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Multispectral demosaicing using

pseudo-panchromatic image

Sofiane Mihoubi, Olivier Losson, Benjamin Mathon, and Ludovic Macaire

Abstract

Single-sensor color cameras, which classically use a color filter array (CFA) to sample RGB channels, have

recently been extended to the multispectral domain. To sample more than three wavelength bands, such systems use a

multispectral filter array (MSFA) that provides a raw image in which a single channel value is available at each pixel.

A demosaicing procedure is then needed to estimate a fully-defined multispectral image. In this paper, we review

multispectral demosaicing methods and propose a new one based on the pseudo-panchromatic image (PPI). Pixel

values in the PPI are computed as the average spectral values. Experimental results show that our method provides

estimated images of better quality than classical ones.

Index Terms

Multispectral image demosaicing, Multispectral filter array, Spectral correlation, Spatial correlation, Illumination,

Pseudo-panchromatic image.

I. INTRODUCTION

Digital color cameras are usually only sensitive to three wide and overlapping bands of the visible electromagnetic

spectrum. To overcome this limitation in object reflectance representation, multispectral cameras have recently

emerged to provide many channels associated with narrow (spectral) bands. Multispectral images, that are composed

of up to several dozens of channels, are analyzed in various application fields, such as medical imaging [15, 24],

art studies [8]. Furthermore, Qin et al. [25] show that the analysis of channels associated with narrow bands in the

visible spectral domain, is beneficial for automatic safety and quality evaluation of food and agricultural products.

Multispectral images can be captured by sequentially selecting a different optical filter for each band [4]. However,

this technology is not suitable to acquire dynamic scenes because switching among filters is time-consuming. To

increase the acquisition rate, one snapshot solution is to fit the camera with a single photo-sensitive sensor covered
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by a multispectral filter array (MSFA) that is a mosaic of spectrally selective filters [7, 13]. Over each photo-

receptor of the sensor lies a narrow-band filter that defines the channel associated with the resulting pixel. Finally,

the camera delivers a raw image in which one single channel is available at each pixel according to the MSFA

and the other missing channels have to be estimated to recover the full spectral definition. This process known

as demosaicing or demosaicking is similar in its principle to the estimation of missing RGB components in raw

images captured by single-sensor color cameras fitted with a Bayer color filter array (CFA). CFA demosaicing is a

well-studied problem for more than forty years [14], but MSFA demosaicing is a recent subject with new issues. The

principles of spatial and spectral correlations, that exploit the properties of radiance in CFA demosaicing, should

indeed be reconsidered. First, more bands imply a lower spatial sampling rate for each of them, which weakens the

assumption of spatial correlation between the values of raw image pixels that sample the same band. Second, since

multispectral imaging uses narrow bands whose centers are distributed over the spectral domain, the correlation

between channels associated with nearby band centers is stronger than between channels associated with distant

ones [18].

To perform multispectral demosaicing despite the weak spatial correlation, we propose to use a spatially fully-

defined channel that is estimated from the raw image, namely the pseudo-panchromatic image (PPI). Chini et al.

[3] define the PPI of a fully-defined multispectral image as the average image over all channels. In a preliminary

work (where the PPI is called intensity image), we show that PPI-based MSFA demosaicing provides promising

results [17]. We here improve this proposal and compare it with state-of-the-art MSFA demosaicing methods in

extensive experiments. Moreover, as MSFA filters are sensitive to narrow bands of the visible spectrum, the non-

uniformity of illumination used during image acquisition strongly affects the acquired value range (i.e., the difference

between maximal and minimal acquired values) in each channel. Hence, our demosaicing procedure adjusts the raw

value scale to be robust against illumination non-uniformity.

This paper is organized as follows. In Sec. II, we focus on the different MSFAs found in the literature, and on

the one we consider. In Sec. III, we present the acquisition of multispectral images and compute the spatial and

spectral correlations in such images. In Sec. IV, we expose the demosaicing problem, review the existing methods

that can be used with our MSFA, and describe their limitations according to the multispectral image properties

that they exploit. In Sec. V, we propose a new estimation of the PPI and use it for demosaicing. In Sec. VI, we

experimentally assess the performances of the different methods and focus on their behavior when illumination

changes.

II. MSFA-BASED MULTISPECTRAL IMAGING

A. MSFAs and associated demosaicing methods

MSFAs are composed of filters whose transmittance functions have to be carefully selected since they affect

both the spectral reproduction ability and the spatial reconstruction quality [10, 20, 23]. To ensure manufacturing

practicability and demosaicing feasibility, all MSFAs are defined by a basic pattern that respects a trade-off between

spatial and spectral sub-samplings. Two important criteria must be considered in the MSFA design [16]: spectral
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Fig. 1. Basic MSFA patterns: (a) with three dominant bands [16], (b) with one dominant band [19], (c) with K bands and no dominant one,

and (d) in IMEC camera. Numbers are the band indices (see Sec. II-B).

consistency, which states that the neighborhood of all the filters associated with a band should be identical, and

spatial uniformity, which requires that the MSFA spatially samples each band as evenly as possible. The MSFAs

that respect these criteria can be generated using a binary tree as proposed by Miao et al. [16], in which each band

is characterized by its probability of appearance (POA).

We classify the basic MSFA patterns and the associated demosaicing algorithms into two categories depending

on the presence or not of a dominant band (i.e., with a greater POA than the other bands):

• Two MSFAs with some dominant band(s) are proposed in the literature. Miao et al. [16] design the MSFA

with the basic 4×4 pattern of Fig. 1(a) that contains three dominant bands (red (R), green (G), and blue (B))

with a POA of 1
4 and two other bands (cyan (C) and magenta (M )) with a POA of 1

8 . They propose a binary

tree-based edge-sensing (BTES) demosaicing method which uses the channels associated with the dominant

bands in order to estimate the values of other channels. Monno et al. [19, 21, 22] propose another 4× 4 basic

pattern that is inspired by the CFA pattern. It exhibits a POA of 1
2 for G and of 1

8 for the four other bands

(R, B, C, and orange (O)) (see Fig. 1(b)). This pattern is related to several demosaicing methods: the original

algorithm [19] uses an adaptive kernel up-sampling, that is improved by filtering under the guidance of the G

channel [21], and further enhanced by residual interpolation [22]. Jaiswal et al. [9] also propose to exploit the

redundant property of G by analyzing the spatial frequency domain.

• MSFAs with no dominant band (hereafter called non-redundant MSFAs for short), that typically have a square

or rectangular basic pattern [29]. For instance, Fig. 1(c) shows a
√
K ×

√
K square basic pattern composed

of K filters associated with different bands whose POA is 1
K

. To demosaic the raw image provided by such

MSFAs, Wang et al. extend the CFA demosaicing methods based on the discrete wavelet transform [31] and

median filtering [30] to MSFA demosaicing. The demosaicing algorithm proposed by Brauers and Aach [1]

computes the channel differences to take the spectral (inter-channel) correlation into account. Mizutani et al.

[18] propose to iterate Brauers and Aach’s scheme a number of times given by the distance between band

centers of the considered pair of bands. Shinoda et al. [27] propose to combine the BTES method based on a

spatial gradient [16] with that based on channel differences [1].
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B. Our considered MSFA

As multispectral imaging privileges spectral resolution, the number of bands should be as high as possible.

