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Abstract

Background: Structural interaction frequency matrices between all genome loci are now experimentally achievable
thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological
challenge for computational biology which consists in objectively extracting from these data the structural motifs
characteristic of genome organisation.

Results: We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to
characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist
structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities
forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves
interactions between neighbouring sites rather than the formation of links between distant loci.

Conclusions: Multi-scale structural decomposition of human chromosomes provides an original framework to
question structural organisation and its relationship to functional regulation across the scales. By construction the
proposed methodology is independent of the precise assembly of the reference genome and is thus directly
applicable to genomes whose assembly is not fully determined.

Keywords: Chromosome interaction network, Multi-scale community mining, Structural domain hierarchical
organisation, Spectral graph wavelets, Human genome

Background
It is now well established that eukaryotic genome dynam-
ics and 3D architecture have a fundamental role in the
regulation of nuclear functions such as DNA replication
and gene transcription [1–6]. At small scale (∼ 200 bp),
the crystal structure of the nucleosome core particle
(the first level of eukaryotic DNA compaction formed by
complexing ∼ 150 bp of DNA with 8 histone proteins)
was determined 20 years ago [7]. At the scale of the
nucleus, fluorescence imaging revealed the dominant
structural organisation of the genome into chromosome
territories reflecting a non-mixing compartmentalisation
of the chromosomes [2]. However, until the emergence
of Chromatin Conformation Capture (3C) technologies
[8, 9], our knowledge of the structural organisation of
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DNA at the intermediary scales remained partial. High-
throughput 3C protocol (Hi-C technique) has opened
new perspectives in the study of these intermediary
structures genome-wide in higher eukaryotes, closing
the gap between the atomic and chromosomal resolu-
tions [10–18]. Hi-C technique relies on high-throughput
sequencing and allows to semi-quantitatively measure
the co-localisation frequencies of all pairs of genomic
loci (the spatial resolution of the most recent data
[19, 20] is ∼ 1 − 10 kb for mammalian genomes of
length ∼ 3 Gb). Inter-chromosome co-localisation fre-
quencies are lower than intra-chromosome frequencies,
following the nuclear organisation into chromosome
territories [10]. Mean intra-chromosome frequencies
decrease with the genomic distance as expected for a
polymer [21]. Changes in the decreasing rate reflect
the modifications of the global chromosome structure
like the chromosome condensation observed during
entry in metaphase [19]. Nevertheless Hi-C data also
put into light a structural compartmentalisation of the
genome at different scales that cannot be explained by
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simple homogeneous polymer models [22]. Principal
component analysis of the correlation matrix between
the co-localisation frequency profiles of each locus
revealed the existence of two nuclear compartments,
loci preferentially co-localising with other loci from the
same compartment: compartment A is associated with
gene rich and early replicating regions and compart-
ment B with gene poor and late replicating regions [10].
Projected on the genome, this classification describes
the chromosomes as the succession of A/B domains
of length ∼ 10 Mb. Inspection of intra-chromosomal
co-localisation frequency matrices reveals a finer struc-
turing level characterised by diagonal blocks of length
∼ 0.1 − 1 Mb: co-localisation frequency is high between
regions of the same block but weaker between regions
belonging to different blocks [11] (Fig. 1). These blocks,
named Topologically Associating Domains (TADs),
underline a structural compartmentalisation of chromo-
somes whose link with genome functional organisation
and dynamics is the subject of intense research activity
[11, 15, 16, 19, 20, 23–29]. In order to carry out this
research, methods allowing to objectively delineate
structural domains from Hi-C data have been developed
[11, 16, 26–34]. Most of these approaches look for struc-
tural domains that are intervals of the chromosomes. For
example, chromosome structural partition was achieved
using (i) 1D signals quantifying the balance between the
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Fig. 1 Hi-C co-localisation maps reveal a multi-scale structural
organisation. Hi-C co-localisation frequency matrices along a 15 Mb
fragment of human chromosome 10 in H1 ES (resp. IMR90) under
(resp. above) the diagonal with intensity of interactions colour coded
according to colour map on the right. Blue lines represent TADs [11]
in the two cell lines. Coloured dashed lines correspond to 2 partitions
into communities obtained at small (yellow) and large (red) scales.
Columns and rows in black correspond to masked regions (Methods
and Additional file 1: Table S1)

co-localisation frequencies of the locus of interest with
upstream and downstream loci (directionality index)
[11, 27], (ii) dynamic programming algorithms that also
explicitly model structural domains as chromosome
intervals [31, 32] and (iii) projecting on the genome
the bisection obtained from a graph representation of
the Hi-C data (see below) [28, 34]. As illustrated in
Fig. 1, chromosome structural organisation can involve
nested structures over a large range of scales [22, 29].
However only the method proposed in [31] explicitly
includes the possibility to identify chromosome structural
domains at diverse scales of observation and the method
in [29] to hierarchically merge adjacent TADs into
metaTADs.
Here we propose a novel method to analyse Hi-C

