92 of domain 2.

Also, B and C are supposed linear and independent of £ outside A,. More precisely, we suppose that B can
be split into a linear part By, (such that u — Br(u, Vu;z,€) is linear) and a non-linear part By, such that
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B = By, + By. The same decomposition is introduced for C' = Cf, + Cy. Then, we consider that B and C' are
such that

Br(53,6) = Br(-,52) and Cp(-,2,8) = Cp(,2) forw e Q\A,, (2)
and
Bn(-, 52,8 =Cn(y52,6) =0 for z € Q\ A, (3)

Example 1.2. In Example 1.1, we consider that diffusion coefficient K and reaction parameter R are such that
K(z,&) = K(x) and R(z,€) =0 for z € Q\ A,.

In the following, a function v(z, ) of two variables defined for £ € = and x € D(§), with D(§) a parametrized
domain of R?, will be equivalently considered as a function v(¢) defined on D(€). For the sake of clarity, we
will often omit the dependence on £ for geometrical domains and for function spaces defined on these domains.

1.2. Assumptions

Here O denotes a subset of (2. For a function v € H*(0), we denote
ol o) = [Vullieo)  and  [[vlfu o) = lin o) + 10lIE2(0)-

1.2.1. Assumptions on the source terms

For a function v defined on O, we introduce the linear form

lo(v;6) = /O F 6w+ /F a6 (4)

and we assume that f and g are such that the following assumption holds.

Assumption 1.3 (Properties of linear form £n). We assume that the linear form £o(-;€): HY(O) — R is almost
surely continuous, that means there exists a random variable k(&) > 0 such that it holds

1o (v;€)| < k(©)lvllm) YveHY(0), (5)

—

and we further assume that k € L (Z) for some 2 < p < +00.

1.2.2. Assumptions on the differential operator

For functions u, v defined on O, we introduce the semi-linear form

doo(u, v; €) = /O Blu, Vui-,€) - Vo + /O O, Vi, €, (6)

which can be written as
d(’)(ua v; 5) = a(')(uv V3 f) + nO(u7 U3 g)a
where ap (-, -;€) is a bilinear form and np (-, ;) is a semi-linear form, respectively defined by

ao<u,v;5>=/OBL<u,Vu;-,£)-w+/ocL<u,Vu;-,f)v,
no(u,v;f)z/OBN(u,Vu;-,f)~Vv—|—/OCN(u,Vu;-,§)U.

We make the following assumptions.
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Assumption 1.4 (Properties of bilinear form ap). We assume that the bilinear form ao(-,-;€): HY(O) x
HY(O) — R is such that there exist constants 0 < o, < B, < +00 such that it holds almost surely

@alvlip o) Vo € HY(0), (7)

ao(v,v; )
| < Ballulla o) vl o) Vu,v € HY(O), (8)

=
lao (u,v;€)| <

and we further assume that o, and B, are independent of & and O.

Assumption 1.5 (Properties of semi-linear form nep). We assume that the semi-linear form no(-,-; €): HY(O)x
HY(O) — R is almost surely continuous with respect to the second variable and radially continuous with respect
to the first variable, that means for all u,v € H(O), the map t — np(u + tv,v;€) is almost surely continuous.
We also assume that np(-, ;&) is almost surely monotone in the first variable, that means

no(u,u —v;€) —no(v,u —v;€) =0 Yu,v € H(O) (9)
holds almost surely. Finally, we assume that ne(-, ;&) satisfies almost surely
no(0,v;€) =0 Yo € HY(O). (10)

Example 1.6. Concerning Example 1.1, assumption 1.4 on ae is satisfied if the diffusion coefficient K is such
that 0 < King|¢|? < K(2,€)¢ - ¢ < Kaupl¢|? < 400 for all ¢ € R? holds almost surely and almost everywhere
on O, where Kiys and K, are some strictly positive constants independent of ¢ and independent of the
considered subdomain O C ). Also, assumption 1.5 on ne is satisfied if the reaction coefficient R is such that
0 < R(z,€) < Rsup < +00 holds almost surely and almost everywhere on O, where Rg,p, is a strictly positive
constant independent of ¢ and independent of the considered subdomain O C €.

1.2.3. Assumption on the geometry

We suppose that the considered domains have sufficiently smooth boundary (e.g. Lipschitz). For a subset
£ C OO with non zero measure, we denote by H'/2(€) the space of traces on & of functions in H'(0). We recall
that we have

vl o) < Co.e (Wl (o) + Ivllmzce)) (11)
for all v € H'(O), with a constant Co ¢ depending only on O and & (see [46, Theorem 7.3.13]).

Assumption 1.7. For any considered domains O and £ C 00, we assume that the constant Co ¢ is independent

of €.

Assumption 1.7 is obviously satisfied if the domains O and £ are independent of £. In the case of uncertain
domains O() and £(§), assumption 1.7 implies some restrictions on the dependence of the geometry on the
parameters £. Let us describe a typical situation where the uncertain domain is described through a parametrized
mapping defined on a fixed domain. Assume that there exist domains Oy and & C 00, independent of &, and
a parametrized diffeomorphism ¢(;€): Op — O(€) such that ¢(Op; &) = O(€) and ¢(Ep; &) = E(€). Then it can
be proved that assumption 1.7 is satisfied if the mapping ¢ satisfies

Ol¢|<| < |V¢(m0,§)g| < B¢|<| VC € Rda Vfo S 007

with constants oy and 4 independent of &.
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2. GLOBAL-LOCAL FORMULATION WITH PATCH

2.1. Domain decomposition: introduction of a patch

We introduce a subdomain A C €, hereafter called a patch, such that A, C A, and such that Q\ A is
independent of . This yields the following partition of domain Q(&):

Q&) = (2\ A) UA().
The patch A is chosen such that
dist(A., 2\ A) > 6, (12)

that means uncertainties on operator and geometry affect a region in A whose distance to 2\ A is greater than
0. We assume that the patch A has a sufficiently smooth boundary (e.g. Lipschitz). We denote by

I'=0ANAQ\A)

the deterministic interface between the patch A and the exterior subdomain Q\ A (see Figure 1).

Q\ A

FIGURE 1. Representation of interface I between patch A and complementary subdomain 2\ A

We denote by U(§) and w(€) the restrictions of u(€) to subdomains @ \ A and A, respectively. For U(§) €
HY(Q\ A) and w(§) € HY(A), we denote by U(&)r and w(€)r in HY/2(T") the traces on I' of U(€) and w(§),
respectively. A weak continuity condition is enforced on interface I' by imposing

br(OA, U(&)r) = br(6A, w(&)r) Vox € HY/*(D)*, (13)

where br denotes the duality pairing between H'/?(T") and its topological dual H'/2(I")*. In the following,
we denote by M = HY2(I)* and ||-{ar = [||lg1/2(ry-- We use the same notation bp for the bilinear form
br: MxHY2(I') — R and its extension to M xH'(Q\ A) (resp. M xH'(A)) defined using the trace operator
from H'(Q\ A) (resp. H'(A)) to H/2(T).

Remark 2.1. The proposed multiscale approach can be naturally extended to the case where the sources of
uncertainties and possible non-linearities are localized in several non-overlapping local subdomains of interest
(or patches). The patch A and the interface I' can then be respectively interpreted as the disjoint union of @
patches {Aq}?:1 and @ interfaces {Fq}qQ:p where I'; = A, N O(Q\ A) is the deterministic interface between
the patch A, and the exterior subdomain Q \ A.

2.1.1. Weak formulation
We introduce the Hilbert spaces

U={UcH(Q\A):U=00nTpnNd(Q\A)},
W={weH(A):w=00onTpnNaIA},
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equipped with norms || - [os = || - [[51(@\a) and || - [w = || - || (a), respectively. Also, we introduce the Hilbert
space
V={u: Q= R:ugna €U and up € W}

equipped with the norm || - ||y defined by
lull$ = luonallfi @ay + lwallf sy,
and the closed linear subspace
V={ueV:br(6\uma) = br(6A,upy) for all 1 € M},

which is a Hilbert space when equipped with norm || - ||y .

Lemma 2.2. There exists a constant Cy such that |v]y < |||y < Cylvly  Yv €V, with

|U‘$ﬂ = |U\Q\A|%{1(Q\A) + |U|A\12LI1(A).

Under assumption 1.7, Cy, is independent of &.
Proof. See Section 7.3 in Appendix 7. O

In the following, for a given Hilbert space H (possibly dependent on &) equipped with a norm || - ||z, we
denote by HZ the space H= = {v: ¢ € Z > v(¢) € H(£)}, and we identify functions in HZ that are equal
almost surely. We denote by L” ACH ) = {v € HE : ]E(||v(§)||%(£)) < 400}, where E denotes the mathematical

expectation defined by E(a(¢)) = [ af
We consider the followmg Weak formulatlon of the problem: find u € V= such that it holds almost surely

do(u(€), 6u; €) = lo(dus€) Vou € V. (14)

Theorem 2.3. Under assumptions 1.3, 1.4 and 1.5, problem (14) is well-posed, that means for almost all £ € Z,
it admits a unique solution u(§) € V and the application that maps £o(-;€) to this solution u(§) is Lipschitz
continuous with Lipschitz constant C’%/aa. Moreover, under assumption 1.7, the solution u € LfL(E;V), with
exponent p defined in assumption 1.3.

Proof. See Section 7.4 in Appendix 7. O

2.1.2. Reformulation using a Lagrange multiplier
From (2) and (3), we have that

da(u(§), 6u; §) = ag\a(U(€),0U) + an(w(§), 0w; &) + na(w(§), dw;§),
la(u; &) = Lo\a (0U;§) + £a(0w; §),

for all du:  — R such that dujg\p = 6U and du|y = dw. A formulation equivalent to (14) can be written as
follows: find (U, w, \) € U= x W= x M= such that it satisfies almost surely

ag\A(U(§),0U) + br(A(§),0U) = Loaa (6U;€), (15a)
a/\(w(g)v 5’LU ) =+ n/\(w(g)7 (5w7§) - bF(A(§)75w) = él\((gw;g)a (15b)
br(6A, U(€)) — br (oA, w(€)) =0, (15¢)

for all (6U,déw,0\) € UXW x M, where X represents the Lagrange multiplier allowing to ensure the weak
continuity condition (13) of solution w across interface T
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Theorem 2.4. Under assumptions 1.3, 1.4 and 1.5, problem (15) admits a unique solution (U (&), w(&),\(€)) €
UXW XM for almost all £ € Z. Moreover, under assumption 1.7, U € Lﬁ(E;L{), w € Lp(:' W) and X €
L7 (Z; M), with exponent p defined in assumption 1.5.

Proof. See Section 7.5 in Appendix 7. O

2.2. Reformulation with overlapping domains: introduction of a fictitious patch

Let us now introduce a deterministic fictitious patch A O A such that T' C A and define the corresponding
deterministic fictitious domain © D € such that @ = (2\ A)UA and Q\ A = Q\ A (see Figure 2). Note that in
the case where the patch A does not contain any geometrical details (i.e. no internal boundary such as holes,
cracks, etc), we simply have A=A and Q= Q.