Although this goal conflicts with a dense spatial sub-sampling and increases the demosaicing difficulty, it leads us

to retain an MSFA with no dominant band. In the following, we only consider the non-redundant MSFA formed

from the square 4 × 4 basic pattern of Fig. 1(d) in which the K = 16 bands are not arranged in ascending order

of the classical pixel read-out due to manufacturing constraints. This MSFA designed by IMEC [5] is embedded

in the sole off-the-shelf MSFA-based systems available on the market today [24], namely XIMEA’s xiSpec and

IMEC’s “snapshot mosaic” multispectral cameras (called IMEC camera for short in the following). The spectral

narrow bands of IMEC’s MSFA are centered at wavelengths λi ∈ B = {469, 480, 489, 499, 513, 524, 537, 551,

552, 566, 580, 590, 602, 613, 621, 633} (in nanometers), so that λ1 = 469nm, . . . , λ16 = 633nm.

III. REFERENCE IMAGE SIMULATION AND PROPERTIES

Let us consider the multispectral image I = {Ii}Ki=1 made of K fully-defined channels corresponding to the K

bands. This image is called the reference image because it is often used as a reference to assess the demosaicing

quality although it cannot be provided by single-sensor multispectral cameras. To get reference images, we simulate

the acquisition process by following the simple multispectral image formation model described in section III-A. For

this purpose, we consider that the radiance of various scenes from a public database (see Sec. III-B) is projected

onto K (virtual) sensors, each one being associated with one of the bands sampled by IMEC camera or by an

“ideal” camera with 1nm-bandwidths (see Sec. III-C). This will allow us to assess the demosaicing performances

(see Sec. VI) of both a real snapshot camera (IMEC camera) and of an “ideal” one with the same band centers

and no inter-band overlapping. Finally, we study the statistical properties of these reference images.

A. Multispectral image formation model

Assuming ideal optics and homogeneous spectral sensitivity of the sensors, the value Iip of channel Ii at pixel

p is expressed as:

Iip = Q

(
∫

Ω

E(λ) ·R(λ)p · T i(λ)dλ

)

, (1)

where Ω is the working spectral range. The term E(λ) is the relative spectral power distribution of the light source

which homogeneously illuminates all surface elements of the scene. The surface element observed by the pixel

p reflects light with the reflectance factor R(λ)p. The resulting radiance spectrum (E(λ) · R(λ)p) is captured by

the camera, filtered according to the transmission spectrum (transmittance) T i(λ) of the band i centered at the

wavelength λi. The value Iip is finally given by quantization of the received energy according to the function Q.

B. Radiance data

To simulate the radiance data we need (i) reflectance and (ii) illumination data. (i) The CAVE database [32]

contains the reflectance of surface elements in 32 scenes. The reflectance is defined on 31 bands of width 10nm
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Fig. 2. Relative spectral power distributions of CIE D65, A, and F12 illuminants, and of real illuminations (acquired with the Avantes spectrometer

AvaSpec-3648) provided by halogen lamps (HA) and a LED dome (LD).

and centered at {400nm, 410nm, . . . , 700nm}. By associating each surface element with a pixel p and assuming

linear continuity of reflectance, we get R(λ)p for all integer λ ∈ [400nm, 700nm] using linear interpolation of

CAVE data. (ii) We consider three CIE standard illuminants (D65, A, and F12) and two real illuminations: a set of

six Paulmann 2900K halogen lamps (HA) and an Advanced Illumination DL097-WHIIC LED diffuse dome (LD).

Their relative power spectral distributions E(λ) are defined for all λ ∈ [400nm, 700nm] and normalized so that

their maximum reaches 255 (see Fig. 2).

C. Multispectral image simulation

To simulate the reference channels that the IMEC and “ideal” cameras would have provided according to Eq. (1),

we also need the transmittances T i(λ). These are specific to each camera:

• IMEC camera samples 16 bands with known transmittances T i
IMEC(λ) centered at λi ∈ B (see Fig. 3). By

discretely summing with dλ = 1, Eq. (1) becomes:

Iip = Q

(

700
∑

λ=400

E(λ) ·R(λ)p · T i
IMEC(λ)

)

. (2)

• To simulate the 16 channels acquired by the “ideal” camera (IC), we assume monochromatic transmittances

at λi ∈ B: T i
IC(λ) = δ(λ− λi), where δ is the Dirac delta function. Eq. (1) then becomes:

Iip = Q
(

E(λi) ·R(λi)p
)

. (3)

Note that all transmittances are normalized: for all i = 1..K,
∑700

λ=400 T
i
IMEC(λ) =

∑700
λ=400 T

i
IC(λ) = 1.

The functions E(λ), R(λ), and T (λ) are coded as float variables and the Q function quantizes the energy on 8
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Fig. 3. Normalized transmittances of IMEC camera1. Caption: center wavelengths λi ∈ B in ascending order.

bits, so that 0 ≤ Iip ≤ 28 − 1. Overall, this simulation provides 32 multispectral images with 16 channels of size

512× 512 pixels, for each of the considered two cameras and five illuminations.

D. Properties of multispectral images

1) Spatial Properties: Like for CFA demosaicing, it would be interesting to take advantage of the reflectance

properties for MSFA demosaicing. Most CFA demosaicing schemes assume that the reflectance does not change

locally across object surfaces, hence that values of a color channel (R, G or B) are correlated among neighboring

pixels in homogeneous areas. The sparse spatial sub-sampling of each channel by the MSFA may affect this spatial

correlation assumption. To assess it, we use the Pearson correlation coefficient between the value Iip of each pixel

p(x, y) and that Iip+(δx,0)
of its right neighbor at spatial distance δx in a given channel Ii as [6]:

C[Ii](δx) =

∑

p

(

(Iip − µi)(Iip+(δx,0)
− µi)

)

√

∑

p

(Iip − µi)2
√

∑

p

(Ii
p+(δx,0)

− µi)2
, (4)

where µi is the mean value of channel Ii. For a given δx, we compute the average correlation C̄(δx) on the 32

IMEC and IC images simulated with the CIE D65 illuminant whose power distribution can be considered as uniform

in the visible domain (see Fig. 2). The results (see Tab. I) show that the higher the spatial distance between two

pixels, the lower the correlation between them. In particular, the spatial distance between two pixels with the same

available channel is δx = 2 in the Bayer CFA and δx = 4 in our considered MSFA, which makes the correlation

decrease from 0.94 to 0.89.

1The optical device is equipped with a 450–650 nm band-pass filter to avoid spectral artifacts.
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TABLE I

SPATIAL CORRELATION C̄(δx) BETWEEN VALUES OF TWO NEIGHBORING PIXELS FOR DIFFERENT DISTANCES δx (AVERAGE OVER 16

CHANNELS OF 32 IMEC OR IC IMAGES UNDER CIE D65 ILLUMINANT).