data that allows a multi-scale identification of struc-
tural domains. Because it does not rely on the specific
assembly of the reference genome, this method does
not look for structural domains limited to chromosome
intervals thereby relaxing our preconception about the
nature of structural domains. Moreover, due to polymor-
phisms within a species or to chromosome rearrange-
ments characteristic of cancer cells [35], the assembly of
the reference genome does not necessarily corresponds to
the true assembly for a cell line under investigation. In
these situations, reduced sensitivity to genome assembly
is likely to avoid erroneous structural domain predictions.
A Hi-C co-localisation frequency matrix is positive and
symmetric, it can thus be interpreted as the adjacency
matrix of the genome interaction network where the
nodes are the chromosome loci (typically non-overlapping
windows) and the edges reflect the co-localisation fre-
quency between these regions. This justifies the use of
concepts and tools from graph theory to analyse Hi-C
data [28, 30, 33, 34, 36–38]. This representation depends
on genome assembly only up to the scale used to define
the Hi-C matrix, the columns/rows of the Hi-C matrix
can be permuted without affecting the output of graph
algorithms. In graph theory, a set of nodes that share
more connections between themselves than with the rest
of the graph is called a community [39]. Hence we refor-
mulate the question of structural domain mining as a
search for community in the Hi-C interaction network.
Note that Markov graph clustering was already experi-
enced to delineate sub-segments within large A/B-like
chromosomal domains obtained in a first step [30] and
that extensions of graph stochastic block models were also
applied to Hi-C matrices of human chromosome 4 and a
segment of human chromosome 6 [33]. In order not to
privilege any particular scale in the analysis, we performed
the multi-scale partitioning of the full intra-chromosomal
interaction networks into structural communities using a
multi-scale community mining algorithm based on graph
wavelets [40].
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Methods
Chromatin conformation capture data and topologically
associating domains
Here we used Hi-C data obtained in different human cell
lines:

• Embryonic stem cell line H1 (H1 ES) and foetal lung
fibroblast cell line IMR90 Hi-C data for which TADs
are available [11], allowing a direct comparison of our
structural communities with what is considered as
reference structural domains in the literature. Hi-C
matrices at resolution 20 kb and 40 kb for two
replicates in each cell lines as well as TADs
predictions in these cell lines were downloaded from
the GEO database under accession number
GSE35156. These data are based on the hg18
assembly version of the human genome.

• Myelogenous leukemia cell line K562 and
lymphoblastoid cell line GM06990 Hi-C data [10] for
the analysis of the structural conservation between
cell lines. Hi-C matrices at resolution 100 kb for the
two cell lines were downloaded from the GEO
database under accession number GSE18199. These
matrices are based on the hg18 assembly version of
the human genome.

• Cervical cancer cell line HeLaS3 Hi-C data [19]
where the Hi-C experiments were performed on
synchronised cells during mitosis and G1 allowing a
study of the community structure during the cell
cycle. The Hi-C reads alignment files to the human
genome (hg19 assembly version) for the two stages of
the cell cycle were downloaded from the
ArrayExpress database under accession number
E-MTAB-1948.

Hi-C intra-chromosomal co-localisation frequency
matrices for non-overlapping 100 kb loci correspond to
the downloaded matrices that were down-sampled to
100 kb when necessary or were constructed from the
alignment files (Fig. 1). Unexpectedly low and unexpect-
edly high interacting loci that are likely to introduce noise
were removed (Additional file 1: Table S1). The remaining
100 kb loci were concatenated resulting in new masked
positions.
We compared the structural-communities described

in this work to the TADs [11] that are considered
as a reference for the structural description of Hi-C
data. TADs were identified in H1 ES and IMR90 cell
lines at both 20 and 40 kb resolutions [11]. Given our
adopted resolution of 100 kb, we used the TADs dataset
obtained at the 40 kb resolution, and we assigned each
TAD border to the corresponding 100 kb pixel keep-
ing only TADs larger than 200 kb (3 pixels). This led
to a database of 2 993 (resp. 2 263) TADs in H1 ES

(resp. IMR90), with 3 905 (resp. 3 096) distincts borders
in H1 ES (resp. IMR90).
In this work one focus is to question the existence of

a TAD-like structuration of the human genome in the
intermediary scale range from the described TAD typi-
cal size up to the chromosome length. A second objective
is to address the possible conservation of these struc-
tural motifs across cell lines. This led us to include the
K562 and GM06990 datasets from the original Hi-C study
[10]. These datasets are less resolutive than more recent
ones in IMR90 and H1 ES cell lines [11] due to a lim-
ited sequencing depth and were analysed at best at 100 kb
resolution by the original authors. This explains why we
chose 100 kb as the resolution for all the analysis pre-
sented in our manuscript. However to check whether
lower or higher resolution has significant impact on the
results, the IMR90 dataset was also analysed at resolutions
40 and 200 kb.