FIGURE 2. Representation of fictitious domain Q, fictitious patch /~\, real patch A and interface I'

We now consider an extension of global solution U from subdomain Q\ A to fictitious domain Q. We introduce
the new Hilbert space U = {U € H'(Q) : U = 0 on I'p N 99} equipped with the norm || - [|; = || - ||H1(Q We

then define a new bilinear form cg: UxU — R as the following extension of ag\a: U XU — R to UxU: for all
UV el,
CQ(U, V) = aQ\A(U7 V) + CK(Uv V)7 (16)

where, for a subdomain O C f~2, co is a bilinear form defined by

co(U,V) = / BL(U,VU:) -V + / CL(U,VU; Y,
(@) O

where EL(-, 52, &) RxRY — R? and 5L(~, sx,€): RxR? — R are such that
Bp(-, @) = Bp(-,z) and Cp(,-2) = Cp(-,;z) forz € Q\ A.

We make the following assumption. Here O denotes a subset of Q.

Assumption 2.5 (Properties of bilinear form cp). We assume that the bilinear form co: H*(O)xHY(O) — R
is symmetric and such that there exist constants 0 < a. < 8. < 400 such that

co(V,V) = ac|VIin o) vV e HY(0), (17)
lco(U, V)| < BellUllnr o)1V [l 0y VU,V € HY(O), (18)

and we further assume that a. and B. are independent of & and O.
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Example 2.6. In Example 1.1, B 1 and CN'L can be respectively defined by
BL(U,VU;z) = K(z)VU and Cp(U,VU;z) =0,

where K is a fictitious diffusion coefficient such that K(z) = K(z) for € Q \ A. Assumption 2.5 on cg is

satisfied if the fictitious diffusion coefficient K is uniformly bounded and elliptic on Q that means condition
0< Kmf\qz < K( )¢ ¢ < bup\C|2 < +o0 for all ¢ € R? holds almost everywhere on Q where K¢ and Ksup
are some strictly positive constants.

Afterwards, a reformulation of the global-local problem (15) reads: find (U, w, ) € U= xWE x ME such that
it satisfies almost surely

g (U(§),0U) = cx(U(§),6U) + br(A(£), 0U) = Lana (8U;€), (192)
ax(w(§), 0w; &) + na(w(§), dw; §) — br(A(§), dw) = La(dw; ), (19b)
br(6A, U(§)) — br(0A, w(§)) = 0, (19¢)

for all (6U,0w,d)\) € Ux W x M. Let us here mention that problem (19) admits infinitely many solutions
(U, w, A) that only differ by the value of global solution U in fictitious patch A A particular solution can be
uniquely defined by defining the value of U in Aasa particular extension of the value of U on interface I'. The
global-local iterative algorithm presented in the next section will be proven to converge to a solution (U, w, \)
in a subspace of UE X WE x ME corresponding to a particular definition of the extension.

3. GLOBAL-LOCAL ITERATIVE ALGORITHM

We now introduce and analyze an iterative algorithm to solve problem (19).

3.1. Description of the algorithm

We initialize the algorithm with U® = w® = A\® = 0. Then, at iteration k > 1, (U*,w* \¥) € UE X WE x ME
is defined by three steps (global step, relaxation step and local step), described below.

3.1.1. Global step
We first define UF € U= such that it satisfies almost surely

c(U*(€),0U) = cx (UFT1(€),8U) — br(AF71(€),8U) + o (8U; €) (20)

for all 0U € U. The computation of U* € UE thus requires the solution of a linear problem defined on fictitious
domain Q with a deterministic operator and an uncertain right-hand side (involving Lagrange multiplier \F~!
on interface I' and global iterate U*~! in fictitious patch A at previous iteration k — 1).

Remark 3.1. Although EL and éL could a priori be chosen arbitrarily (uncertain or deterministic) on /NX,
a convenient choice consists in takmg for BL and C’L parameter-independent functions, i.e. EL(~, sz, &) =
BL(, ;x) and CL(, jx,8) = C’L(, ;a) for x € A which allows to preserve a linear global problem with
deterministic linear operator throughout iterations. Also, a natural choice consists in taking for B r and 5L
over A the mean value of the corresponding linear functions By, and C, over A, i.e. B(-,-2) =E(BL(- - x, £)
and CN'L(-, sa) =E(Cp(-,;2,8)) for x € A. Besides, choosing parameter-dependent functions By, and Cp, on A
could allow to accelerate the convergence of the algorithm (see Remark 3.13).
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Remark 3.2. Assume that 9A = ' U (QK NT'p). By using Green’s formula in the definition of cx, the global
problem (20) can be reformulated as

e(0*(€),6U) = —br (1" 1(§) + N*71(€), 0U) + Lana (U €) + L5 (0U:€) (21)
for all U € Z], wherg pF=1(€) € M is defined by the following expression (interpreted in a weak
sense): pF=1(&) = —Br(UF(&),VU*1(€);) - n onT, with n the unit ~normal to I' pointing out-
ward A, and where (5(¢) is a linear form defined by ¢5(V;€) = — [V - BL(U*1(£), VU 1(&); )V +

Jx CL(UR1(€), VU*1(€):-)V. The quantity p*~! + A*=! is seen as a flux discontinuity on the interface I
between global and local models. The iterative algorithm can then be interpreted as a modified Newton method
(with constant linear global operator) formulated on the flux equilibrium over interface I' (interpreted in a weak
sense) [32,34].

3.1.2. Relazation step

We then define U* € U= by R
U*(€) = pU"(€) + (1 = pr)UM(9), (22)
where pj > 0 is a relaxation parameter (possibly depending on &) chosen sufficiently small to ensure convergence
(see convergence analysis in Section 3.2.2). Relaxation parameter p; may have a significant impact on the
convergence and stability properties of the algorithm. Practical choices for p; will be discussed in Section 4.4.

3.1.3. Local step
We finally define (w*, \¥) € W= x M= such that it satisfies almost surely

an (w*(€), 6w; €) + np (wk(€), dw; €) — br (A (€), dw) = £a (Jw; &), (23a)
br (61, w* (€)) = br (oA, U*(€)), (23b)

for all (dw,d\) € Wx M. The computation of (w¥, \¥) € W= x M= thus requires the solution of a non-linear
problem defined on patch A with uncertain operator and right-hand side (involving global iterate U* at current
iteration k as a boundary data). The Lagrange multiplier \¥ allows to enforce the weak continuity conditions
on interface I' between local iterate w* and global iterate U*, which corresponds to non-homogeneous Dirichlet
boundary conditions imposed on an external boundary T' of patch A in the local computation. Recall that,
contrary to the global step, the local step takes into account possible non-linearities and uncertainties in the
operator, as well as possible uncertainties in the geometry of the domain.

Remark 3.3. The local problem (23) can be reformulated as a single-field problem by noting wF(¢) =
W (&) + 2F(€), where wF(€) € W is an extension of global iterate U¥(¢) from interface I' to patch A such that
br (X, @*(€)) = br(6A, U (€)) for all SA € M, and 2*(¢) € Wy = {z € W : 2 = 0 on I'}.. Local problem then con-
sists in computing z* € WE such that it satisfies almost surely ax (w" (&)+2%(€), dz; &) +na (W (&) +2%(€),02;€) =
05 (62;€) for all 6z € Wy. The Lagrange multiplier ¥ € MF is then determined a posteriori from (23a).

Remark 3.4. Following Remark 2.1, in the case of () non-overlapping patches {Aq}?zl, the local step consists
in solving () independent non-linear local problems defined on each of the patches A,;. The solution of such

uncoupled problems can be performed independently on each patch A, in a fully parallel way.

3.2. Analysis of the algorithm

3.2.1. Consistency

Let (U, w, \) € U= x W=x M= denote the solution of the initial problem (15). We now introduce the closed
linear subspace U, of U defined by

U, ={V el :c;(V,0U) =0 for all §U € H(A)},
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where H(l)(JNX) is considered as the subset of functions of U which are zero on Q \ A. For any function V € U,
there exists a unique extension V € U, such that V =V on Q\ A and the restriction of V' to A is uniquely

defined by the trace of V on the interface I". Then, we also denote by U (&) € U, the unique extension to 2 of
the global solution U(§) € U.

Lemma 3.5. All global iterates U*(€) belong to the subspace U, .

Proof. Considering test functions 6U € H{(A) in global problem (20), we obtain that for all k& > 1,
cx(U*(€),6U) = cx(UF1(€),0U) for all U € H{(A). Then, using (22), we have that cz(U"(£),00)
cx (UF=1(£),00) for all 6U € H}(A). Since U° = 0, we obtain by induction that all global iterates U*(

belong to U,.

(NG

We then derive the following consistency result.

Theorem 3.6 (Congistency). If the_sequence {(UE(E), wk (&), \¥(€))}ren strongly converges to an element
(U(&), w(&), A(&)) inUxWXM, then (U(&)ja\n, w(§), A(§)) € UXWXM is the unique solution (U(§),w(§), A(§))
of problem (15). Also, the limit (7(5) is the unique extension of U(&) to U,.

Proof. Taking the limit with & in (20), (22) and (23), we obtain that (U(§),w(§), A(€)) satisfies problem (19),
and therefore (U(£)j0\a, w(£), A(§)) € Ux W x M is the unique solution of problem (15). Then, as all global
iterates U*(¢) belong to the closed linear subspace U, of U (see Lemma 3.5), the limit U(¢) also belongs to
U,. O

Note that problem (19) is well-posed in U, xWxM and admits (U (€), w(€), A(€)) € U, x WX M as its unique
solution. The algorithm can then be analyzed in the subspace U, of U and we have the following useful result
which proves that || - || defines a norm equivalent to || - [|o; on U,.

Lemma 3.7. The norms || - |l and || - || are equivalent on Uy, with |V ||y < Vg < CzllV Il for allV € u,,
with a constant Cy independent of &.

Proof. See Section 7.6 in Appendix 7. O
From Theorem 2.4 and Lemma 3.7, we directly deduce the following property.
Corollary 3.8. The extended global solution U is in L/’;(E;Zjl), with exponent p defined in assumption 1.3.

3.2.2. Convergence

We now prove the convergence of the sequence {(U¥(£),w*(¢), \*(€))}ren to the exact solution
(U(€),w(&),A(&)) in U, xWx M. The global problem (20) being linear, the solution U* € U= can be written as

~

UR(€) =T(€) + YU (&) + 2(N1(€)),

where Y: U — U and ®: M — U are linear mappings. Mapping T is such that for V € &, T(V) e U is the
unique solution of

cx(T(V),8U) = cx(V,8U) VoU € U. (24a)
Similarly, mapping ® is such that for 5 € M, ®(5;¢) € U is the unique solution of

c5(®(B),0U) = —br(B,6U) YoU € U. (24b)
Lastly, U(£) € U is the unique solution of

c5(U(€),8U) = Loy a (3U;€) VU € U.
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The solution (w¥, A\¥) € W= x M= of the local problem (23) can be written as
k _ k . k _ k .
w®(§) = OU"(§);€) and A*(&) = W(U"(£);€),

where ©(-;¢): U — W and U(€): U — M are non-linear mappings. Mappings © and ¥ are such that for
Vel (0(V;),T(V;¢)) € WxM is the solution of

an(O(V;€), 0w; &) + na(O(V;€), dw; &) — br(¥(V;€), dw) = £a(0w; &) Vow € W, (25a)
br(6X, O(V:€)) = br(5\, V) VoA € M. (25b)

Consequently, the algorithm generates a sequence {(U*, w* A\*)},cn by applying the following iterative scheme:

U (€) = pe (U) + YU 1(€)) + @A) + (1 — pr)U(9), (26a)
w” (&) = O(U(€);9), (26b)
AE(E) = w(U*(€);€). (26¢)

Lemma 3.9. The linear mappings Y : U—Uand ®: M —U defined in (24) are continuous, with respective
continuity constants By and Be independent of .