δx (pixels) 0 1 2 3 4

IMEC images 1.00 0.98 0.94 0.91 0.88

IC images 1.00 0.98 0.94 0.91 0.89

2) Spectral Properties: Gunturk et al. [6] also experimentally show that color channels are strongly correlated in

natural images, such that all three channels largely share the same texture and edge locations. This strong spectral

correlation can be effectively used for CFA demosaicing because (R,G,B) transmittances of color cameras widely

overlap. On the opposite, an MSFA finely samples the visible spectrum according to K rather separated bands. We

can then expect that channels associated with nearby band centers are more correlated than channels associated with

distant band centers [18]. To validate this assumption, we evaluate the correlations between all pairs of channels

on IMEC and IC multispectral images simulated with the CIE D65 illuminant. The Pearson correlation coefficient

between any pair of channels Ii and Ij is computed as [6]:

C
(

Ii, Ij
)

=

∑

p

(

(Iip − µi)(Ijp − µj)
)

√

∑

p

(Iip − µi)2
√

∑

p

(Ijp − µj)2
. (5)

The results (see Figs. 4(a) and 4(b)) confirm that channels associated with spectrally close band centers (λi ≈ λj)

are more correlated than channels associated with distant band centers (λi ≫ λj or λi ≪ λj) for IMEC and IC

images. They also show that IMEC channels are more correlated than IC ones because IMEC transmittances

somewhat overlap.

3) Illumination Properties: As seen in Sect. III-A, the acquired multispectral images depend on the spectral

power of illumination E(λ). From Eq. (1) we can expect that when E(λ) is low over wide spectral ranges (e.g.,

F12 in Fig. 2) and T i(λ) is low at other wavelengths, the value Iip will also be low. To highlight this dependency

upon illumination, we compute the mean value µi of each channel for IMEC and IC images simulated with the

CIE F12 illuminant. Figure 5 confirms that µi is low when E(λ) is also low, showing that the illumination strongly

affects the mean value of each channel. We can therefore assume that the non-uniformity of illumination spectral

distribution impacts the value range in each channel.

These statistical studies of multispectral images finally yield three main properties that could be exploited for

MSFA demosaicing:

• Spatial correlation within each channel decreases as the spatial distance between pixels increases.

• Spectral correlation between channels decreases as the distance between centers of their associated bands

increases.

• The non-uniformity of illumination spectral distribution impacts the acquired value range in each channel.

January 25, 2018 DRAFT



8

469

469

633

633

λi (nm)
λ
j

(n
m

)

(a) C
(

Ii, Ij
)

on IMEC images

469

469

633

633λi (nm)

λ
j

(n
m

)
(b) C

(

Ii, Ij
)

on IC images

0.60

0.66

0.72

0.77

0.81

0.85

0.88

0.91

0.95

0.97

1.00

469 633λi (nm)

(c) C
(

Ii, IM
)

on IMEC images

469 633λi (nm)

(d) C
(

Ii, IM
)

on IC images

Fig. 4. (a), (b): Correlation between channels Ii and Ij of IMEC (a) and IC (b) images under CIE D65 illuminant. (c), (d): Correlation between

channel Ii and PPI IM of IMEC (c) and IC (d) images under CIE D65 illuminant (see Sec. V-A). Values are averaged over 32 images, range

between 0.63 (black) and 1.0 (white), and are displayed with cubic scale. Values of (c) and (d) are reported column-wise as red lines on (a)

and (b) respectively.

IV. DEMOSAICING METHODS FOR NON-REDUNDANT MSFAS

In this section, we first formulate the MSFA demosaicing problem and present a simple scheme of bilinear

interpolation. Then we review methods that are proposed in the literature for MSFAs with no dominant band.

Finally we point out the limitations of these approaches.

A. MSFA demosaicing problem formulation

A single-sensor multispectral camera fitted with a non-redundant MSFA provides a raw image IMSFA with

X × Y pixels. A single band k ∈ {1, . . . ,K} is associated with each pixel p according to the MSFA. Let S be

the set of all pixels (with cardinality |S| = X × Y ) and Sk be the pixel subset where the MSFA samples the band

k, such that |Sk| = XY
K

and S =
⋃K

k=1 S
k. Then, IMSFA can be seen as a spectrally-sampled version of the

reference fully-defined image I = {Ii}Ki=1 according to the location of p: for all p ∈ Sk, IMSFA
p = Ikp . At each

pixel of the raw image IMSFA, only one out of the K channels is available and the values of the K− 1 others are

missing. Demosaicing is then performed on IMSFA to obtain an estimated image Î with K fully-defined channels,

among which K − 1 are estimated at each pixel p: for all p ∈ Sk, Îp =
(

Î1p , . . . , Î
k−1
p , Ikp , Î

k+1
p , . . . , ÎKp

)

, where

Îip, i 6= k, is the estimated value of channel Ii at p.
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Fig. 5. Relative power spectral distribution E(λ) of CIE F12 illuminant (solid line) and average value µi over 32 simulated IMEC (triangle

dot) and IC (circle dot) images for each center wavelength λi ∈ B.

B. Weighted bilinear (WB) interpolation

One of the most simple demosaicing scheme estimates the missing values at each pixel thanks to a bilinear

interpolation of the neighboring values. The WB interpolation can be described in two steps [1]:

• First, for each channel index i = 1..K, it builds a sparse raw image Ĩi that contains the available values at

pixels in Si and zero elsewhere (see Fig. 7(a)). This can be formulated as:

Ĩi = IMSFA ⊙mi , (6)

where ⊙ denotes the element-wise product and mi is a binary mask defined at each pixel p as:

mi
p =











1 if p ∈ Si,

0 otherwise.

(7)

• Second, it estimates each channel by interpolation (see Fig. 7(b)) as:

ÎiWB = Ĩi ∗H , (8)

where ∗ is the convolution operator and H is a low-pass filter. For a 4×4 non-redundant MSFA, H is defined
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from the following 7× 7 unnormalized filter:

F =
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2 4 6 8 6 4 2

3 6 9 12 9 6 3

4 8 12 16 12 8 4

3 6 9 12 9 6 3

2 4 6 8 6 4 2
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, (9)

such that the weight of each neighbor decreases as its spatial distance to the central pixel increases. The

normalization of F to get H must take care of the sparse nature of Ĩi and proceed channel-wise, hence

element-wise. The element of H at the a-th row and b-th column, (a, b) ∈ {1, . . . , 7}2, is then given by:

H(a, b) =
F (a, b)

cF (a, b)
, (10)

where the normalization factor cF is defined by:

cF (a, b) =
∑7

k=1
k≡a (mod 4)

∑7
l=1
l≡b (mod 4)

F (k, l). (11)

The conditions here using the congruence relation ≡ consider all the pixels that underlie H and belong to the

same MSFA subset as the pixel under H(a, b), which ensures that H is normalized channel-wise according to

the 4 × 4 basic MSFA pattern. Figure 6 shows three (out of sixteen) cases of F (and of H) center locations

for the convolution of a sparse channel Ĩi. The elements of F that affect the convolution result correspond

to non-zero pixels of Ĩi (displayed in black), and are normalized by the sum of all such elements of F that

overlie the pixels of Si. Note that for the particular filter F of Eq. (9), the normalization factor is constant:

cF (a, b) = c = 16.

(a) (b) (c)

Fig. 6. Normalization of F as H for the convolution of a sparse channel (with non-zero pixels in black) on three cases of filter center locations

(in gray). The support window of F (dotted bound) overlies a variable number of non-zero pixels according to its center location: four for (a),

two for (b) or one (the center itself) for (c).
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Fig. 7. DS image formation: (a) sparse channel Ĩi (with non-zero pixels in black), (b) fully-defined channel Îi
WB

estimated by WB interpolation,

(c) DS images of Îi
WB

.