Multi-scale community mining using graph wavelets
We used the multi-scale community mining algorithm
based on spectral graph wavelets that we previously
described and benchmarked against two other multi-scale
community mining methods from the literature [40]. The
purpose of detecting communities at different scales using
graph wavelets instead of, say, cutting a hierarchical clus-
tering at different levels, is to fit as close to the data as
possible. Cutting a hierarchical clustering impose a hier-
archical structure to the set of community obtained at the
different scales (cutting levels). When using wavelets, we
do not suppose beforehand that the data have a hierar-
chical structure: a community at a coarse scale does not
necessarily have to contain communities found at a finer
scale.
Our community mining algorithm [40] relies on the

precise construction of graph wavelets in order to intro-
duce the notion of scale [41] (Supplementary text: Graph
wavelet transform and community mining and Figures S1
to S4 in Additional file 1). A graph wavelet centred on a
node a is a function on the nodes of the graph whose val-
ues capture the proximity of each node to node a given a
scale s of observation. As such, the set of graph wavelets at
scale s characterise the local graph structure around each
node over a “distance” controlled by the scale parameter
s, as illustrated in Additional file 1: Figures S1 and S3. At
a fixed scale, the similarity between the neighbourhood
of 2 nodes (a and b) can be quantified as the correla-
tion (C(s)(a, b), Additional file 1: Equation (S11)) between
the wavelets centred on each of the two nodes at that
scale. Computing the correlation distance D(s)(a, b) =
1 − C(s)(a, b) (Additional file 1: Equation (S12)) between
all pairs of nodes results in a distance matrix capturing
the similarity of node neighbourhood, which can in turn
be used as the input of a hierarchical clustering algorithm
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in order to partition the nodes into communities for the
scale of observation s (Additional file 1: Figure S4). To sum
up, at each scale and for each intra-chromosomal interac-
tion network, the community mining algorithm amounts
to (i) compute thematrix of correlation distanceD(s)(a, b),
(ii) apply average-linkage hierarchical clustering [42, 43],
and (iii) finally cut the resulting dendrogram following
the method prescribed in [40]. This results in a set of
structural communities for a given scale and a given chro-
mosome.
We used the fast implementation of this procedure

[40]. On the one hand, the graph wavelet transform
is computed using the fast algorithm proposed in [41]
(Additional file 1: Equation (S17)). On the other hand,
instead of computing the wavelets on the n nodes of the
graph which requires n wavelet transforms of Dirac func-
tions (using Additional file 1: Equation (S17) n times),
the matrix of correlations between wavelets at scale s is
approximated by the correlation between η (� n) wavelet
transforms of random Gaussian functions on the graph
(Supplementary text: Graph wavelet transform and com-
munity mining in Additional file 1). Importantly, the fast
implementation of our multi-scale community mining
protocol is applicable to large networks with � 10 000
nodes [40], allowing to consider its future application to
intra-chromosomal interaction networks at high resolu-
tion (∼ 10 kb) in mammals [20] but also to full genome
interaction networks at the resolution used in the present
work (100 kb). Note that graph spectral clustering can also
be considered for these large interaction network settings
thanks to recent algorithmic developments [44, 45].

Comparing sets of genomic domains
As discussed in Results and discussion, communities
within intra-chromosomal interaction networks can be
described in terms of genomic intervals i.e. sets of loci
that form contiguous genomic domains and can thus be
fully described by their two extreme positions, called
domain borders. We adopted the three following points
of view for the comparison of sets of genomic domains
(chromosome intervals) of different origins. Note that
because the sets of domains of interest here do not
form partitions of the genome, we could not adopt the
classical measures of similarity between partitions like
Mutual Information and Adjusted Rand Index. Given two
sets of domains D1 and D2 with two sets of associated
borders B1 and B2 respectively, we used the following
estimators:

• Mean best mutual coverage: We define the mutual
coveragemc between two domains d1 ∈ D1 and
d2 ∈ D2 as their intersection length Ld1∩d2 divided by
the maximum length of the two domain lengths Ld1
and Ld2 :mc(d1, d2) = Ld1∩d2/max(Ld1 , Ld2).