Proof. See Section 7.7 in Appendix 7. O

Lemma 3.10. The non-linear mappings ©(-;€): U — W and W(-;€): U — M defined in (25) are Lipschitz
continuous, with respective Lipschitz constants Be and By independent of €.

Proof. See Section 7.8 in Appendix 7. O

Let us now define the errors at a given iteration of the algorithm. At the global level, the error at iteration
k is

URE) = U(E) =TU1(8) = T(U(E)) + 2(A*1(€)) — 2(A(€))
=T(UF 1) —U&) + (LU 1(£):€) — W(U(£):6)),
= U1 - U©) — (A(UF1(€):€) — A(U(£);9)),

and

U*(€) = U(€) = pu(T*(©) = U(€) + (1 = pp)(U*H(€) = U(£))
= UP1(&) — U(€) — pe(AUMH(€):€) — A(U(€)36)),

where A(+;¢): U — U is the non-linear mapping defined by
A(V;6) =V =T(V) = 2(¥(V;4)). (27)

From the definitions of Y(V) € U and ®(V(V;€)) € U and from (16), we deduce that mapping A is such that
for V.el, A(V;€) € U is the solution of

c5(A(V;€),0U) = ag\a(V,0U) + br(¥(V;€),0U) VU € U. (28)
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Note that the non-linear nature of map A is inherited from that of map ¥. At the local level, the error at
iteration k writes

wh(€) —w(€) = O(U(€);€) - OU(£):€), (29a)
N(E) = M) = T(UF(€):€) — L(U(£):6). (29b)

Given that non-linear map O(+;&) (resp. ¥(-;¢)) is Lipschitz continuous, the almost sure convergence of the
local sequence {w*(&)}ren (resp. {N*(€)}nen) to w(€) (resp. A(€)) in W (resp. M) can be directly obtained

from that of the global sequence {U*(&)}ren to U(€) in U. Recalling that the exact global solution U () as well
as all global iterates U* (&) belong to subspace U, C U, one can restrict the convergence analysis to that of the
sequence {U"(&)}ren to U(£) in the subspace U,. Let Cg: U — U be the linear map defined for all U,V € U

by (Cq(U), V) = cg(U, V).
Lemma 3.11. The non-linear mapping D(-;§): U, - U defined by D(-;€) = Cg(A(+;€)) with A(-;€) defined
in (27), is Lipschitz continuous and strongly monotone, with Lipschitz constant Bp and strong monotonicity

constant ap both independent of €.

Proof. See Section 7.9 in Appendix 7. O

One iteration of the algorithm can be written as
U*(€) = By, (UF71(€);6),

where B, (+;§): U — U is the non-linear iteration map defined by B,,(V:&) = ppU (&) + V — prA(V;€). We
finally derive the following convergence result.

Theorem 3.12 (Convergence). Assume that the sequence of relazation parameters {pi}ren is such that
0 < pint < pi < Psup < +00, (30)

for some strictly positive constants pins and psup independent of & and k. Then, for psp sufficiently small, the
sequence {(U* (&), wk (&), \¥(€))}ken converges almost surely to the unique solution (U(£),w (&), A(€)) of problem
(19) in U x Wx M. Also, the sequence {U*}en (resp. {wk}ren and {\¥}1en) converges to U (resp. w and \)
in LP(Z;U) (resp. LE(Z50V) and LE(Z5M)).

Proof. See Section 7.10 in Appendix 7. O

Remark 3.13. As long as (30) is satisfied, the algorithm converges to the exact solution whatever the choice of
relaxation parameter py and fictitious operators B 1 and éL. Nevertheless, these choices may have a significant
influence on the convergence properties of the algorithm. Note that By, and Cy, play the role of preconditioners
for the iterative algorithm.

Remark 3.14. If A = A and if B = B, = By and C = Cp, = Cy, then A(-;€) is such that A(U;€) — A(V;€) =
U—-Vforal UV €U, and B, (-;€) is such that B, (U;§) — B, (Vi§) = (1 — px)(U = V) for all U,V € U,,
so that the convergence of the algorithm is achieved if the condition 0 < pinr < pr < psup < 2 is fulfilled, with

a convergence in two iterations for a fixed relaxation parameter py = 1.

3.2.3. Robustness with respect to approrimations

Let us now consider that some approximations are introduced in the different steps of the global-local iterative
algorithm.

Such perturbations may typically appear when resorting to the use of iterative solvers for the approximate
solution of either global or local problems with a certain prescribed accuracy. For example, the solution of non-
linear local problems may be performed by means of classical non-linear solvers, such as Newton-type iterative
solvers, leading to approximate local solutions.
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We now analyze the sensitivity of the global-local iterative algorithm with respect to approximations at
the different steps of the algorithm. Due to these approximations, the algorithm, initially defined by the
unperturbed iterative scheme (26), generates a sequence {(UF, w¥, \¥)};en defined by the following perturbed
iterative scheme:

UF(€) = pi (U=(&) + Yo (UFH(E) + @(AET1(€)) + (1 — pr)UE1(9), (31a)
wh(€) = O-(UF(€);€), (&) = V(UL (€);¢), (31b)

where Y. and ®. (resp. ©. and V¥.) are approximations of linear maps T and ® (resp. non-linear maps
© and ¥). Similarly, U, represents an approximation of U. At the global level, the unperturbed global
iterate U* € UE at iteration k satisfies U*(¢) = B, (UF=1(£);€). The approximate (or perturbed) global
iterate U at iteration k is assumed to belong to UZ and satisfies UF(¢) = B;k(UEk_l(f);f), where B (;¢)
denotes an approximation of iteration map B, (;§) defined by B; (V;&) = prUc(§) +V — prAc(V;€), with
Ac(V38) =V = Te(V5€) = 2.(Ve(V56);56).

We assume that approximations are controlled in a Lf-norm (typically p = 2 or p = 00), that means the
approximation error at iteration k, UF(§) — U*(&) = BS (UF~1(€);€) — B, (UF~1(£);€), should satisfy

||Uek - UkHLﬁ(E;L?) < EHUHLQ(E;H) + E*HUek_l - U”L{;(E;ﬁ)’

where € conveys an absolute error with respect to the solution norm ||U||; » (=) while £* conveys an approxima-
p =3
tion error controlled relatively to the solution error in L& -norm [|UF~! —U HLﬁ (=) at previous iteration k—1. In

practice, € (resp. €*) is related to the user-specified tolerance (prescribed to the iterative solver) for the precision
of the residual norms associated with global problem (20) and local problem (23) formulated on the current iter-
ates U¥ and (w®, A\F) (resp. on the current increments 6U* = UF—UF~1 and (dw”, 5AF) = (wk—wk=1 A\F-)\k—1))
(see [43, Section 3.5] for further details). We then provide for a robustness result relative to both types of errors.
Theorem 3.15 (Robustness). Suppose that the set of iteration maps {B,, ;&) k=1 is uniformly contractive
on Uy, that means

1Boi (V38) = B (W3 8)llz < pBllV = Wiz,
for ol V.W € ﬁ*, with a contractivity constant pp < 1 independent of €. Further assume that the set of
perturbed iteration maps {B5, (+;§)}x>1 is such that for all V in a §-neighborhood Vs of the exact global solution
U, defined by Vs ={V € Lﬁ(E;U*) V= UHL,‘}(E;Z]) < 5”UHL,‘3(E;ZI)}’ we have

”sz (V) - B, (V)Hij,(E;z,?) < EHU”Lﬁ(E;ﬁ) + E*HV - U”Llﬁ(a;ﬁ)a

for some given tolerances 0 < e* < 1—pp and 0 < e < §(1 — pp —e*). Then, if the initial iterate UeO =0€eVy,
the approzimate sequence {UF}yen is such that

thUPHUsk - U”Lﬁ(g;zj) < '7(575*>||UHL§'1(E;&)7 (32)

k— o0

with y(e,e*) — 0 as € — 0, and tends to a y(g,&*)-neighborhood of U in LL(Z;U).

Proof. See Section 7.11 in Appendix 7. O
Finally, the approximate sequence {U¥} ey (resp. {w¥}ren and {AF}1en) generated by the perturbed itera-

tive scheme (31) converges in L (Z;U) (resp. LE(=; W) and L, (Z;M)) to a neighborhood of the exact solution

U (resp. w and \). Therefore, the proposed global-local iterative algorithm exhibits robustness properties with
respect to possible perturbations, which is an essential feature from a numerical point of view.
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Remark 3.16. Under the more restrictive assumption that the set of perturbed iteration maps {B5, (+;€)}x>1

is such that for all V in a é-neighborhood V;(€) of the exact global solution U(€), defined by Vs(&) = {V € U, :
IV =UE)llz <dllUE)llz}, we have almost surely

1B5,(V58) = B, (Vi &)llz < ellU(©llg +*IlV =U(©)llg

with 0 < ¢* < 1—ppand 0 < ¢ < §(1 — pg — €*), then we can prove that the approximate sequence
{(UE(€), wE(€), \F(€)}ren generated by the perturbed iterative scheme (31) converges almost surely to a neigh-
borhood of the exact solution (U (), w(&), A(€)).

4. COMPUTATIONAL ASPECTS
In this section, we address computational aspects related to the proposed global-local iterative algorithm.

4.1. Finite element approximations at spatial level

At the spatial level, we employ a standard Galerkin finite element method by introducing finite-dimensional
approximation spaces UH C U and Wy, C W with dimensions ny and n,,, respectively. We denote by TH( )
(resp. Tr(A)) the finite element mesh of fictitious domain  (resp. patch A) composed of elements of maximum
size H (resp. h). For the sake of simplicity, we further make the following assumptions:

~ domain Q and patch A are exactly covered by global mesh Ty (S~2) and local mesh T (A), respectively;

— global mesh 7z () is partitioned into two submeshes Tz (€2\ A) and Tz (A) (associated with subdomain
Q\ A and fictitious patch A, respectively) such that Tz (€2) = Tz (2 \ A) U T (A), that means interface
" coincides with the intersection of boundaries of both submeshes Tz (2 \ A) and TH(K) and therefore
does not cut any element of global mesh T (€).

Both meshes 77(Q) and 75, (A) are a priori not conforming at interface I', that means they may not match
on interface I'. Note that interface I' is part of the boundary of meshes 75 (A), Tr(Q\ A) and Ty (A). We
now introduce an approximation space M; C M with dimension ny. In the general case of non-conforming
meshes, where both meshes Tz (€2) and T;,(A) do not match and even do not align on interface I, one should pay
attention to the construction of a suitable approximation space M}, of Lagrange multipliers satisfying discrete
inf-sup conditions for bilinear form br [47-49] in approximation space Wy xM},. The interested reader can refer
to [50-52] for further information on the construction of appropriate Lagrange multiplier spaces using mortar
(non-conforming) finite elements. In our particular case where both meshes 75 (Q \ A) and 75, (A) align with
interface T', a natural choice consists in taking for M, a finite-dimensional subspace of trace space H/2(I'), so
that M, ¢ HY/2(T') ¢ L*(T') c HY?(I')* = M. If interface T' does not present any boundary, a convenient
choice consists in taking the trace of W) on interface I" for the practical construction of My, which leads to a
continuous mortar approximation space. Otherwise, if interface I' has a boundary, an alternative choice consists
in taking a subspace of the trace of W), on interface I" (see [51,52] ). The interested reader can refer to [35,50,51]
for details about the properties of trace spaces and mortar projection operators.