Such interpolation is considered as the most intuitive method for MSFA demosaicing. However, as the estimation

of missing values for a channel only uses available values in the same channel, WB interpolation only exploits

spatial correlation.

C. Discrete wavelet transform (DWT)

Wang et al. extend the DWT-based CFA demosaicing to MSFA demosaicing [31]. This approach assumes that

the low-frequency contents is well estimated by WB interpolation and that the high-frequency contents have to

be determined more accurately. The algorithm first estimates a fully-defined multispectral image ÎWB by WB

interpolation (see Sec. IV-B), then applies five successive steps to each channel ÎiWB:

1) It decomposes ÎiWB into K down-sampled (DS) images as shown in Fig. 7, so that the j-th DS image of

ÎiWB is made of the pixels in Sj . Note that only the i-th DS image of ÎiWB contains MSFA (available) values.

2) It decomposes each DS image into spatial frequency sub-bands by DWT using Haar wavelet (D2).

3) It replaces the spatial high-frequency sub-bands of all (but the i-th) DS images by those of the corresponding

DS images of the mid-spectrum channel assuming this is the sharpest one. The latter is associated with the

band centered at λ8 = 551nm in our considered 4× 4 MSFA.

4) It computes K transformed DS images by inverse DWT.

5) It recomposes the full-resolution channel Îi from the K transformed DS images.

D. Spectral difference (SD)

Brauers and Aach [1] propose a method that both uses WB interpolation and takes spectral correlation into

account. It was originally designed for a 3×2 MSFA but we adapt it here to any non-redundant MSFA with square

basic pattern. From an initial estimation ÎWB (see Sec. IV-B), it performs the following steps:

1) First, for each ordered pair (i, j) of channel indices, it computes the sparse channel difference ∆̃i,j given by:

∆̃i,j = Ĩi − ÎjWB ⊙mi , (12)
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that is only non-zero at the pixels in Si, and a fully-defined channel difference ∆̂i,j = ∆̃i,j ∗ H by WB

interpolation (see Eq. (8)).

2) Second, for each i = 1..K, it estimates Îi by adding the sparse raw image (see Eq. (6)) and channel difference

∆̂i,j :

Îi =

K
∑

j=1

(

Ĩj + ∆̂i,j ⊙mj
)

. (13)

Note that a missing value at each pixel p ∈ Sk is equivalently given by: Îip = Ikp + ∆̂i,k
p .

E. Iterative spectral difference (ItSD)

Mizutani et al. [18] improve the SD method by iteratively updating the channel differences. The number of

iterations takes the correlation between two channels Ii and Ij into account, that is strong when their associated

band centers λi and λj are close (see Sec. III-D). The number of iterations N i,j is given by:

N i,j =

⌈

exp

(

−|λj − λi| − 100

20σ

)⌉

. (14)

It decreases as the distance between λi and λj increases. For instance, setting σ = 1.74 as proposed by the authors

provides N i,j = 10 when |λj − λi| = 20nm and N i,j = 1 when |λj − λi| ≥ 100nm.

The algorithm initially estimates all sparse channel differences ∆̃i,j(0) (see Eq. (12)) and all channels Îi(0) (see

Eq. (13)). At each iteration t > 0, it first updates the sparse channel difference:

∆̃i,j(t) =











Ĩi − Îj(t− 1)⊙mi if t ≤ N i,j ,

∆̃i,j(t− 1) otherwise.

(15)

Then it estimates a fully-defined channel difference as: ∆̂i,j(t) = ∆̃i,j(t) ∗ H , and each channel as: Îi(t) =
∑K

j=1 Ĩ
j + ∆̂i,j(t)⊙mj (see Eqs. (8) and (13)).

F. Binary tree-based edge-sensing (BTES)

For each channel, the previously presented methods estimate the missing values simultaneously. To determine the

missing values of a channel, Miao et al. [16] propose a scheme divided into four steps in the case of a 4× 4 non-

redundant MSFA. At each step t, 2t values are known in each periodic pattern, either because these are available

raw data or they have been previously estimated (see Fig. 8). Let us consider the i-th channel (i = 1..16) and

denote as Ŝi(t) (displayed in gray in Fig. 8) the subset of pixels whose value of channel Ii is estimated at step t,

and Ṡi(t) (displayed in black) the subset of pixels whose value of channel Ii is available in IMSFA or has been

previously estimated: Ṡi(0) = Si and Ṡi(t) = Ṡi(t − 1) ∪ Ŝi(t − 1) for t > 0. At step t, for each i = 1..16, the

values of channel Ii at p ∈ Ŝi(t) are estimated as:

Îip =

∑

q∈Ñp(t)
αq · İiq

∑

q∈Ñp(t)
αq

, (16)

where İiq is available in IMSFA or has been previously estimated, and Ñp(t) is the subset of the four closest

neighbors of p that belong to Ṡi(t). These are vertical and horizontal neighbors for t ∈ {1, 3} and diagonal ones
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for t ∈ {0, 2} that are located at uniform distance ∆ = 2− ⌊t/2⌋ from p (see Fig. 8). The weights αq , that embed

the edge-sensing part of the algorithm, also depend on t and on the direction (horizontal, vertical, or diagonal)

given by p and q. For instance, the weight αq associated with an horizontal neighbor q is computed as:

αq =
(

1 +
∣

∣

∣
İiq+(2,0) − İiq

∣

∣

∣
+
∣

∣

∣
İiq−(2,0) − İiq

∣

∣

∣
+

1
2

∣

∣

∣
İiq+(−1,−1) − İiq+(1,−1)

∣

∣

∣
+ 1

2

∣

∣

∣
İiq+(−1,1) − İiq+(1,1)

∣

∣

∣

)−1

.

(17)

In the case of a non-redundant MSFA, many values are missing at t < 3 to compute these weights. Miao et al.

propose to set missing values to 1, which leads to an unweighted bilinear interpolation at t = 0 and t = 1.

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3

Fig. 8. Estimation of Îi in four steps by BTES method. Pixels of Ŝi(t) whose values are estimated at t are displayed in gray, and those of

Ṡi(t) whose values are known or previously estimated are displayed in black.

G. Multispectral local directional interpolation (MLDI)

Shinoda et al. [27] combine BTES and SD approaches into the MLDI method that uses four steps like BTES (see

Fig. 8). Instead of marginally estimating each channel as in Eq. (16), the authors compute the difference between

the i-th channel being estimated and the available one at each pixel of IMSFA. Let us denote below as k(p) the

channel index whose value is available at p in IMSFA (i.e., I
k(p)
p = IMSFA

p ) when its dependency upon p should

be recalled for clarity sake. The difference value at p ∈ Ŝi(t) is computed following Eq. (16) as:

D̂i,k(p)
p =

∑

q∈Ñp(t)
βq · Ḋi,k(p)

q
∑

q∈Ñp(t)
βq

, (18)

where Ḋ
i,k(p)
q = İiq − 1

2

(

I
k(p)
p + İ

k(p)
r

)

is a directional difference computed at one of the four closest neighbors

q of p that belong to Ṡi(t). The pixel r is the symmetric of p with respect to q, so that r belongs to Ṡk(p)(t) (see

Fig. 9). The value of the i-th channel at p is finally estimated as:

Îip = D̂i,k(p)
p + Ik(p)p . (19)

Note that each weight βq in Eq. (18) both depends on t and on the direction given by p and q (see Appendix A).