The maximal value 1 ofmc is obtained when the two
domains d1 and d2 are identical. Then, for each
domain d1 ∈ D1, we define its best mutual coverage
withD2 domains (bmcD2

) as its maximal mutual
coverage with D2 domains: bmcD2

(d1) = maxd2∈D2
(mc(d1, d2)). Sorting the D1 domains by size, we
compute the mean best mutual coverage withD2 of
groups of 50 D1 domains that we plot as a function of
the mean length of the domains in the group. This
results in an average mean best mutual coverage
curve between domains in D1 and D2 as a function of
D1 domain size.

• We say that a domain d has a match in D2 if
bmcD2

(d) ≥ 0.8. PD2(D) is then defined as the
proportion of domains d ∈ D that have a match in
D2. Sorting the D1 domains by size, we consider
them in groupsD of 50 domains and plot PD2(D) as a
function of the mean length of the domains inD. This
results in a matching proportion curve of domains in
D1 and D2 as a function of D1 domain size.

• We say that a border b has a match in B2 when there
is a border in B2 less than 100 kb away from b i.e ± 1
pixel away. PB2(B) is then defined as the proportion
of borders b ∈ B that have a match in B2. Sorting the
B1 borders according to their associated lengths (see
below), we consider them in groups B of 100 borders
and plot PB2(B) as a function of the average
associated length of the borders in B. This results in a
matching proportion curve of borders in B1 and B2
as a function of B1 border associated length.

Domain length is an intuitive quantity to order a set
of domains. In the same manner, we associated a length
with each border of the genomic domains used in this
work. TAD borders can be shared by at most 2 consecu-
tive TADs, so we associated them with the length of the
shortest TAD they border. At a fixed scale of analysis,
a border of the novel interval-communities (see Section:
Structural communities correspond to genome intervals)
delimits two consecutive interval-communities, so (at that
scale) we associated it with the minimum length of the
two bordering communities. However these borders also
present a strong pattern of conservation from one scale
to another (Fig. 2; Additional file 1: Figure S5), so the
largest of these lengths across the scales was retained as
the final length associated with an interval-community
border. In this way, border associated lengths allowed us
to sort borders according to the importance (size) of the
corresponding chromosome structures.

Results and discussion
Wavelet-based community detection in the DNA
interaction network
As discussed above, Hi-C data can be represented as
graphs where nodes represent DNA loci and the edges
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Fig. 2Multi-scale interval-communities. Multi-scale community
structure along a 20 Mb long fragment of human chromosome 12 in
IMR90 (a) and H1 ES (b) cell lines. Most (> 99%) communities reduce
to genomic intervals (see Section: Structural communities correspond
to genome intervals), here we only represent these
interval-communities. At each scale they are represented by
colouring the segment from their masked start to masked end
positions which are marked by grey crosses (+). Colours were limited
to 10 for readability. When a community is found at 2 consecutive
scales the same color is used

connect interacting loci, allowing us to reformulate the
question of finding structural domains as a question of
finding communities in the DNA interaction network.
We used the fast implementation of the wavelet-based
multi-scale community mining algorithm (Methods and
Supplementary text: Graph wavelet transform and com-
munity mining in Additional file 1) with η = 200 ran-
dom Gaussian functions to estimate the distance corre-
lation matrix. For each Hi-C dataset, we considered the
22 autosomes’ intra-chromosomal interaction networks
constructed for non-overlapping 100 kb loci (Methods).
We systematically applied the wavelet-based multi-scale
community detection method to all the connected inter-
action networks scanning 100 scales logarithmically dis-
tributed in the range of available scales (Additional file 1:
Equation (S13)) [40]. The average total running time per

cell line was 5 h 40mn using Matlab on a linux com-
puting desktop with 8 Xeon CPU at 3.30 GHz. We first
discuss the results obtained for human chromosome 12
in H1 ES and IMR90 cell lines as representative examples
of the results obtained for all intra-chromosomal interac-
tion networks. Chromosome 12 network initially contains
1 324 nodes. After the filtering procedure, 1 250 nodes
are left in IMR90 and 1 249 in H1 ES (Methods). When
applying the wavelet-based community detection method
separately on the two interaction networks, we obtained
100 partitions of the masked genome for each cell line,
one at each scale. Overall, we obtained 23 927 (resp. 4 266)
communities for IMR90 (resp. H1 ES). As expected, the
size of the resulting communities increases with the scale
parameter (Fig. 3a). For H1 ES the increase of the mean
community size with the scale is homogeneous suggest-
ing that there is no characteristic size for the community
structure. For IMR90 we observe a first range of scales
where the communities reduce to singletons (mean size
∼ 1), followed by an abrupt transition to a community
mean size ∼ 17 (Fig. 3a). The existence of singletons
over a relatively large range of scales explains why the
total number of communities in IMR90 is larger than in
H1 ES. After removing the trivial communities (single-
tons), 3 342 (resp. 4 266) communities were kept in IMR90
(resp. H1 ES).