For a given Hilbert space H (possibly dependent on &), we denote by H,, a finite element approximation
subspace of H spanned by basis functions {¢; };ez and with dimension n = #Z. A function v € H,, can then
be identified with a vector v = (v;);ez € R™ such that v = 3,7 vip;. Similarly, an element v € (H,)® can
be identified with a random vector v = (v;);ez € (R™)= such that v(&) = Y, .7 vi(€)¢;. For the bilinear forms
co and ap, semi-linear form nep and linear form ¢», we introduce the finite element matrices Co and Ap (),
discretized random non-linear map Np(+;€) and finite element random vector 15 (&), respectively defined for a
subdomain O C by

co(u,v) = u’'Cov, ao(u,v;§) = uTAo(f)v,

no(u,v;€) =u"No(v;€), Llo(v;€) =vlo(§).
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As the coupling bilinear forrg br is defined on the two distinct subspaces M, xU g and My xW,,, we introduce
two finite element matrices By and Br defined by

br(A,v) = va’:r)\ forv e Zle, and br(\v) = vIBr for v € W,

In the discrete setting, an approximation of global problem (20) reads: find Uk e 2115{ satisfying (20) for all
0U € Uy . In an algebraic setting, it boils down to solving the following system of linear algebraic equations:

CaU*(€) = CzUF1(€) — BrAF (&) +1g\a (6). (33)

An approximation of local problem (23) reads: find (w*, \¥) € WEx M5 such that it satisfies almost surely (23)
for all (dw,dA) € Wi x M. In an algebraic setting, it comes down to solving the following system of non-linear
algebraic equations:

AA(WF(E) + NA(WF(€):€) — BrA* () =1a(9), (34a)
Blwk(¢) = BT U*(¢). (34b)

Remark 4.1. The convergence properties of the algorithm may be affected by the choice of spatial approxima-
tion spaces. The discretization errors can be viewed as additional perturbations occurring at both global and
local steps of the algorithm. The impact of these perturbations on the behavior of the algorithm is addressed
through Theorem 3.15.

4.2. Approximations at stochastic level

At the stochastic level, we introduce a basis {¢4 }aecr of Li(E) (typically a polynomial basis) and we consider
approximation spaces S4 = span{t, }aca, where A is a finite subset of 7. Then a function v =} . 4 Vata €
S4 is identified with the vector of its coefficients (v4)aca € R#A on the basis of Sy4.

At the global level, suppose that finite element random vectors associated with U, UF~! and A*~! are
respectively given by U(€) = 3,4 Uatha(§), UFH(€) = Yaea UL a(8) and X7 (€) = 3, 4 An” al(6)-
Then, finite element random vectors associated with U* and U* admit the expansions ﬁk(f) =D ﬁ’;wa &)
and UF(&) =3 c 4 URw, (), respectively, with

Ut =c;! (CKUQ‘I ~Brafl 4 IQ\A(g)) and UK = p, Uk 4 (1 - p) UL,

It is worthy noticing that since By, and Cp, are chosen deterministic on A (see Remark 3.1), then Cg and Cy are

independent of £, and the set of expansion coefficients {ﬁﬁ}ae 4 are simply obtained by solving a system of only
#A uncoupled linear algebraic equations with the same deterministic global finite element matrix Cg, which
can be factorized only once for all at initialization of the iterative procedure. The solution of such uncoupled
global problems can be performed in parallel using traditional solvers available in standard deterministic finite

element codes.

Remark 4.2. Convergence acceleration techniques based on Quasi-Newton or Newton update formulas have
been proposed in [32,53] within the deterministic framework and rely on successive corrections of the global
finite element matrix Cg at each global step of the iterative procedure in order to improve the convergence rate
of the algorithm. In the present framework, this would yield to a parameter-dependent matrix Cg, unless using
deterministic approximations of the successive corrections of Cg.

At the local level, approximations of finite element random vectors w*(€) and A¥(¢) associated with local iter-
ates w* and A¥, respectively, are searched under the form w*(£) ~ Y- . , wE1, (€) and N (&) ~ Y oaca A abo (€).
The determination of these approximations through Galerkin projection methods [1,54] requires the solution
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of a large system of #.A4 coupled non-linear algebraic equations whose computational cost and memory storage
requirements may be prohibitive and whose implementation may be cumbersome as it usually requires a modi-
fication (or at least an adaptation) of existing deterministic codes. Note however that non intrusive (or weakly
intrusive) implementations of Galerkin methods can be introduced [55, 56].

Here, for computing approximations of local iterates, we rather rely on an adaptive least-squares method
which uses evaluations of the solution of (23) at some samples {¢'}Y | of random variables £. These evaluations
are obtained by N calls to an existing non-linear deterministic solver, i.e. without requiring any modification
of the underlying deterministic computer code. For computing the solution (w*(£!), A*(£!)) of (34) for € = &,
we employ a Newton-type iterative algorithm with some prescribed tolerance. Note that the resulting error can
be viewed as an additional perturbation occurring at each local step of the iterative algorithm. The adaptive
least-square method is described in Section 4.3.

4.3. Adaptive least-squares method for sparse polynomial approximation

Here we describe an adaptive least-squares method for sparse approximation of a random vector u €
R" ® L2(Z). We assume Z C R™ (m < oo) and we consider an orthonormal tensor product basis

{¢a(&) = 1%, w&? (&) }aer of Li(E)7 where wl(:) is a univariate polynomial of degree k. For a given sub-
set A C F, we define the corresponding polynomial space S4 = span{ts }aeca. A subset A is called monotone
(or lower or downward closed) if it is such that (8 € A and «a < 8) = «a € A. If A is monotone, the
subspace S4 coincides with the polynomial space P4 = span{{{ ... €% : a € A} whatever the choice of uni-
variate polynomial bases. Note that univariate polynomial bases could be replaced by other hierarchical bases
(such as wavelet bases) with which we can expect accurate sparse approximations of the random vector.

4.3.1. Approzimation in a given subspace

For a given subset A, a least-squares approximation v of u in R™ ® Sy can be written as v(§) =
> e Vala(€), where the set of coefficients V = (va)aca € R™#4 is solution of

N
min ZHu(gl) - Z Voﬂ/}a(gl)llg' (35)
=1

(Va)aca _ acA

Assuming N > #A and 7 W invertible, this yields V7 = (&7 %)~ 1®7Y, where ¥ = (Va(E)ief1,....N},aea €
RV#A and Y = (u(€))1<icy € RM™. The stability of the least-squares approximation is related to the
properties of the random matrix 7 ®. Some theoretical results can be found in [57] and the references therein.
In practice, for a given set A, the stability of the least-squares approximation can be improved by increasing
the number of samples.

The approximation error can be estimated using cross-validation techniques which are classical statistical
methods for computing error estimates based on a random partitioning of the available sample set into two
subsets, the training set (or learning set) and the test set (or validation set). In the k-fold cross-validation
procedure, the sample set & = {fl}f\;l is randomly partitioned into k disjoint and complementary sample
subsets {&,}*_, of nearly equal size. Each subset &; is in turn retained as the test set, while the remaining k — 1
subsets gathered in x5 = &\ & are used as the training set. An approximation v is computed independently for
each training set xs and tested against the corresponding validation set &, in order to assess its accuracy. The
cross-validation error is estimated for each of the k training sets x; and then averaged over the k sets. Such a
cross-validation technique requires k£ additional calls to the least-squares solver and thus may be computationally
demanding. In practice, the vector of cross-validation error estimates € = (g;);ez can be directly obtained from
the approximate random vector v = (v;);ez (computed using the available sample set & = {¢'}V ) using
the Bartlett matrix inversion formula [58] (a special case of well-known Sherman-Morrison-Woodbury formula)
without any additional call to the least-squares solver. The leave-one-out cross-validation procedure is a special
case of k-fold cross-validation procedure where the number of folds & is equal to the number of samples N. Note
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that the k-fold cross-validation technique depends on the chosen partition, contrary to the leave-one-out cross-
validation technique. In the present work, we use the fast leave-one-out cross-validation procedure presented
in [59] and summarized in Algorithm 7.1 (see Section 7.1 in Appendix 7) to assess the accuracy of v.

4.3.2. Working set strategy for adaptive approrimation

Now, we introduce a working set strategy for the construction of a sequence of approximation spaces (S A, )j>1,
where (A;),>1 is an increasing sequence of monotone sets. Given A;, we define A, = A; UN;, where N; is
selected in a set of candidate multi-indices in F \ A;. A natural approach consists in choosing for N; a subset
of the margin M; = M(A,) of A;, where the margin of a monotone set A is defined by

MA) ={ag A:Fi e {l,...,m} such that o; #0 = a —¢; € A}.

A strategy for the selection of j (referred to as bulk search strategy in [45]) consists in computing a least-squares
approximation v(§) = > . A;UM, Vata(§) associated with the augmented approximation space Sa;unm;, and
then in selecting a subset A such that e(N;) > 0e(M;), where 6 € [0,1] is a parameter and where for a given
set N, e(N) = 3 ,enllVall3 corresponds to the contribution of coefficients (Vq)aear to the L%-norm of v. Note
that the construction of an optimal (smallest) monotone subset N in the margin M, of A; by a fast algorithm
is still an open question.

Remark 4.3. A practical choice for constructing a monotone set A is to consider the smallest subset in the
margin M; such that e(N;) > fe(M;) and which contains the multi-indices a corresponding to the largest
elements in the monotone envelope' (v4)ae, of the bounded sequence (||va|l2)aenm, -

Also, as the cardinality of the margin M(A;) may become prohibitively large in high dimension m, an
alternative strategy consists in considering for M; the reduced margin M,eq(A;) of A;, where

Mieq(A) ={a g€ A:Vie {1,...,m} such that a; #0 = «a —¢; € A}.

The additional set N; is then defined as the smallest non-empty subset of the reduced margin M of A; such
that e(N;) > fe(M;), which is a monotone set by construction. Therefore, Aj11 = A; UNj, as a union of
monotone sets, is a monotone set. For § = 1, the selected subset Nj = {& € M; : [[vq|l2 # 0}. For 6 =0, N
is one arbitrary element of {& € M; : @ = argmax,cry,[[Val2}, and the strategy corresponds to the largest
neighbor strategy proposed in [45]. In the numerical experiments, we will consider the strategy with a parameter
0 =0.5.

4.3.3. Adaptive strategy

In order to reach a desired accuracy, we finally propose an algorithm with adaptive random sampling and an
adaptive selection of the approximation space S 4 with the working set strategy presented above. The algorithm
is summarized in Algorithm 7.2 (see Section 7.2 in Appendix 7). The convergence, stagnation and overfitting
criteria in Algorithm 7.2 are respectively defined by

lle — &PVl

lell2

el

lere s > 1+ Eoverfit s

H€||2 < Ecvs < Estagn and

where e (resp. &P™V) is the vector of cross-validation error estimates computed at current (resp. previous)
iteration, and ecy (resp. €gtagn and Eoverfit) 1S the convergence (resp. stagnation and overfitting) threshold.

IFor a given set A, the monotone envelope (also called monotone majorant) (04)aca of a bounded sequence (||va|l2)aca is
defined by v = maxge 4,8>allvgll2 for a € A.
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4.4. Relaxation step

The relaxation step may affect the convergence rate of the iterative algorithm as it can be interpreted as a
line-search step of a non-linear solver.

The simplest method is to choose a fixed relaxation parameter p throughout iterations. A large relaxation
parameter may speed up the convergence but can lead to a divergence of the algorithm, while a small relaxation
parameter ensures the convergence but trigger more iterations in return. The computation of an optimal
relaxation parameter leading to an optimal convergence rate of the algorithm is not obvious in the non-linear
framework. Even in the linear case, the optimal fixed value of relaxation parameter p is problem-dependent and
not known a priori.