Shinoda et al. [27] also propose a post-processing of an initial estimation Î, that updates each estimated channel

Îi at each pixel p using Eq. (19) but now with D̂
i,k(p)
p =

∑

q∈Np
βq·d̂

i,k(p)
q

∑

q∈Np
βq

(see Eq. (18)), where Np is made of the

eight closest neighbors of p, and d̂
i,k(p)
q = Îiq − Î

k(p)
q .
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(a) t = 0

p

q1

q2

q3

q4
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r2

r3
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(b) t = 1

Fig. 9. Estimation of Îi by MLDI method (first two steps only) at p ∈ Sk using the neighbors q ∈ Ṡi(t) and r ∈ Ṡk(p)(t). Ṡi(t) is displayed

in black and Ŝi(t) in gray.

H. Limitations of existing methods

The previous methods can be described according to the properties of channels (spatial or/and spectral correlation)

that they exploit (see Tab. II).

By using bilinear interpolation, all methods assume a strong spatial correlation among values within each channel.

But Sec. III-D experimentally shows that the spatial correlation decreases as the distance between neighboring pixels

(or the basic MSFA pattern size) increases. Hence, the 4 × 4 basic pattern of our considered MSFA weakens the

spatial correlation assumption. Besides, this assumption does not hold at object boundaries [2]. An edge-sensitive

mechanism is then required to avoid interpolating values across boundaries. Two methods embed edge-sensitive

weights in bilinear interpolation, either on each channel (BTES) or channel difference (MLDI).

Like SD, ItSD and MLDI methods are based on channel differences assuming that channels are correlated at each

pixel. But Sec. III-D shows that spectral correlation between channels decreases as the spectral distance between

their associated band centers increases. Only ItSD relies on the property stating that channels associated with nearby

band centers are more correlated than channels associated with distant ones.

Several CFA demosaicing schemes exploit the properties of green channel (either implicitly or explicitly as in [12])

for demosaicing because it carries most of image structures. Indeed, the green band is dominant in Bayer CFA and the

green channel is often assumed to represent the luminance information. Similarly, multispectral demosaicing schemes

applied to MSFAs with a dominant band use the associated channel to estimate other channels [9, 19, 21, 22].

Because our considered MSFA exhibits no dominant band, we propose to compute a pseudo-panchromatic image

(PPI) and use it for MSFA demosaicing.
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TABLE II

PROPERTIES USED BY EXISTING DEMOSAICING METHODS. WB: WEIGHTED BILINEAR [1], DWT: DISCRETE WAVELET TRANSFORM [31],

SD: SPECTRAL DIFFERENCE [1], ItSD: ITERATIVE SPECTRAL DIFFERENCE [18], BTES: BINARY TREE-BASED EDGE-SENSING [16], MLDI:

MULTISPECTRAL LOCAL DIRECTIONAL INTERPOLATION [27].

Spatial correlation Spectral correlation

Bilinear Edge- Channel Nearby Frequency

interpolation sensing difference band centers

WB X

DWT X X

SD X X

ItSD X X X

BTES X X

MLDI X X X

V. PPI DETERMINATION AND PROPOSED DEMOSAICING METHODS

In this section, we first define the PPI of a fully-defined multispectral image and show that it is strongly correlated

with all channels. Then we introduce how to estimate the PPI from a scale-adjusted raw image. We finally propose

two multispectral demosaicing methods based on the PPI.

A. PPI of a multispectral image

The PPI IM is defined at each pixel p as the mean value over all channels of a multispectral image [3]:

IMp =
1

K

K
∑

i=1

Iip. (20)

The following demosaicing proposals assume that the PPI is strongly correlated with all channels. To assess

this assumption, we propose to compute the average correlation coefficient C
(

Ii, IM
)

(see Eq. (5)) between

each channel and the PPI on IMEC and IC images simulated with the CIE D65 illuminant. The results (see

Figs. 4(c) and 4(d)) show that the channels are strongly correlated with the PPI. To compare this correlation with

inter-channel correlation given by Eq. (5), the red lines in Figs. 4(a) and 4(b) show the bounds of the domain
{

λj : C
(

Ii, Ij
)

≥ C
(

Ii, IM
)}K

j=1
for each i = 1..K (column-wise). When band centers are distant (λi ≫ λj or

λi ≪ λj), channel Ii is more correlated with the PPI IM than with Ij . This interesting property allows us to expect

enhanced fidelity of PPI-based demosaicing methods that would exploit inter-channel differences.

B. Raw value scale adjustment for illumination robustness

As seen in Sec. III-D3, the non-uniformity of illumination spectral distribution impacts the acquired value range

in channels. As a consequence, some channels have very low values that may bias the PPI estimation. To robustly

estimate the PPI in varying illumination conditions, we propose to adjust the value scale of each subset Si in the

raw image IMSFA before PPI estimation.
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We compute a new raw value I ′MSFA
p at each pixel p as:

I ′MSFA
p = IMSFA

p · maxs∈S(I
MSFA
s )

maxs∈Sk(p)(IMSFA
s )

, (21)

so that all channels have the same maximal available value in I ′MSFA. This pre-processing ensures that spectral

correlation is efficiently handled by channel differences. Because it modifies the values of the raw image and of the

estimated image Î
′ consequently, we need to restore the original value scale after demosaicing by post-processing

each estimated channel Î ′i as:

Îip = Î ′ip ·
IMSFA
p

I ′MSFA
p

. (22)

Below we explain how to estimate the PPI from the scale-adjusted raw image I ′MSFA and how to use this PPI to

estimate Î
′ according to two demosaicing methods.

C. PPI estimation

Since the value of a single channel is available at each pixel in I ′MSFA, we rely on the spatial correlation

assumption of the fully-defined PPI (i.e., we assume that PPI values of neighboring pixels are strongly correlated).

That leads us to estimate the PPI from I ′MSFA by applying an averaging filter M [17].

This filter has to take all channels into account while being as small as possible. Its size is hence that of the

smallest odd-size neighborhood window including at least one pixel in all MSFA subsets {Si}Ki=1. Each element

of M is set to 1
n

, where n is the number of times when the MSFA band associated with the underlying neighbor

occurs in the support window of M . This filter is normalized afterwards so that all its elements sum up to 1. For

any 4× 4 non-redundant MSFA, M is given by:

M =
1

64
·























1 2 2 2 1

2 4 4 4 2

2 4 4 4 2

2 4 4 4 2

1 2 2 2 1























. (23)

A first estimation of the PPI is then computed as [17]:

ĪM = I ′MSFA ∗M. (24)

M is an averaging filter that may provide a smooth image. We instead here propose to use local directional

information to obtain another estimation ÎM of the PPI that is sharper than ĪM . For this purpose, we consider the

MSFA-specific neighborhood Ñp of each pixel p made of the eight closest pixels of p that also belong to Sk(p)

(see Fig. 10(a)).