Structural communities correspond to genome intervals
The interaction frequencies outside the diagonal blocks
characterising the structural compartimentalisation as
described in [11] are not negligible (look for instance at
the region around [82,89] Mb in IMR90 that highly inter-
acts with the region around [92,93] Mb in Fig. 1). This
suggests that structural communities may not necessar-
ily reduce to intervals along the genome. Hence for each
non trivial community (community of size > 1), we com-
puted the proportion Pint of the largest set of successive
100 kb loci covered by the community over the size of
the community: Pint = 1 when all the nodes of the com-
munity constitute an interval of the masked genome and
Pint = 1/N where N is the size of the community when
the community do not contain any pair of consecutive loci
of the genome. Considering Pint ≥ 0.95 as a criterion for
a community to constitute an interval along the genome,
we observed for the 2 cell lines that more than 99% of
the communities correspond to intervals of the genome.
This property for the communities remains true for all the
scales and whatever the size of the communities. This is
consistent with the fact that at all scales, genomic neigh-
bours tend to strongly co-localise resulting in higher fre-
quency of interactions. These results demonstrate that the
strongest motifs of structural organisation involve con-
tiguous genomic segments. We will refer to the communi-
ties forming a genomic interval as interval-communities.
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A B

Fig. 3Multi-scale communities in the DNA interaction network. aMean structural community size (in 100 kb pixels) for chromosome 12 as a
function of the scale index in IMR90 (blue) and H1 ES (yellow). b Histogram of interval-communities genomic length (l) calculated in 100 kb bins in a
log-log representation for different cell lines: IMR90 (blue), H1 ES (yellow), GM06990 (pink), K562 (purple) and HeLa (G1) (light purple). The black
straight line correspond to the power-law behaviour lα with α = −1.3

We only kept the communities that correspond to an
interval (Pint ≥ 0.95) reducing them to their main inter-
val. This allowed us to adopt a simple representation of
the structural-communities obtained across scales (Fig. 2).
The differences observed between the resulting commu-
nity size distributions in IMR90 and H1 ES (Fig. 3a)
are visible in this representation. We clearly see a first
range of scales (s ≤ 20) where the interval-communities
reduce to singletons in IMR90 (Fig. 2a) and not in H1
ES (Fig. 2b). Above this critical scale, non trivial interval-
communities appear in IMR90. Note that the mean size of
the interval-communities for this first meaningful parti-
tioning in IMR90 is larger than the ones observed in H1 ES
for its first meaningful partitioning (smallest scale). This
results in a lack of small non trivial interval-communities
in IMR90.

A hierarchical organisation of the genome
The representation in Fig. 2 reveals the hierarchical organ-
isation of the communities. Across scales, small com-
munities merge together to form bigger communities at
larger scales. Hence the community borders present at the
smallest scale progressively disappear at some larger scale
allowing the emergence of bigger communities. Impor-
tantly, the conservation of borders from large scales to
small scales is very high. For each pair of scales s2 > s1,
we computed the proportion of borders at the larger scale
s2 that are also present at the smaller scale s1. This pro-
portion is close to 1 regardless of the scales (Additional
file 1: Figure S5). The fact that the borders are con-
served across scalesmeans that there is no “new” structure
that emerges and that only existent ones merge together,
i.e. small structures are nested into bigger ones. This is
consistent with the results of recent studies suggesting

that TADs hierarchically co-associate to form larger
structures [16, 29, 46].
Another important property illustrated in Fig. 2 is the

redundancy of the communities obtained across scales,
underlining the robustness of the graph wavelet com-
munity mining protocol with respect to its stochasticity
(usage of random vectors to estimate the graph wavelet
correlation matrix; Methods). Hence, we kept only once
each non trivial interval-communities (size ≥ 2 nodes and
Pint ≥ 0.95). We also filtered out the communities that
more than double in size when reintegrating the masked
regions of the genome, e.g. interval-communities span-
ning the centromers. This leads to 386 (resp. 537) non
trivial interval-communities in IMR90 (resp. H1 ES) for
the chromosome 12. When applied to the 6 Hi-C datasets
considered (Methods), the methodology presented for
human chromosome 12 in H1 ES and IMR90 resulted in
few thousands interval-communities per dataset (Table 1),
except for the mitosis HeLaS3 dataset (discussed below).
Interestingly, the length distributions of the interval-
communities for the IMR90, GM06990, K562 and HeLaS3
G1 datasets are very similar, but they display differ-
ences with the one obtained for H1 ES dataset for small
interval-communities (Fig. 3b): there are more interval-
communities involving only 2-3 nodes (200–300 kb) in
the 4 differentiated cell lines datasets and a deficit in
interval-communities of length ∼ 500 kb to ∼ 1.5 Mb rel-
ative to H1 ES. A possible interpretation of this excess of
interval-communities of size ∼ 1 Mb in H1 ES, compared
to differentiated cell lines, is that cell differentiation is
accompanied by the merging of the small structural com-
munities in a structural consolidation scenario. For larger
communities, the interval-community size distributions
in these 5 Hi-C datasets are almost identical. Indeed, for
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Table 1 Number of structural communities