The Aitken’s Delta-Squared method [60,61] is a convergence acceleration technique which allows improving
the current solution by using information gained at two previous iterations. The current global iterate U* is
then obtained from the two pairs (ﬁk, UR=1) and (U*!,U%2) and defined as

(0F(€) = 19, UM() — TF ()

kigy _ k(oY
v =UR) 165(6) — 1)1

©),

where 6%(¢) = UF(¢) — UF=1(¢) is the difference between the current global solution U*(€) and the previous
global iterate U*~1(¢). Then, using (22), the relaxation parameter pj is dynamically updated and defined by

IR (1 R R )1 0
1056 — 1)

As the Aitken’s recursive formula (36) requires two iterations of the algorithm, the first two values p; and po

are commonly set to 1. For the subsequent iterations, the relaxation parameter p; can de defined as

_ RO -9, g
pk—T[pmf,psup1< PRETTSRE) - 1O )

where Tj,, . »...1(p) is the projection of p on the interval [pinf , psup], Which allows to ensure the convergence of
the algorithm (see convergence condition (30)).

Such a convergence acceleration technique is very simple to implement and computationally cheap. Also,
the Aitken’s acceleration method has been successfully applied to relaxation-based fixed-point algorithms in
the context of fluid-structure interaction [62] and multiscale coupling [53,63] problems. It has been proved to
be particularly efficient with good convergence properties at low cost, compared with other relaxation methods
such as the steepest descent method.

5. NUMERICAL RESULTS

In order to demonstrate the efficiency and the robustness of the proposed method, we present different
numerical experiments for a stationary non-linear diffusion-reaction equation defined on a deterministic rect-
angular (two-dimensional) domain Q = (0,2) x (0,16) C R2. This equation is complemented with deterministic
homogeneous Dirichlet boundary conditions © = 0 applied on the entire boundary I'p = 9€). A deterministic
volumetric source term f =1 is imposed on the whole domain 2. The only sources of uncertainties come from
diffusion coefficient K (z,£) and reaction parameter R(z,£) which are input random fields depending on a set
of random variables £ € Z. The variabilities are assumed to be confined in ¢ = 8 patches {Aq}qQ:1 distributed
along the y (vertical) axis. Each patch A, is a square subdomain A, = (0.5,1.5)x(2¢—1.5,2¢—0.5). None of the
patches present geometrical details. Domain 2 and the set of @) patches {Aq}qu1 are illustrated on Figure 3a.
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(A) Domain and patches (B) Nested triangulations

FIGURE 3. (a) Domain Q partitioned into Q = 8 patches {Aq}?:1 and the complementary
subdomain Q\ A with A = U?Zl A4, and (b) associated nested global and local finite element
meshes Tj,(A) Ta(2\ A).

The solution u satisfies almost surely
—V - (K(z,6)Vu) + R(z,)u*=f onQ, uw=0 onTp=209Q,

where random diffusion coefficient K and random reaction parameter R are such that

Ko=1 for x € Q\ A
Ky(z,800-1) = 1 +74&24-1xq(z) forz € Ay, forallge {1,...,Q}’
0 forx € Q\ A

Ry(z,8&29) = Yg€2gxq(z) forz e Ay, forallge{l,...,Q}

K(xaf) :{

b

with x, () the indicator function of subdomain A} = (0.75,1.25)x(2¢—1.25,2¢—0.75) C A, forallq € {1,...,Q},
and where the weights v, are real coefficients in (0,1) whose values define a level of uncertainty in the patch
A,. We consider two different situations: (i) an isotropic case, for which all weights 7, = 1; (ii) an anisotropic
case, for which the weights v, = 1 — 0.1(¢ + 1). Random diffusion coefficient K and reaction parameter R are
parametrized by a set £ = (&), of m = 2Q) = 16 real-valued random variables & assumed to be mutually
independent and uniformly distributed on (0,1). The parameter space is then the hypercube = = (0,1)™ C R™
endowed with the uniform probability measure. Each patch A, is characterized by a random diffusion coeflicient
K, (parametrized by £24—1) and a random reaction parameter R, (parametrized by £34). The material properties
of patch A, therefore depends on 2 real-valued random variables £3,—1 and &3,. The ranges of variations of
K, and R, in each patch A, are respectively (1,2) and (0,1) for the isotropic case, and (1,1 + ~y,) and (0,~,)
for the anisotropic case. In this example, all uncertain material parameters K, and R, depend on the random
variables £ in an affine manner, so do the bilinear forms a,, and semi-linear forms ny, for all ¢ € {1,...,Q}.
As the Hilbert space V is assumed to be deterministic, the solution u € Lﬁ(E; V) belongs to the tensor product
vector space V ® Lﬁ(E). Given that Dirichlet boundary conditions are applied on the whole boundary 02, and
the source term f is deterministic on domain €2, the linear form {g is independent of £. Lastly, as domain €2
does not contain any geometrical defects, Q = in this example.
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5.1. Approximation spaces

At the spatial level, we introduce nested finite element approximation spaces Uy C U and W c Wi for all
g€ {1,...,Q} (sce Figure 3b). The coarse global mesh 7z () is a regular triangulation of fictitious domain
which is composed of 3-nodes linear triangular elements with uniform element size H = 0.1. It thus comprises
3381 nodes and 6400 elements. For every ¢ € {1,...,Q}, the fine local mesh 75 (A,) is a regular triangulation
of patch A, which is composed of 3-nodes linear triangular elements with uniform element size h, = 0.05. It is
thus made of 441 nodes and 800 elements. Every fine local mesh 7,(A,) corresponds to a uniform refinement
of the corresponding coarse local mesh Ty (/N\q). The resulting spatial approximation spaces u r and W for all
g €{1,...,Q}, have dimensions ny = dim (Ij{H) = 3381 and n,, = dim (W) = 441, respectively.

At the stochastic level, we adaptively build a multidimensional polynomial approximation space S4 spanned
by generalized polynomial chaos basis {14 }aec4 (multidimensional Legendre polynomials) by using the adaptive
sparse least-squares solver described in Algorithm 7.2. At each iteration of the iterative algorithm, the linear
global problem (20) defined on fictitious domain € is solved exactly (at the machine precision using a direct
solver) as it involves a deterministic operator, while the @ non-linear local problems (23) defined on the @
patches {Aq}qQ=1 are solved using the adaptive sampling-based least-squares method described in Section 4.3.
For each patch A, the N, deterministic non-linear local problems (34) associated with the N, samples {fl}lqul
are partially solved using a tangent-Newton iterative algorithm with a prescribed tolerance set to e = 10712, In
our application case, one deterministic non-linear local problem typically requires only few iterations (less than
5) to reach this stopping criterion. The sample set {fl}lN:“1 and the approximation spaces S4, are sequentially
enriched (independently for each patch) in order to control the accuracy of the local approximations (wg, )\’; ).
The stagnation and overfitting thresholds in Algorithm 7.2 are both set to €stagn = Eoverfit = 10~'. An initial
sample set of size N = 1 is used with a sampling factor p.qq = 0.1 (percentage of additional samples) and a
parameter § = 0.5 for a good trade-off between computational efficiency and stability of local solutions (wf;, )\’;).

5.2. Convergence analysis

The accuracy of global approximations U is measured in Li—norm with respect to a global reference solution
U™ using the relative error indicator ez, o\a defined as

Uk _ Uref 2 (212
ez (U5 U™) = | L2 =2 @\0)

U @iy with HU”ii(E;LQ(Q\A)):E(||U(§)”%2(Q\A))'
HAT

The reference solution (U™, w'f, \*!) is obtained by directly solving the full-scale coupled problem (15) using
the adaptive sparse least-squares method described in Section 4.3. Following Theorem 3.6, the global reference
solution U™ is the restriction to subdomain € \ A of the limit U of the sequence of global iterates U*. At
the spatial level, the global (resp. local) reference solution U™ (resp. (wief, A\if)) is discretized using the same
finite element mesh as the global (resp. local) approximations U* (resp. (w}, A¥)). At the stochastic level, the
number of samples N™f and the approximation spaces S 4wr are controlled by using the leave-one-out cross-
validation procedure presented in Algorithm 7.1. The prescribed tolerance for the convergence of Algorithm 7.2
is set to e7f = 107%. The resulting sample size is N™f = 795 for the isotropic case and N™f = 491 for the
anisotropic case. The partial polynomial degrees p?’f (in each random variable &;) and the dimension #.A™" of
approximation spaces S 4rer for global and local reference solutions U™f and (w;e‘c, )\fff) are reported in Table 1

for both isotropic and anisotropic cases. The local reference solution (wf]"f, )\fff) mainly depends on the random

variables &24—1 and &»4 associated with the corresponding patch Ay, as well as on the random variables confined
in the surrounding patches. Note that, in the anisotropic setting, the stronger the variabilities in the material
properties within a patch A, are, the more the reference local solution (wgef, )\f]ef) is sensitive to the random
variables £2,-1 and &»,4 associated with A,.
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PliEf pgef pgef pief pgef pgef pr79f péef pgr)ef pli%f plielf pIiQZf pti%f prlif pti%f prl%f #Aref
yref 7 3 6 4 6 4 6 4 6 4 6 4 6 4 7 3 384
w{Cf 7 3 5 3 3 2 2 2 1 1 0 0 0 0 0 0 85
)\’ief 8 4 6 4 5 3 3 2 2 1 0 1 0 0 0 0 186
wge‘c 6 3 7 4 5 3 3 2 2 2 1 1 0 0 0 0 142
)\gef 6 3 7 4 5 3 4 2 2 2 1 1 0 0 0 0 170
wge‘c 4 2 5 3 7 4 5 3 3 2 2 1 1 1 0 0 150
)\gef 5 2 5 3 7 4 5 3 4 3 2 2 1 1 1 0 215
wief 3 1 3 2 5 3 7T 4 5 3 3 2 2 2 1 1 168
)\fff 3 2 4 3 5 3 7 4 5 3 4 3 3 2 2 1 235
wgef 1 1 2 1 3 2 5 3 7 4 5 3 3 2 3 1 167
)\ECf 2 1 3 2 4 3 5 3 7 4 5 3 4 2 3 2 234
wief 1 0 1 1 2 1 3 2 5 3 7 3 5 3 4 2 149
/\gEf 1 0 1 1 3 2 4 3 6 3 7 4 6 3 5 2 239
w§9f 0 0 0 0 0 1 2 2 3 2 5 3 8 4 5 3 164
A§5f 0 0 0 0 1 1 2 2 4 2 5 3 7 4 7 3 174
w0 0 0o 0 0 1 1 1 2 1 3 2 5 3 8 3 91
AP0 1 0 0 1 1 2 2 3 2 5 3 6 4 8 4 202
(a) Isotropic case
plief pgef pgef pief pgef pgef pgef pgef p§ef pli%f plielf pIile pli%f prlif pli%f prl%f #Aref
uvef ¢ 3 5 3 5 3 4 3 4 3 4 3 3 2 3 2 173
wet 7 3 4 3 2 2 1 1 0 1 0 0 0 0 0 0 57
)\ﬁef 7 3 5 3 4 2 2 2 1 1 0 0 0 0 0 0 129
wé‘“f 5 2 6 3 4 3 3 2 1 1 0 1 0 0 0 0 95
)\gef 5 3 6 3 4 3 3 2 2 1 1 1 0 0 0 0 115
wge‘c 4 2 4 3 6 3 4 2 2 2 1 1 0 0 0 0 106
)\gef 4 2 5 3 6 3 4 3 3 2 1 1 0 1 0 0 127
wfff 2 1 3 2 4 2 5 3 3 2 2 2 1 1 0 0 84
)\fff 3 1 3 2 4 3 5 3 4 3 2 2 1 1 1 0 112
wgef 1 1 1 1 2 2 3 2 5 3 3 2 2 1 1 1 68
)\ECf 2 1 2 1 3 2 4 3 5 3 3 2 2 2 1 1 94
wéef 0 0 0 1 1 1 2 2 3 2 4 3 3 2 2 1 54
/\gef 0 0 1 1 2 2 3 2 4 3 5 3 3 2 2 1 84
wef 00 0 0 0 0 1 1 2 2 3 2 4 2 2 1 40
A‘}“ 0 0 0 0 1 1 2 1 3 2 3 2 4 3 3 2 55
wyef 0 0 o0 0 o0 0 0 0 1 1 2 1 2 2 3 2 23
Aef0 0 0 0 0 0 1 1 2 1 3 2 3 2 3 2 41
(B) Anisotropic case