For each pixel q ∈ Ñp, we compute a weight γq using the scale-adjusted raw image I ′MSFA as:

γq =

(

1 +

1
∑

v=−1

1
∑

u=0

κ(u, v) · |I ′MSFA
p+ρ(u,v) − I ′MSFA

q+ρ(u,v)|
)−1

. (25)
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Fig. 10. Proposed PPI estimation: (a) neighborhood Ñp (in gray) of p (in black), (b)–(c) weight γq computation (see Eq. (25)) for q = p+(0,−4)

(b) and q = p+ (4,−4) (c) with coefficients κ(u, v).

Here, κ(u, v) = (2− u) · (2− |v|) ∈ {1, 2, 4} is the coefficient associated with the absolute difference between the

values of pixels p+ ρ(u, v) and q + ρ(u, v) given by the following relative coordinates:

ρ(u, v) =











(

u·δx+v·δy
4 ,

u·δy+v·δx
4

)

if δx · δy=0,
(

(u+|v|· 1−v
2 )·δx

4 ,
(u+|v|· 1+v

2 )·δy
4

)

otherwise,
(26)

where (δx, δy) ∈ {−4, 0, 4}2 are the coordinates of q relative to p. Figures 10(b) and 10(c) show two examples of

weight computation according to one of the eight cardinal directions given by the central pixel p and its neighbor

q. Note that to carefully consider the direction from p to q, we only use some of the neighboring pixels of p and q,

namely the five ones given by that direction and defined by ρ(u, v). A weight γq ranges from 0 to 1 and is close

to 0 when the directional variation of available values between p and q is high.

We then propose to compute the local difference ∆p[I
′MSFA] between the value of any pixel p in I ′MSFA and

the weighted average value of its eight closest neighbors associated with the same available channel:

∆p[I
′MSFA] = I ′MSFA

p −
∑

q∈Ñp
γq · I ′MSFA

q
∑

q∈Ñp
γq

. (27)

Since the PPI is the average value over all channels at each pixel, we can assume that ∆p is invariant against the

PPI. Then ∆p[I
′MSFA] = ∆p[Ī

M ], which provides a new estimation of the PPI at each pixel:

ÎMp = I ′MSFA
p +

∑

q∈Ñp
γq·(ĪM

q −I′MSFA
q )

∑

q∈Ñp
γq

. (28)

To assess the two above PPI estimations, we compute the peak signal-to-noise ratio (PSNR) between each

estimation and the reference PPI IM . The PPI ÎM estimated according to Eq. (28) provides a PSNR of 42.32 dB

(on average on IMEC and IC images simulated with the CIE D65 illuminant), which improves the estimation given

by ĪM [17] (see Eq. (24)) whose PSNR is 37.46 dB.

January 25, 2018 DRAFT



18

To validate the assumption about strong correlation between the values of each channel Ii that are available in

I ′MSFA and the estimated PPI ÎM , we compute the following Pearson correlation coefficient:

CSi

(

I ′MSFA, ÎM
)

=

∑

p∈Si
(I′MSFA

p −µMSFA

Si )(ÎM
p −µM

Si)
√

∑

p∈Si
(I′MSFA

p −µMSFA

Si )
2
√

∑

p∈Si
(ÎM

p −µM

Si)
2

,

(29)

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

1 2 3 4 1

5 6 7 8 5

9 10 11 12

16151413 13

9

1 2 3 4 1

1 2 3 4 1

5 6 7 8 5

9 10 11 12

16151413 13

9

1 2 3 4 1

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

... ... ... ... ... ...

...

...

...

...

...

1 1

1 1

IMSFA

Raw MSFA image
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Fig. 11. Outline of the proposed PPID demosaicing method.

where µMSFA
Si and µM

Si are the average values of I ′MSFA and ÎM at the pixels in Si. We compute the average

values of CSi(I ′MSFA, ÎM ) and of C
(

Ii, IM
)

between each reference channel Ii and the reference PPI (see

Sec. V-A) on IMEC and IC multispectral images simulated with the CIE D65 illuminant. The results (not displayed

here) show that CSi(I ′MSFA, ÎM ) = 0.979 and C
(

Ii, IM
)

= 0.980 for IMEC (0.929 and 0.927 for IC) on average

over all channels. These correlations differ by less than 7.10−3 channel-wise for all images. We can conclude that

the strong correlation between each reference channel and the PPI (see Figs. 4(c) and 4(d)) holds with the estimated

PPI.

That leads us to exploit the estimated PPI ÎM for demosaicing. Below we propose both an example of application

of the PPI on an existing demosaicing method (DWT) and a new demosaicing method initiated in [17].

D. Using PPI in DWT

For the considered non-redundant MSFA, DWT uses the high-frequency contents of the mid-spectrum channel

estimated by bilinear interpolation to estimate the other channels (see Sec. IV-C). Since the PPI has similar

information than the mid-spectrum channel and is (hopefully) better estimated, we propose to replace the spatial
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high-frequency sub-bands by those of the PPI instead of the mid-spectrum channel (see step 3 of Sec. IV-C). The

adapted method is referred to as PPDWT, and assessed in Sec. VI.

E. Pseudo-panchromatic image difference (PPID)

Instead of using the difference between channels as in SD (see Sec. IV-D), we propose to compute the difference

between each channel and the PPI. The algorithm is divided into four successive steps:

1) First, it estimates the PPI image ÎM (see Eq. (28)).

2) Second, it computes the sparse difference ∆̃i,M between each available value of I ′MSFA and the PPI at

pixels in Si, i = 1..K:

∆̃i,M = Ĩ ′i − ÎM ⊙mi, (30)

where Ĩ ′i = I ′MSFA ⊙mi.

3) Third, it uses the local directional weights computed according to Eq. (25) (whereas [17] directly uses H of

Eq. (10)) to estimate the fully-defined difference ∆̂i,M by adaptive WB interpolation as:

∆̂i,M
p = ∆̃i,M ∗Hp. (31)

Each element (a, b) ∈ {1, . . . , 7}2 of the new 7× 7 adaptive convolution filter Hp is given by:

Hp(a, b) =
F (a, b) · Γp(a, b)

∑7
k=1
k≡a (mod 4)

∑7
l=1
l≡b (mod 4)

F (k, l) · Γp(k, l)
, (32)

where F (a, b) is defined by Eq. (9) and the denominator is a channel-wise normalization factor like in non-

adaptive WB interpolation (see Eq. (11)). The 7× 7 filter Γp contains the local directional weights according

to each cardinal direction given by the central pixel p and its neighbor q underlying the filter elements:

Γp =







































γq2

γq1 · J3 γq2 γq3 · J3
γq2

γq8 γq8 γq8 1 γq4 γq4 γq4

γq6

γq7 · J3 γq6 γq5 · J3
γq6







































, (33)

where q1 = p + (−4,−4), . . . , q8 = p + (−4, 0) (see Fig. 10(a)) and J3 denotes the 3 × 3 all-ones matrix.

By design, Γp splits Hp into eight areas matching with the directions given by p and its eight neighbors that

belong to Ñp. Note that Hp depends on p because γq also does.