Cell line N N (filtered) Remaining Distinct
communities borders

H1 ES 12 343 65 12 278 5 751

IMR90 8 852 25 8 827 6 824

GM06990 10 279 60 10 219 6 967

K562 13 383 30 13 353 8 273

HeLaS3 G1 6 752 36 6 716 4 108

HeLaS3 M 1 059 4 1 055 885

For each cell line, N is the number of distinct non redundant and non trivial (size≥ 2
i.e. 2 nodes) interval-communities. N(filtered) is the number of communities filtered
out because (i) they do not correspond to a genomic interval or (ii) they double in
size when going back to the original (not masked) positions. The last two columns
correspond to the number of communities and distinct borders in the database

l � 2 Mb, they display a power-law behaviour lα with
α � −1.3 (Fig. 3b). Note that if communities of length ∼ l
would form a partition of the genome of length L, then the
number of communities of this scale would be equal to L/l
leading to α = −1 (� −1.3). This underlines the existence
of domains at all scales up to the chromosome length
without a characteristic size for genome structuring.

Are interval-communities structural domains?
To test the robustness of the wavelet-based community
detection method with respect to the possible absence
of a community structure over some range of scales, we
compared the interval-communities obtained for the Hi-
C datasets in synchronised HeLaS3 cells during G1 and
M phase, respectively (Methods). The original study [19]
showed that the highly compartmentalised organisation
described before from non synchronous cells [10, 11, 13,
15, 16, 20, 26, 27] was restricted to interphase and that
during a cell cycle, chromosomes transit from a decon-
densed and spatially organised state during interphase
to a highly condensed and morphologically reproducible
metaphase chromosome state. In the former phase, the
Hi-C interaction maps display similar plaid patterns of
regional enrichment or depletion of long range inter-
actions (as the one shown in Fig. 1) while the maps
in mitotic cells change and the plaid patterns disappear
[19]. For HeLaS3 G1 (resp. mitosis) dataset, we obtained
6 716 (resp. 1055) non trivial communities and 4 108
(resp. 885) distinct borders (Table 1). For the mitosis
HeLaS3 Hi-C dataset, we obtained 1 059 communities
fromwhich we filtered out 4 resulting in 885 distincts bor-
ders (Table 1). Consistently with non synchronous cells,
G1 cells present a hierarchical structure into interval-
communities that increase in size across scales (Addi-
tional file 1: Figures S6 and S7). Small scale singletons
hierarchically group to form large interval-communities at
larger scales. As discussed above, the length distribution
of the G1 HeLaS3 interval-communities is similar to the

interval-communities size distribution obtained in the 3
other differentiated cell line datasets (Fig. 3b). In contrast,
metaphase chromosomes do not present a hierarchical
structural organisation. More specifically, chromosomes
16, 21 and 22 do not present any structure (each node con-
stitutes a community on the full available range of scales,
Additional file 1: Figure S6). In the 19 other autosomes,
at small scales each node is a singleton and above a crit-
ical scale a sharp discontinuity of the community sizes
distribution is observed: nodes are abruptly grouped in
a small number (2–5) of communities (Additional file 1:
Figure S7). For 12 out of these 19 chromosomes, when
divided in two communities, these communities corre-
spond to the two chromosomal arms, as illustrated for
chromosome 17 in Additional file 1: Figure S7. These
results demonstrate that the wavelet-based community
detection method does not produce misleading interme-
diate scale communities when no structuration exists in
that scale range.
To strengthen this point in a noisy situation, we simu-

lated a structural interaction matrix between 2000 nodes
(comparable to the largest human chomosomes at res-
olution 100 kb) organised in fully connected interval-
communities with no specific organisation at scales larger
than the community size: the matrix is built as a series
of 40 pairs of domains of size 20 nodes and 30 nodes
with internal domain interaction set to 60, with the two
first (resp. second) sub-diagonals set to 80 (resp. 70) to
assure connectivity and with an additive Poisson noise
over all interaction pairs of mean value λ = 50 (Additional
file 1: Figure S8 Left). When applying the graph wavelet
communitymining protocol, we recovered only trivial sin-
gleton communities at small and large scales. However in
the intermediate scale range, we nicely recovered all the
20 and 30 nodes on a range of scales that depends on
their size (Additional file 1: Figure S8 Right). This example
shows that the method does not produce a fake hierar-
chical domain organisation by merging existing domains
even in a noisy situation.
In order to verify that there are more interactions within