TABLE 1. Partial polynomial degrees pi*f (in each random variable &;), i € {1,...,16}, and

dimension #.4™f of approximation spaces S gret for global and local reference solutions U™ and

(wflef, )\f]ef), q € {1,...,8}, where values displayed in red correspond to random variables {a4_1

and &, associated with patch A,

We first consider a fixed cross-validation tolerance e., = 1072 in Algorithm 7.2 for the accuracy of local
solutions (w’;, )\f;) and we study the influence of relaxation parameter p; on the convergence of the global-local
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iterative algorithm. Figure 4 represents the evolution of relative error indicator ez g\n with respect to the
number of iterations k for different fixed values of relaxation parameter p € {0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8}
and for a relaxation parameter p; dynamically updated through the Aitken’s Delta-Squared method presented
in Section 4.4 in the isotropic case. As expected, the relaxation parameter has a strong influence on the
convergence rate of the iterative algorithm. The Aitken’s Delta-Squared acceleration technique provides similar
results as those obtained with an optimal fixed relaxation parameter without any additional computational
cost. The relative error indicator decreases sharply (= o\a = 5.1075 after only k = 3 iterations) and reaches a
plateau ez o\ = 3.1076 for k& > 5. Similar results can be obtained for the anisotropic case.

10° ; :
—— Fixed relaxation p = 0.2
10-1 Fixed relaxation p = 0.4
—— Fixed relaxation p = 0.6
5 10-2 Fixed relaxation p = 0.8
2 0 —— Fixed relaxation p =1
;g —— Fixed relaxation p = 1.2
£ 1073 —— Fixed relaxation p =1.4
§ —— Fixed relaxation p = 1.6
A 1074 —— Fixed relaxation p = 1.8
—— Aitken’s dynamic relaxation py,
1075
—6 | | |
10 0 5 10 15 20

Number of iterations

FIGURE 4. Isotropic problem: evolution of error indicator ez o\ s with respect to iteration num-
ber k for different fixed relaxation parameters p and for Aitken’s dynamic relaxation parameter

Pk

We now use the Aitken’s dynamic relaxation and we investigate the influence of the prescribed tolerance e, for
cross-validation in Algorithm 7.2 on the performances of the global-local iterative algorithm in terms of accuracy
and computational efficiency. Figure 5 shows the evolution of relative error indicator ez o\ and computational
cost per iteration as functions of the number of iterations k of the global-local iterative algorithm for different
cross-validation tolerances ., € {1072,1073,10~%, 107>} for both problems. The iterative algorithm converges
quite fast until the relative error indicator ez o\a stabilizes around a value smaller than the tolerance ey,
imposed to Algorithm 7.2 for cross-validation. The cross-validation threshold e., can then be seen as the level
of a perturbation occurring at each local step of the iterative algorithm and having an impact on its convergence
properties. The accuracy of multiscale solution u = (U, w1, ..., wq) obtained at convergence of the global-local
iterative algorithm is then controlled by the cross-validation tolerance e, prescribed to Algorithm 7.2 at each
local stage. Note that using a relatively high cross-validation tolerance €., = 10~2 allows to reach a rather small
precision ez g\p = 6.107% (resp. 4.107°) after only k = 3 iterations for the isotropic (resp. anisotropic) case.
Figure 6 shows the evolutions of the sample size N, and the dimension #.4, of the approximation space for
local solution wf; and Lagrange multiplier )\]g within patch A4, for ¢ = 4, as functions of the number of iterations
k for cross-validation threshold values ., varying from 1072 to 10~° for both isotropic and anisotropic casess.
The number of samples N, and the dimension #.4, of the polynomial spaces increase during the first iterations
and then stagnate around a certain value which is higher as the prescribed tolerance e, for cross-validation is
lower. The sample sizes and the dimensions of approximation spaces are higher for the isotropic case than for
the anisotropic case. Note that the dimension of the approximation space obtained for Lagrange multiplier A,
is higher than the one for local solution wy.
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FIGURE 5. Evolutions of (a)-(b) error indicator ez o\ s and (c)-(d) CPU time per iteration with
respect to iteration number k for different cross-validation tolerances ec.,

In order to illustrate the capability of the adaptive least-squares solver given in Algorithm 7.2 to capture sparse
high-dimensional polynomial approximations of local solutions, Table 2 shows the partial polynomial degrees
p; with respect to each random variable &, ¢ € {1,...,m}, and the dimension #.4 of approximation spaces
S for global and local solutions U and (w?,\), ¢ € {1,...,Q}, obtained at convergence of the global-local
iterative algorithm and using a fixed cross-validation tolerance e, = 1072 for the convergence of Algorithm 7.2.
We observe that the use of the adaptive sparse least-squares solver allows to detect sparsity in local solutions
(w?,A?). Indeed, Algorithm 7.2 gives local solutions (w?, A?) with a very low effective dimensionality in so
far as they are mainly dependent on only few random variables, especially the random variables £24—1 and &4
associated with patch A,.

5.3. Illustration of quantities of interest

We now look at the effect of input uncertainties in material properties, namely diffusion coefficient K and
reaction parameter R, on the variability of the solution. We apply the Aitken’s acceleration technique to the
relaxation step of the global-local iterative algorithm and we set the cross-validation tolerance to ., = 1073
in Algorithm 7.2. We then consider the multiscale solution v = (U, w1, ...,wg) obtained at final iteration of
the algorithm. Figures 7a and 7b show the mean and variance of global solution U and local solutions w, as
well as that of multiscale solution w, for isotropic and anisotropic cases, respectively. In the anisotropic case,
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FIGURE 6. Evolutions of (a)-(b) the number of samples N4 and (c)-(d) the dimension #.44 of
the approximation basis for local solution w% (solid lines) and Lagrange multiplier A% (dashed
lines) within patch A4 with respect to iteration number k for different cross-validation tolerances

ECV

the variability in the material properties of patch A, increases with ¢ due to the anisotropy introduced in the
weights v,. The highest spatial contributions to the variance V(u) of multiscale solution u are fully captured
by the local solution w, within every patch A, and localized in the first patches in the anisotropic case.

In order to quantify the relative impact of each input random variable &; on the variability of solution u, we
introduce the following global sensitivity indices:

S - V(Eu(,6)[€))
Si(u) max,cq(V(u(z,£)))’

where E(u(x,£)|¢;) is the conditional expectation of solution u with respect to random variable &;. S;(u) is a
sensitivity index which reflects the zone of influence of a random variable &; (associated with patch A, for i €
{2¢ — 1,2q¢}) on the variability of solution u. Note that global sensitivity indices S; (u) can be straightforwardly
computed from the expansion of u(x, §) on an orthonormal polynomial basis (see [64]). Figure 8 shows the spatial
distributions of sensitivity indices S; (u), computed at final iteration of the global-local iterative algorithm for
all i € {1,...,m}. We observe that random variables 3,1 and {2, have only a local influence within the
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PL P2 P3 P4 P5 Pe PT P8 P9 Plo P11 pi2 P13 P14 P15 pie  #A
U 5 2 4 3 4 2 4 3 4 3 4 3 4 2 5 2 192
w1 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 9
A1 4 2 2 2 1 1 0 0 0 0 1 0 0 0 0 0 21
wa 2 1 3 2 1 1 0 0 0 0 0 0 0 0 0 0 13
Ao 3 1 3 2 2 2 0 1 0 0 0 0 0 0 0 0 19
wz 0 0 1 1 3 2 1 0 0 0 0 0 0 0 0 11
A3 1 1 2 1 3 2 2 0 1 0 0 0 0 1 1 21
wg O 0 0 0 1 1 3 2 1 1 0 0 0 0 0 0 11
A4 0 0 0 1 2 2 4 2 2 1 1 1 0 1 1 0 25
ws 0 0 0 0 0 0 1 1 3 2 1 1 0 0 0 0 11
A5 0 0 0 0 0 1 1 2 3 2 2 1 1 1 0 0 20
we 0O 0 0 0 0 0 0 0 1 1 3 2 1 1 0 0 11
X O 0 1 0 0 0 1 1 2 2 4 2 2 2 1 1 28
wy 0 0 0 0 0 0 0 0 0 0 1 1 3 2 2 1 13
A7 0 0 0 0 0 0 0 0 1 1 2 2 3 2 3 1 20
wg O 1 1 0 0 0 0 0 1 0 1 0 1 1 3 1 12
AXs O 1 1 0 0 0 0 0 1 1 1 1 3 2 5 2 26
(a) Isotropic case
PL P2 P3 P4 P5 Pe PT P8 P9 Plo P11 Ppl2 P13 P14 P15 pie  #HA
U 5 3 3 2 3 2 3 2 3 2 3 1 2 3 2 1 112
wy 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 8
A1 4 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 18
wa 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 9
Ay 2 1 3 2 1 1 0 1 0 0 0 0 0 0 0 0 15
wz 1 0 1 1 2 1 1 2 0 0 0 0 0 0 0 0 13
A3 1 1 2 1 3 2 1 2 0 1 0 0 0 0 0 0 18
wg O 0 0 0 1 1 2 1 1 1 0 0 0 0 0 0 8
A4 0 0 0 1 1 1 2 2 1 2 0 1 0 0 1 0 16
ws 0 0 0 0 0 0 1 2 1 0 1 0 0 0 0 7
As 0 0 0 0 0 1 1 2 2 1 1 0 0 0 0 11
we O 0 0 0 0 0 0 0 1 1 2 1 0 1 0 0 7
X O 0 0 0 0 0 0 0 1 1 2 1 1 1 0 0 8
wy 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 5
A7 0 0 0 0 0 0 0 0 0 0 1 1 2 1 1 1 8
wg 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4
AXs O 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 7
(B) Anisotropic case
TABLE 2. Partial polynomial degrees p; (in each random variable &;), i € {1,...,16}, and
dimension #.A of approximation spaces S4 for global and local solutions U and (wg, Aq),
q € {1,...,8}, where values displayed in red correspond to random variables £2¢_1 and &a4

associated with patch A,

corresponding patch A, on the variance of solution u. In the anisotropic case, the magnitude of sensitivity
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(B) Anisotropic case

FIGURE 7. Mean E and variance V of global solution U, local solutions w, and multiscale solution u

indices gz(u) again reflects the highest input variabilities in the material properties within the first patches.
Note that the patches A, are sufficiently large to capture the main effects of the input uncertainties on local
solutions wy, ¢ € {1,...,Q}.