4) Finally, it estimates each channel by adding the PPI and the difference:

Î ′i = ÎM + ∆̂i,M . (34)

The proposed demosaicing method based on PPI difference (PPID) is outlined in Fig. 11.
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VI. EXPERIMENTAL DEMOSAICING RESULTS

A. PSNR assessment of demosaicing methods

We first objectively compare the demosaicing performances reached by PPI-based methods with those provided

by the existing methods described in Sec. IV. Our reference images are the 32 IMEC and 32 IC multispectral

images of size 512× 512 pixels simulated from the CAVE database [32] with the CIE D65 illuminant as described

in Sec. III-C. To obtain raw images, we spectrally sample these images according to the MSFA pattern shown in

Fig. 1(d). The quality of a multispectral image estimated by demosaicing is evaluated by the average PSNR between

reference and estimated channels, where the maximum pixel value is set to 255 for each channel. To avoid border

effects, we consider only the 500× 500 central pixels of each image in the PSNR computation.

Figure 12 displays the PSNR values provided by the demosaicing methods on average over the 32 images for

each camera. The table in Fig. 12(a) shows that WB and BTES methods give poor results because they only use

spatial correlation. DWT neither performs well because it uses the information of bilinearly interpolated channels

for the estimation of all channels. The PPI more efficiently represents the high-frequency contents than the channel

Î8WB used by DWT, since the PSNR provided by PPDWT is improved by 3.28 dB (on average over IMEC and

IC images) with respect to DWT. Taking spectral correlation into account through spectral differences (SD) among

all channels improves the PSNR of WB interpolation by 3.12 dB. Using channels associated with nearby band

centers to iteratively update the results is an interesting approach that improves SD by 1.95 dB in ItSD. Using

local directional information is especially efficient: this improves SD by 3.22 dB in MLDI that exploits inter-

channel correlation, and by 4.01 dB in PPID that exploits the correlation between each channel and the PPI. Our

PPID method provides the best result for both IMEC and IC images. Figures 12(b) and 12(c) confirm these results,

and show that PPID outperforms the other methods for almost all channels.

B. Visual comparison

We select an area of 70 × 70 pixels from the “Fake and Real Lemons” IMEC image simulated with the D65

illuminant to visually compare the results of each method in the channel associated with the band centered at

λ9 = 552nm. Figure 13 shows that the images estimated by the WB (b) and BTES (c) methods are strongly

blurred. Due to the wavelet transform, DWT (d) introduces some artifacts and blurred edges that are reduced in

PPDWT (e). The SD (f) and ItSD (g) methods suffer from severe zipper effect. All demosaicing artifacts are fairly

reduced with MLDI (h) and PPID (i), that notably generate far less blur than WB. PPID provides sharper edges

than MLDI but is slightly more sensitive to zipper effect.

We also convert the reference and estimated IMEC “Feathers” images to the sRGB color space via the CIE XYZ

standard observer functions [11]. The conversion from XYZ to sRGB is performed using the CIE D65 illuminant

as reference white. The results displayed in Fig. 14 show that WB and BTES provide highly blurred images with

colors artifacts, and that PPDWT successfully reduces the image blur and color artifacts generated by DWT. SD is

prone to false colors that are somewhat reduced by ItSD at the expense of severe zipper artifacts. These artifacts
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are fairly reduced with MLDI, that however still produces some false colors. PPID provides almost artifact-free

images with sharp edges.

C. Illumination and demosaicing performances

As the non-uniformity of illumination impacts the acquired value range in channels (see Sec. III-D), it would be

interesting to study the influence of illumination changes on the demosaicing method performances. For this purpose,

we compute the PSNR provided by each method on IMEC and IC images simulated with the various illuminations

of Fig. 2. The results are displayed in Tabs. III(a) and, III(b) the best one for each illumination being highlighted as

bold. They show that the performances of all methods are affected by illumination changes. Thanks to the pre- and

post-processing steps associated with PPI estimation (see Eq. (21) and (22)), PPI-based methods are fairly robust

to illumination variations and especially show very good performance with the narrow-band F12 illuminant. To

highlight the usefulness of the pre- and post-processing in PPI estimation, we also consider PPID method without

scale adjustment, namely PPID0. Results show that scale adjustment improves the performance by up to 6.94 dB

for all illuminations except D65 illuminant whose power distribution can be considered as uniform in the visible

domain. Our PPID method always provides the best results; it performs slightly better than MLDI for D65 and

outperforms all existing methods by more than 1.7 dB for other illuminations.

TABLE III

PSNR (dB) OF IMAGES ESTIMATED BY EACH DEMOSAICING METHOD ACCORDING TO ILLUMINATION (AVERAGE OVER ALL CHANNELS OF

THE 32 IMEC (A) AND IC (B) IMAGES). ILLUMINATIONS: SEE FIG. 2.

(a) IMEC

D65 F12 A HA LD

WB 34.68 48.78 39.32 37.60 41.86

BTES 34.79 48.89 39.43 37.72 41.97

DWT 34.56 45.78 39.06 37.06 40.70

PPDWT 38.29 51.35 42.86 41.13 45.03

SD 38.14 49.63 42.35 40.33 43.22

ItSD 40.70 49.29 44.41 41.95 43.08

MLDI 41.70 52.20 45.83 43.83 46.01

PPID0 42.99 51.36 46.37 43.98 45.61

PPID 42.92 53.91 47.16 45.52 48.77

(b) IC

D65 F12 A HA LD

WB 34.27 50.89 39.60 38.04 42.20

BTES 34.39 50.98 39.72 38.16 42.32

DWT 33.68 43.16 38.26 35.41 38.47

PPDWT 36.53 51.97 41.76 40.20 44.07

SD 36.95 45.84 40.46 37.72 39.48

ItSD 38.28 43.77 40.74 37.63 38.03

MLDI 39.84 48.62 43.12 40.25 41.61

PPID0 40.13 46.63 42.44 39.41 40.60

PPID 40.18 53.57 45.10 43.57 46.88

D. Computation time

Here we roughly consider the computation time required by the various methods. We have implemented all of

them in Java under the open-source image analysis software ImageJ [26]. The Java bytecodes and an ImageJ macro

are available as supplementary material. To be independent of computer performances, programming language, and

image size, we propose to compare each method with WB interpolation that is the simplest method. We therefore
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run each demosaicing method a hundred times on a single constant image whose values are all set to 127, and we

normalize the resulting computation time with that of WB interpolation. Table IV shows the corresponding ratios,

which gives some insights about the algorithmic complexity of the tested methods. By putting them in relation with

PSNR performances, we conclude that our proposed PPID method gives better results and requires less computation

time than MLDI that is the best state-of-the-art method in terms of PSNR.

TABLE IV

COMPUTATION TIME RATIOS OF THE METHODS WITH RESPECT TO WB.

WB BTES DWT PPDWT SD ItSD MLDI PPID

1.00 2.97 6.16 6.26 17.20 97.49 12.76 7.87

E. Experiments on landscape radiance images

Figure 4 shows that IMEC and IC cameras provide images with pairwise correlated channels even when the

associated band centers are distant, all correlation values being higher than 0.60. The PPI is therefore strongly

correlated with all channels and our PPI-based demosaicing method provides good results. It is interesting to

examine the behavior of demosaicing methods when spectral correlation is weak. For this purpose, let us consider

the six landscape images from Stanford database [28] acquired over the visible and near infrared (VIS+NIR) spectral

domains. These are radiance 16-bit images with 148 channels, from which we pick K = 16 channels associated

with narrow bands (3.7nm resolution) whose centers are equally spaced band centers from 414.72 to 903.15nm.