interval-communities than between successive interval-
communities, we compared the number of contacts
between two 100 kb loci that are inside the same interval-
community at equal distance from its center and the
number of interactions between two loci at equal distance
from one of the interval-community borders, as a func-
tion of the distance separating the pairs of loci. The ratio
vs distance curves for different interval-community length
categories show that on average there are more interac-
tions within the communities than between communities,
regardless of the cell line and the community length: the
interaction ratio systematically increases to some maxi-
mal value at distances ∼ 1–2 Mb, from a maximal value
∼ 1.6 in GM06990 and K562, to ∼ 2.2 in H1 ES and
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∼ 3 in IMR90. Over larger distances, the ratio remains
rather constant in GM06990 and K562 and decreases
to ∼ 1.5 in H1 ES and IMR90 (Fig. 4). This property
holds true even for communities larger than 10 Mb. As a
comparison, we performed the same analysis for the orig-
inal TAD datasets in H1 ES and IMR90 (Methods). Over
the shared domain length range, the interaction ratio vs
distance curves computed for the TAD datasets present
very similar shapes as observed for interval-communities
(Additional file 1: Figure S9), reaching maximal values
∼ 3 in both H1 ES and IMR90. These results provide evi-
dence that multi-scale interval-communities, very much
like TADs, constitute units of 3D genome organisation
bordered by structural barriers.

Are TADs interval-communities?
We next compared our communities to the TADs pre-
viously described in H1 ES and IMR90 [11], asking to
which extent the TADs and TAD borders are recov-
ered in our hierarchical database of interval-communities.
The mean best mutual coverage vs TAD length curve
(Methods) between TADs and interval-communities is
slightly higher in H1 ES as compared to IMR90 for all TAD
lengths (Fig. 5a), ranging from 62% (resp. 52%) at small
length (300–500 kb) to 91% (resp. ∼ 89%) at larger length
(∼ 1–2 Mb) in H1 ES (resp. IMR90). This suggests a good
recovery of the largest TADs by the interval-community
classification. Given the 100 kb resolution used in this
analysis, it is not surprising to observe lower mutual cov-
erages at small lengths where 1 pixel error results in a
dramatic lowering of mutual coverage. We also observed
that the proportion of TADs that have a matching struc-
tural community (Methods) increases with the domain
length (Fig. 5b). Only about 1/5 of the smallest TADs
(� 500 kb) are recovered consistently with the fact that in
this scale range a match has to be exact. For TADs longer
than 1 Mb, the proportion of match is relatively high: in

IMR90 it increases from 40% for TADs ∼ 1 Mb up to 70%
for TADs ≥ 2 Mb and in H1 ES from 70% for TADs ∼
1 Mb up to 85% for TADs of ∼ 2 Mb (Fig. 5b). Compari-
son of TAD borders to interval-community borders shows
good concordance for the two datasets (Fig. 5c). Formean-
ingful comparisons, we restricted the reference domain
border set for each species to a subset of borders that at
100 kb resolution (±1 pixel) collectively cover no more
than 35% of the genome. Interval-community borders
with the largest associated lengths (Methods) are selected
first. Given the overlap between borders at that resolu-
tion, this process resulted in selecting a different number
of distinct interval-community borders in each species:
3 468 in H1 ES, 2 834 in IMR90, 3 171 in GM06990 and
3 478 in K562. TAD borders are recovered from 50% up
to ∼ 90% in H1 ES and up to ∼80% in IMR90, depending
on the TAD border associated length, while the expected
recovery rate by chance is 35% (Fig. 5c). These results
quantify the high level of TAD recovery by interval-
communities for domain length� 1Mb. Altogether, these
results show that there is a significant agreement between
TADs and the interval-communities. This provides evi-
dence that interval-communities captures similar organ-
isation principle of genome structure and, thus, extends
this description up to chromosome size.
To test the robustness of our methodology with regards

to the binning resolution, we reproduced the analysis of
the IMR90 data at a finer (40 kb, total running time
8h48mn) and a coarser (200 kb, total running time 31 mn)
resolution (Additional file 1: Figure S10). The lengths of
interval-communities determined at these 2 resolutions
nicely reproduce the distribution obtained at the 100 kb
resolution (Additional file 1: Figure S10A). Intervals-
communities of size � 1 − 2 Mb strongly match between
these intervals communities datasets (recovery propor-
tion � 70 − 90%, Additional file 1: Figure S10B). For
smaller community size, recovery proportion between