6. CONCLUSION

A global-local iterative method has been proposed for the solution of non-linear stochastic multiscale problems
with localized sources of uncertainties and non-linearities. The proposed multiscale approach relies on an
overlapping domain decomposition method with patches. The iterative coupling strategy is performed by
sequentially solving a linear global problem (with deterministic operator and uncertain right-and-side) and
a set of independent non-linear local problems (with uncertain operators and right-hand sides) defined on
patches. The global-local iterative coupling algorithm is said non-intrusive in the sense that it does not require
any modification of both models and solvers during iterations. The local problems can thus be easily handled
using dedicated approximation methods and specific solvers. The consistency, convergence and robustness of
the proposed algorithm have been analyzed. Numerical results demonstrate the high potential and relevance
of the stochastic global-local multiscale approach for dealing with models involving localized uncertainties and
possible non-linearities. Several perspectives could be addressed in forthcoming works. First, the modularity
of the multiscale approach and in particular its solver coupling capabilities could be exploited in order to take
advantage of both commercial software packages available in the industry and in-house research codes, as it was
done in recent works [32,34,44,53]. Second, the approach could be extended to more complex non-linear models
at multiple scales (e.g. plasticity, damage or fracture in solid mechanics). Quantifying the effects of localized
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FIGURE 8. Sensitivity indices §Z(u) of multiscale solution u with respect to each random vari-
able &, 1 € {1,...,16}, where the first row gathers the sensitivity indices S24—1(u) associated
with random diffusion coefficient K, (parameterized by £24,—1) and the second row gathers the

sensitivity indices Soq(u) associated with random reaction parameter R, (parameterized by

£2q)7q€ {1778}
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uncertainties in such multiscale stochastic models is currently one of the appealing engineering and scientific
challenges.

7. APPENDIX

The algorithms and the proofs of some technical results are collected in this appendix.

7.1. Leave-one-out cross-validation procedure

Algorithm 7.1 (Leave-one-out cross-validation procedure).
Input: Cocfficients V. = (Va)aca of the approzimation v(§) = > caVa¥al(f), and matrices ¥ =
(Vo (EN)1<icn.aca and YT = (u(€))1<i<n containing the evaluations of (Va(€))aca and u(€) = (u;(€))iez
Output: Vector € = (g;)iez, where g; is an estimation of the error E((u;(€) — v;(€))?).
1: fori=1,...,n do
2:  Compute the set of predicted residuals {AI}N | associated with sample set {€'}I, using Sherman-
Morrison-Woodbury formula: Al = 1’1;'” with ry; the (1,i)-th entry of matrit R = VT — Y, and
hy the l-th diagonal term in matriz H = (@7 @)~ 1@’
3:  Compute the leave-one-out error e; = %, where E; = Zf\;l(Aff and mo(Y;) is the empirical
second moment of the i-th column Y; = (u; (€)Y, of Y
4: Compute the corrected leave-one-out error e; = e x T(A/N), where T(A/N) =

-1 a-1
(1 — #TA) (1 + x (1(\:, )> is a correction factor allowing to reduce the sensitivity to overfitting [65, 66]

and where C = %'IIT\II is the empirical covariance matriz of (Vo (£))aca
5: end for

7.2. Adaptive sparse least-squares solver with random sampling and working set strategy

Algorithm 7.2 (Adaptive sparse least-squares solver).

Input: Initial number of samples N > 1, sampling factor paqq > 0, parameter 6 € [0, 1]
Output: Monotone set A and coefficients V. = (va)aca of the least-squares approzimation v(§) =

ZQGA Vozwa (5) Of u(f)

1: Start with null initial set A = {07}

2: Generate the initial sample set {'}N.| randomly

3: Compute the matrices W4 = (Vo (€))1<i<n.aea and YT = (u(€))1<i<n

4: while no convergence do

5. // Adaptive random sampling

6:  while no convergence and no stagnation do

7: Generate the additional sample set {SNH}lN:“fd randomly, with Nagq = ceil(pgaalV)

8: Compute the matrices ¥ A aaa = (V(EVNT))1<i<Numaca and YT, = (u(EV ) 1<,
9: Update the number of samples N < N 4 Naaq and the matrices ¥’ (lIlﬁ,\Iliadd) and YT «

(YT YT,)

10: Compute the coefficients V = (Va)aca such that VI = (\Ila\IlA)’l\IliY

11:  end while
12:  // Working set strategy
18:  while no convergence and no overfitting do

14 Compute the reduced margin M = M,eq(A) of monotone set A and the set T = AUM
15: if #T > N then

16: break

17: end if

18: Compute the matrices W 1 = (Vo (€))1<i<n,aem and O = (U 4, ¥ py)
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19: Compute the coefficients V = (Va)aeT such that VT = (810" 10ly
20: Compute the vector (||[vall2)aem
21: Define the smallest (monotone) subset N of M such that e(N') = 0e(M), with e(N') = > cvlIVall3

and e(M) = 3, llvall3

22: Update the multi-index set A < AUN and the matriz U 4 < (P 4, O pr), where Wy is the submatriz
of W a4 whose columns correspond to multi-indices o € N
23: Compute the coefficients V = (Va)aca such that VT = (¥4 0 1)1 @Y

24:  end while
25: end while

7.3. Proof of Lemma 2.2

The first inequality [v|y < |lv[ly is obvious. Using (11) with (O,€) = (A,T), we obtain [lvja[[r1a) <
Car(lvalaray + llvallazey).  Then, using the weak continuity of v on I', we have [vjallgi/2r)y =
lvallmremy < Brllvjgaallni@a), where 8- is the norm of the trace operator 7: H'(Q\ A) — HY2(I).
Now, using (11) with (O,&) = (Q\ A,Tp NI(Q\ A)), we obtain ||'U‘Q\A||H1(Q\A) < 6|U|Q\A|H1(Q\A), with
C= Coarpra@\a)- Then, we deduce that

[0l < C?lvjaa i @ay + CRr(lvalr (a) + B-Clojayala @a))?
<C(1+ 2C3 rB2) lvjaa i @ay + 2C3 r

vialinay < CRlvly,

where C3 = max{az(l + 2012\71“63),26‘,2\,1“}. Cy is independent of £ since C and Car are independent of £
(assumption 1.7) and 3, is independent of &.

7.4. Proof of Theorem 2.3

Let V* be the topological dual space to V and let (-,-) denote the duality pairing between V and V*. For
u €V, v dgo(u,v;€) is linear and continuous. Then, there exists a unique non-linear map D(£): V — V* such
that dq(u,v; &) = (D(€)(u),v) for all u,v € V. As Lo(-;€) is linear and continuous on V, there exists a unique
L(§) € V* such that £ (v; &) = (L(£),v) for all v € V. Problem (14) can then be written as D(§)(u(&)) = L(£).
First, we have that for all u,v € V, the map t — (D(&)(u + tv),v) = aq(u,v; &) + tag(v,v; &) + na(u + tv, v; §)
is continuous, which implies that D(&) is radially continuous. Then, assumption (7) on ag\s and ap and
assumption (9) on na imply that for all u,v € V,

(D(&)(u) = D) (v),u —v) = ag\a(u —v,u —v) +apr(u —v,u —v) +np(u,u —v) —np(v,u —v)

> aa(lu—vlin@a) + | — i) = aalu—ol} > Zzllu— vl = apllu -],

Qg |
ey
where the last inequality comes from Lemma 2.2. Then D(€) is strongly monotone with monotonicity constant
ap = ¢g%. Also, assumption (10) on np implies D(£)(0) = 0. From this latter condition and from the
v

strong monotonicity of D(§), we obtain that (D(¢)(u),u) > apllul3 for all u € V, and therefore D(§) is
coercive. Accordingly, D(§) being radially continuous, monotone and coercive, the Browder-Minty theorem [67,
Theorem 2.18] ensures that D(£) is surjective, and therefore there exists a solution u(§) € V to problem (14).
The strict monotonicity of D(£) ensures that this solution is unique, so that we can define an inverse map
D(¢)~t: V* — V. The strong monotonicity of D(£) then implies that D(£)~! is Lipschitz continuous, with
D)~ (L) = DE) " (L)llv € 55lIL = Lljv- for all L,L € V*. Finally, from the strong monotonicity and
from assumption 1.3, we have that [[u(€) |y < == D))+ = LILE)v- = - supjyo_r (L), 0) =
% SUP|jy |y, =1 £ (v:€) < %Iﬂ(ﬁ), with x € L7 (Z). Since a, and Cy are independent of § (see Lemma 2.2), ap
is independent of ¢ and we deduce that u € L% (Z;V).
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7.5. Proof of Theorem 2.4

Let u(€) € V such that u(€)joa = U(§) € U and u(§))4 = w(§) € W. Equation (15c¢) implies that u(§) € V.
Then, considering a test function du € V and summing (15a) and (15b), we obtain that w(§) verifies (14). From
Theorem 2.3, we deduce that problem (15) admits a unique solution (U (&), w(§)) € UXW which coincides with
the solution of (14). Moreover, since u € L (Z;V), we deduce that U € L (Z;U) and w € LE(Z;W). Then, let

R: HY?(T') — HY(Q\ A) denote a linear continuous extension operator with continuity constant Sz. Equation
(15a) yields

br(A(§),v) = br(A(§), R(v)) = La\a(R(v); ) — aa\a(U(§), R(v))
for all v € HY?T). The right-hand side being a continuous linear form on H'/?(T), we obtain the
existence and uniqueness of a solution A(§) € M. Also, [[A(§)|m = SUD ]| 11 /2 1y =1 br(A(§),v) =

Ul 2 1 b ACR(0)5€) — acn A (U(€), R(0) < Br((€) + BullU(©) ). Since both x(€) and [U(€) s belong
to LF(Z), A belongs to LY (Z; M).

7.6. Proof of Lemma 3.7

Let 7: HY(Q\ A) — HY2(T) denote the trace operator which is linear and continuous with norm j; indepen-
dent of &. Let R:NHl/ 2(T') — HY(A) denote a linear continuous extension operator with norm Sg independent
of £&. For V € Ui, we write le = R(Vir) + Z, where Z ¢ H{(A) is such that c1~\(~R(V|p) + Z,6U) =
for all 6U € Hé(A). From assumption 2.5 on c; and using (11) with (O,€) = (A,T'), we obtain that

Cg CZ 2 Be
12005, < C2 128y 5, < Bty (2.2) = Do (~R(V). 2) < Sar
the continuity of 7 and R, we deduce that ||V||Hl &) S <(1+ 5u o VBRIV 2y < (14 ﬂo Ao )5Rﬂr||v||H1(Q\A)
Finally, since ||V||2 V12 + [[V]? we obtain that ||VHu < WVl < CzlV I for all V € U,, with

HR |F)||H1(A)||Z||H1(A) Then from

H!(A)’
.C2
Chr=(1+1+ Ba%) 32,32)1/% independent of &.

7.7. Proof of Lemma 3.9

First, using property (17) for cg, property (18) for c; and relation (11) for (O,&) = (Q,Tp N Q) (with
constant C' = Carpnoa), we obtain that [|[Y(V;€); < Br|[V]y for all V € U, with By = ’6252 independent
of . Then, using again property (17) for cg and relation (11) for (O,€) = (Q,Tp N 8Q), we have that

19(8; )II% < S br (8, 8(8; )] < (1Bl ®(B; €) Ik /2r) < ﬁff 1Bl @ (55 €)ll 7> where 537 is the norm of

the trace operator 7: H'(Q\ A) — HY/2(I"). That proves [|®(53;€)||;7 < Bol|Bllm for all B € M, with Bg = BTTC
independent of &.