Figure 15(a) shows the spectral correlation between channels on average over the six images. The correlation is

high within each of the VIS and NIR domains: it ranges from 0.65 to 1.00 inside the VIS domain (top left), and from

0.78 to 1.00 inside the NIR domain (bottom right). But channels associated with two bands in different domains (top

right and bottom left) are weakly correlated as values range from −0.32 to 0.63. Figure 15(b) shows the correlation

between each channel and the PPI. Like in Fig. 4, these values are reported column-wise on Fig. 15(a) where the

red lines are the bounds of the domain
{

λj : C
(

Ii, Ij
)

≥ C
(

Ii, IM
)}K

j=1
for each i = 1..K (column-wise). When

band centers are in different domains (top right and bottom left), channel Ii is more correlated with the PPI IM

than with Ij . These results allow us to expect that PPI-based demosaicing methods still provide enhanced fidelity

in the VIS+NIR spectral domain. Because the correlation between PPI and several NIR channels is very low, we

propose to estimate the PPI by using Eq. (24) or (28) that requires strong inter-channel correlation. Table V shows

the average PSNR over all channels of the six images with respect to the different methods. WB and BTES provide

good results since they use only spatial correlation. DWT performs poorly and is improved by using Eq. (24) of

PPI in PPDWT. The performances of SD, ItSD, MLDI, and methods based on PPID computed with Eq. (28) are

severely affected because they rely on the spectral correlation among all channels. PPID provides the best results

when the PPI is estimated by Eq. (24) that is based on the spatial correlation assumption.
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TABLE V

AVERAGE PSNR (dB) OVER ALL CHANNELS OF LANDSCAPE IMAGES OF STANFORD DATABASE ESTIMATED BY EACH DEMOSAICING

METHOD. IN PPI-BASED METHODS, GRAY COLORED TEXT SHOWS THE EQUATION (EQ. (24) OR EQ. (28)) USED TO COMPUTE THE PPI.

WB BTES DWT PPDWT SD ItSD MLDI PPID

38.59 38.62 36.87
Eq. (24): 37.59

Eq. (28): 36.81
36.85 36.96 38.13

Eq. (24): 39.43

Eq. (28): 37.70

VII. CONCLUSION

In this paper we show that the assumption about spectral correlation between channels should be carefully used

since it no longer holds when the associated band centers are distant. That leads us to propose a new scheme for

demosaicing based on the correlation between each channel and the pseudo-panchromatic image (PPI).

To estimate the PPI from the raw MSFA image, a simple averaging filter can be used in case of low inter-channel

correlation but it may fail to restore the high-frequency contents of the reference image. We therefore propose to

use local directional variations of raw values to restore edge information in the estimated PPI. We then incorporate

the PPI into an existing DWT-based method and propose a new demosaicing method based on PPI difference.

Extensive experiments show that the proposed scheme outperforms the existing ones suited to non-redundant

MSFAs, both in terms of PSNR and in a visual assessment. The PPI difference method provides high-quality

estimated images with sharp edges and reduced color and zipper artifacts. It is fairly robust to illumination variations

and its computational complexity is moderate. Future works will focus on how to use the PPI with redundant MSFAs

or in the frequency domain to perform multispectral demosaicing.

APPENDIX A

WEIGHT COMPUTATION IN MLDI

Let q = p + (δx, δy) denote a neighboring pixel of p, and r = p + 2 · (δx, δy) (see Fig. 9). To estimate Îip, the

weight βq of q used in MLDI (see Eq. (18)) is computed at step t according to the direction given by p and q as:

• for an horizontal direction:

βH
q =

(

ǫ+
∣

∣

∣
İk(p)r − Ik(p)p

∣

∣

∣

+
∑∆−1

d=0

∣

∣

∣

∣

IMSFA

p+( δx
|δx|

·(∆+d)),0)
− IMSFA

p−( δx
|δx|

·(∆−d),0)

∣

∣

∣

∣

+
∑∆

d=−∆
d 6=0

ωd ·
∣

∣

∣
IMSFA
p+(2·δx,d)

− IMSFA
p+(0,d)

∣

∣

∣

)−1

,

(35)

• for a vertical direction:
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βV
q =

(

ǫ+ |İk(p)r − Ik(p)p |

+
∑∆−1

d=0

∣

∣

∣

∣

IMSFA

p+
(

0,
δy
|δy|

·(∆+d)
) − IMSFA

p−
(

0,
δy
|δy|

·(∆−d)
)

∣

∣

∣

∣

+
∑∆

d=−∆
d 6=0

ωd ·
∣

∣

∣
IMSFA
p+(d,2·δy)

− IMSFA
p+(d,0)

∣

∣

∣

)−1

,

(36)

• for a diagonal direction:

βD
q =

(

ǫ+
∣

∣

∣
İip+(δx,δy)

− İip−(δx,δy)

∣

∣

∣

+
∣

∣

∣
İk(p)r − Ik(p)p

∣

∣

∣
+
∣

∣

∣
Î
k(p)
WB (q)− Ik(p)p

∣

∣

∣

)−1

,

(37)

where k(p) is the available channel index at p in IMSFA, ωd =
exp

(

− d2

2·0.52

)

2·
∑∆

u=1 exp
(

− u2

2·0.52

) , ∆ = 2−⌊t/2⌋, and ǫ = 0.01.
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Method WB BTES DWT PPDWT SD ItSD MLDI PPID

Symbol � × ◭ H + � • ⋆

IMEC 34.68 34.79 34.56 38.29 38.14 40.70 41.70 42.92

IC 34.27 34.39 33.68 36.53 36.95 38.28 39.84 40.18

(a) Caption of Figs. (b) and (c) and average PSNR (dB)

wavelength λ (nm)

P
S

N
R

(d
B

)

460 480 500 520 540 560 580 600 620 640

32

34

36

38

40

42

44

(b) IMEC

wavelength λ (nm)

P
S

N
R

(d
B

)

460 480 500 520 540 560 580 600 620 640

32

34

36

38

40

42

44
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Fig. 12. Average PSNR (dB) of the 32 images (under CIE D65 illuminant) estimated by each demosaicing method for each camera. (a):

Average PSNR (dB) over all channels for each camera, with the best result in bold. (b), (c): PSNR (dB) of each channel given by its band

center. Existing methods: see Tab. II. Proposed methods: PPDWT: PPI-based DWT, PPID: PPI difference.
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(a) Reference (b) WB (c) BTES

(d) DWT (e) PPDWT (f) SD

(g) ItSD (h) MLDI (i) PPID

Fig. 13. Central extract of reference I9 (a) and estimated Î9 (b)–(i) of IMEC “Fake and Real Lemons” image simulated under CIE D65

illuminant.
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(a) Reference (b) WB (c) BTES

(d) DWT (e) PPDWT (f) SD

(g) ItSD (h) MLDI (i) PPID

Fig. 14. sRGB renderings of a central extract of IMEC “Feathers” image simulated under CIE D65 illuminant.
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Fig. 15. Correlation between channels Ii and Ij (a) and between Ii and PPI IM (b). Values are averaged over six images from Stanford

database [28], range between −0.32 (black) and 1.00 (white) and are displayed with cubic scale. Values of (b) are reported column-wise as

red lines on (a).
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