7.8. Proof of Lemma 3.10

Given the property (12) for the definition of the patch, we can introduce a partition A = A; UA, with
A; N A, = 0 and dist(A;,T') = 4, for which A, C A;. That means A, is a band of width § around T" where the
differential operator is linear. Let I', = OA.NIA; and TP = OA.NT'p. The restriction w, (&) of the local solution

w(&) = O(U(£);€) to A, is such that w,(£) € H(A,), we(§)r = U(&)rs we(§)r, = w(&)r., we(§)rp = 0 and

ap. (we (5)7 5we) = EAE (6we; f) (37)

for all w, € H'(A.) such that dw. = 0 on I UT, UTL. Using the linearity of this problem and introducing
linear continuous extension operators from H'/2(I") and H'/?(T,) to H'(A.), it can be easily proved that w,(&)
can be written as

we(§) = Fr(U(&)r) + Fr. (w(&)r,) + we(8), (38)
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where W, (¢) = 0 on TUT, UTP, and where Fr: HY/?(T) — H'(A,.) and Fr,: H/?(T',) — H'(A,) are linear
continuous extension operators with respective norms ||Fr| and ||FT, || independent of £, such that Fr(v) = v
onT, Fr(v) =0on T, UT?, Fr (v) = v on T, and Fr, (v) = 0 on T UTP. From (37), we obtain that the
normal flux on T',, denoted A.(&) = —Br(w(€), Vw(£);-) -n € HY2(I',)* (with n the unit normal to I', pointing
outward A.), is such that bp (Ae(€), dwer,) = la, (Owe; §) — an, (we(§), dwe) for all dw. € H'(A.) such that
Swe = 0 on dA, \ T, where by, denotes the duality pairing between H'/2(T,) and H'/2(T',)*. From (38), we
deduce that

br, (Ae(§), 0v) = —QF(U(E)\F,(SU) —Jgr. (w(§)|pﬁ,5v) + br, (Xe(f)’ 6v)

for all v € HY?(T,), where gr: H/2(I')xH/2(I",) — R and gr,: H/?(T'.) xH/2(I",) — R are continuous
bilinear forms with respective norms ||gr|| and ||gr, || independent of &, and X.(¢) € HY?(T,)*. By definition,
gr, is such that gr_(v,v) = aa, (Fr, (v),0w) for all v € HY/?(T,) and dw € H'(A.) such that sw = v on T, and
Sw=0onTUTL. Choosing dw = Fr, (v) and using property (7) for aa, and relation (11) for (O, &) = (A, T),
we obtain that for all v € H/2(T,),

Qg Qg
gr. (v,0) = an (Fr.(v), Fr, (v)) 2 @l Fr. (o) a,) 2 o= 1. 0)lfna,) = 235442;;44*HUHEJM(FJ7
AT r

e TAe,Te

where 3;, . is the norm of the trace operator from H!(A.) to H'/?(T'.). Then, let I’” = 9A; NI'p. The
restriction w;(€) of the local solution w(¢) = O(U(£);€) to A; is such that w;(§) € HY(A;), wi(&)r, = w(&)r,,
wz’(f)wf =0 and

dp, (wi(§), 6wi; §) = La, (dwi; §) — gr (U (&) r, dwyyr, ) + br, (Ae(), dwyr, ),
for all dw; € HY(A;) such that dw; = 0 on I'P, where d, (-, -;€) is a semi-linear form defined by dx, (u,v;€) =
ap, (u,v;€) +na, (u,v;€) + gr, (wr,,vr,) for u,v € H!(A;). Now, let (-,-) denote the duality pairing between
H'(A;) and H'(A;)*. From properties of ay,, na, and gr,, we deduce that dy,(u,v;&) = (D(€)(u),v) for all
u,v € H'(A;), where D(€): HY(A;) — H'(A;)* is a radially continuous, coercive and strongly monotone map
such that for all u,v € H'(A;),

<75(§)(U) - 15(5)(7)), u—v) =ap, (u—v,u—v)+na,(u,u—v) —na(v,u—v)+gr, (wr, —or,,ur, — U|Fe)

«
> aglu—vlf, + WHU - U||§11/2(re) > apllu—vllfa,,
Ae, T'FTA, Te

with ap = min{1 } independent of £. Following the proof of Theorem 2.3 in Section 7.4, we

Qg 1
2C}, r. " CR B, r,
obtain that the solution w;(§) is unique and can be written as w;(§) = G(U(§)r; §)+w;(§), with w;(§) = 0 on
TUTP, and where G(-;¢): HY/2(T') — H(A;) is a Lipschitz continuous map with fg = qu\lﬁ%
of £, where f;, . is the norm of the trace operator from H'(A;) to HY/?('.). Finally, we deduce that for all
U,V el,

independent

10(U;€) = O(V; 85y = 10(U; ) 1a, — OV &)l (any + 1O )14, = OV, I (a1

= [|[Fr(Ur — V\F)HIZ{I(AE) +1Fr. (O(U;8)r, — @(V;g)\Fe)HI%Il(AE) + [|G(Ur; €) — G(Wr;f)\\?{l(m)
SUFRN? + BENU = Vs + 1 AP1OWU; €)ir, = OV )i, 1/2(r,

< (IFEl® + B2 + I1Fr 1282, 1 BENU = Vg2

<BBIU-VIZ,




TITLE WILL BE SET BY THE PUBLISHER 33

with 58 = (IFr|* + 52
operator from H!(Q\ A) to H/2(T").

Using (25a) with test functions dw = 0 on A; and introducing a linear continuous extension operator Rr
from H'/2(T") to H'(A.) (with norm ||Rr| independent of ¢) such that Rp(v) =0 on T'. UTP, we have that for
all V el,

TA . B2) 32 rowar independent of &, where fr, , . is the norm of the trace

br(¥(V;€), dwe) = an (O(V;€)a,, dwe) — la, (Owe; §)
for all Sw, € H'(A.) such that sw, =0 on I'. UTP. Then, we obtain that for all U,V € u,

[C(U;8) =¥ (Vi = sup  br(¥(U;€) — ¥(V5€),0)
veHY2(T)
””HHl/z(F):l
= sup  ap (OU;8)a, —O(V;8)a,, Rr(v))
veHY2(I)

HUHH1/2(F):1
< BallOU58)a, — O(V5€)

with Sy = Bafe||Rr|| independent of &.

7.9. Proof of Lemma 3.11

From the Lipschitz continuity of mappings T, ® and ¥ (see Lemmas 3.9 and 3.10) and from the continuity
of the linear map Cg, we deduce the Lipschitz continuity of D(-;&) on U and a fortiori on U,, with Lipschitz
constant Bp = B.(1 + By + BaPyv) independent of €. From (28), we have that for all U,V € U,

(D(U;€) = D(V5£),U = V)i = cg(A(U; ) — A(V;£),U = V)
=ag\a(U =V, U = V) +br(¥(U;§) —
=ao\a(U =V, U = V) +br(¥(U;€) —
=aq\a(U = V,U = V) +ax(O(U;¢§) — @(V,ﬁ),@(U; §) —O(V;€);6)
+na(OU;€),0(U;€) — O(V:);

)

From assumptions 1.4 and 1.5, we have ap(w,w;€) > 0 and nj (w,w — w';€) — na(w',w — w';€) > 0 for all
w,w’ € W. Therefore, using property (7) for ag\a and relation (11) for (O,€) = (2 \ A,Tp NI(Q\ A)), we
have that for all U,V € Zjl,

(D(U;€) = D(V3€),U = V) = apa(U = V.U = V) > aalU = V[ \a) > AIIU Vi,

where C = Ca\a,rpna\a)- Finally, using Lemma 3.7, we obtain that for all U,V € Zj*,
(D(U3€) = D(V3€),U = V) > ap|lU = V||,

with ap = ﬁ independent of &. That proves the strong monotonicity of D(+; ) on U.
u

7.10. Proof of Theorem 3.12

First recall that the global solution U(¢) and all global iterates U*(¢) are in U, (see Lemma 3.5 and Theo-
rem 3.6). Using relation (11) for (0,&) = (Q2,I'p N 0Q), the symmetry and property (17) for cg, as well as the
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Lipschitz continuity and the strong monotonicity of map D(+; &) on U, (see Lemma 3.11), we obtain that for all
U,V el,,

HBPk(Uvg) - BPk (V7€)||12] g 62|Bpk(U,§) - Bpk (V,f) ?{1 Q

< B (U) = By V360, B, (U3) — By, (V310
CQ

< % (Co(U =V),U = V)g = 2p1(D(U;€) = D(V;€),U = V)7 + pilID(U; ) = D(V; )|zl AU; §) — A(V56)ll7)

C

— (e (U = V.U = V) = 2015 (A(U3 ) = A(V;€),U = V) + preg(A(Us€) — A(V3€), A(U3€) — A(V;€)))

02 2
(ﬁc—zpkaMpk‘; )IIU VIZ,

Olc

where C = Cs T pad If {pi}ren satisfies (30) with pgyp < 52 (20@ - — (Bc— %)) = plup, then

the set of mappings {B,, (;§)}ken is uniformly contractive on U,, with a contractivity constant pg =
2

52 ﬁ 1/2 . .
(Q—(Bc — pint(2ap — psupﬁ—D))) < 1 independent of £. Then, we obtain that

IU*(€) = U©)llg = 1B (UF71(€)5€) = By (U(€);€)llz < AEIUE) = U ()7

from which we deduce that the sequence {U”(¢)}1en converges almost surely to U(€) in U,. Also, with U° = 0,
we obtain that [|U*(&) — U(&)llz < |UE)lly Since |UE)ll; € LE(E) (seeNCorollary 3.8), the dominated
convergence theorem gives that the sequence {U*}ren converges to U in L2 (Z;U). Finally, from (29) and using
the Lipschitz continuity of mappings © and ¥ (see Lemma 3.10), we directly obtain that the sequence {w*}xen

converges to w almost surely and in L (Z; W), and the sequence {\F}en converges to A almost surely and in
L2 (Z; M).
N b

7.11. Proof of Theorem 3.15

First, if initial guess U2 € V5 and if e* <1 — pp and € < §(1 — pp — £*), we can prove by induction that all
approximate global iterates U* belong to Vs. Indeed, suppose that UJ € Vs for all j < k. Then, the error at
iteration k is such that

||Uak - UHLﬁ(E;L?) < ||Uk UkHLP(_ a T ||Uk UHLP( )
< IIB5 (U™ = By (U g maty + 1B UF ) = B, Wl et
< EHUHLﬁ(E;ﬁ) + (PB + 6*)HUek_l - UHLﬁ(E;ﬁ)-

As UF! € Vs and ¢ < §(1 — pp — €*), UF € V5. By induction, we finally prove that U* € Vs for all k € N.
It means that if initial global iterate U? is contained in the open ball Vs of radius d||U HLTQ(E'ﬁ) centered at the
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exact global solution U, then all global iterates UF remain in this ball. Subsequently, we obtain that

k—1
105 = Ullyp ey < N0 ey 3o+ + (o + €08 = Ul m
§=0
e(1—(pp +¢")") k|| 770
1— (PB ¥ 6*) ||UHLﬁ(E’2;[V) + (pB +e€ ) HUE - U”Lﬁ(E;Z:{)
€ _ #\k|770 _ N
ST=0n 7o Uz + (e + )0 = Ul =a)
and therefore, as 0 < pp+e* < 1, the approximate sequence {UF},.cy satisfies (32), with v(e,*) = m —
0ase—0.
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