Fig. 4 Are interval-communities structural domains? Ratio (c/b) of the number of interactions between two 100 kb loci that are inside the same
community at equal distance from its center (c) and the number of interactions between loci in different communities at equal distance from a
community border (b), versus the distance between them. Different colours correspond to different community size categories: 0.3 ≤ L < 0.6 Mb
(light pink), 0.6 ≤ L < 1 Mb (pink), 1 ≤ L < 2 Mb (magenta), 2 ≤ L < 3 Mb (dark pink), 3 ≤ L < 5 Mb (light blue), 5 ≤ L < 10 Mb (blue) and
10 ≤ L < 100 Mb (purple)
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Fig. 5 TADs are interval-communities. aMean best mutual coverage of TADs with interval-communities, and (b) proportion of TADs that have a
match in the interval-community database, as functions of the average TAD size (Methods). c proportion of TAD boundaries that have a matching
interval-community border as a function of the average TAD border associated length (minimum of the length of the two bordering domains,
Methods); only the set of interval-community borders with largest associated length covering 35% of the genome were used (see text); the
horizontal dashed linemarks this expected border matching proportion of 35%. In (a, b, c), yellowmarks the analysis in H1 ES and blue in IMR90

datasets decreases with community size in the same man-
ner for the 3 resolution pairs. This can be understood
when noting that the isolation strength of community bor-
ders significantly weakens when decreasing the genomic
distance below ∼ 1 Mb (Fig. 4). Finally, the proportion
of TADs that have a match in the interval-community
database is similar at 40 kb resolution than at 100 kb res-
olution (Additional file 1: Figure S11). This demonstrates
that the results do not depend on the choice of the 100 kb
resolution and further underlines that the lower structural
domain recovery rate generally observed for small domain
sizes (� 1 Mb) is likely related to the weaker isolation
strength of structural domain borders over short distances
(� 1 Mb).

Conservation of structural communities across cell lines
In the pioneering study [11], TADs were described
to be conserved between cell lines. We observed that
interval-communities in different cell lines present sim-
ilar size distributions (Fig. 3b). This led us to investigate
to which extent they are conserved across cell lines.
To compare the communities obtained in different cell
lines, we used each of the interval-community database
obtained in H1 ES, GM06990, IMR90, K562, as a ref-
erence domain set and computed the proportion of
matching interval-communities of the 3 other cell lines
relative to this reference set (Methods). We observed
that small interval-communities (� 600 kb) are not well
conserved between different cell lines (Fig. 6). This might
result from the fact that Hi-C data are average over cell
populations and that some regions may present different
structural organisations from cell to cell blurring the
insulator property of structural domain borders at small
scales. However, when considering interval-communities
of larger sizes, higher conservation was observed (Fig. 6).

More than 60% of intervals-communities of length
L � 0.6 Mb in the differentiated cell lines correspond to
an interval-community in H1 ES (Fig. 6a). H1 ES interval-
community dataset thus contains a large proportion of
the interval-communities observed in the differentiated
cell lines above ∼ 600 kb. When using one differentiated
cell line interval-community database as reference, we
observed a maximal recovery rate that is similar for the 3
other cell lines: 45% for sizes � 2 Mb in IMR90, 65% for
sizes � 1.5 Mb in GM06990 and 70% for sizes � 1.5 Mb
in K562 (Fig. 6b, c and d). The observed differences
likely reflect the excess of interval-communities in the
size range 0.5-1.5 Mb observed in H1 ES relative to the
differentiated cell lines (Fig. 3b). As a comparison, we
performed the same analysis for the TADs that were
claimed to be conserved between H1 ES and IMR90 cell
lines [11] (Additional file 1: Figure S12). Like for interval-
communities, the correspondance between TADs in the
two cell lines decreases for domain sizes � 600 kb. For
larger domain sizes, we observed that H1 ES TAD dataset
contains more (maximal value ∼ 60%) of the IMR90
TADs than the IMR90 TAD dataset contains H1 ES TADs
(∼ 45%). These results corroborate the conservation of
structural domains of length ∼1–2 Mb between cell lines
in the 45–70% range but also extend this conservation to
the largest interval-communities up to length � 10 Mb.

Conclusions
We introduced a fast multi-scale community mining
algorithm based on spectral graph wavelets [40] to iden-
tify structural motifs from high-throughput chromatin
conformation capture data (Hi-C) [10]. Hi-C data were
represented as intra-chromosomal interaction networks
and structural motifs were delineated as communities of
these networks. The novelty of this approach relies on the
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Fig. 6 Conservation of interval-communities between cell lines. Proportion of interval-communities in the query cell lines H1 ES (yellow), IMR90
(blue), GM06990 (pink) and K562 (purple) that have a matching interval-communities in the reference cell line indicated in each plot: H1 ES (a),
GM06990 (b), IMR90 (c) and K562 (d). Proportion of interval-community matches is computed over groups of 50 query interval-communities
ordered by length (Methods)

combination of a multi-scale procedure and a representa-
tion of the data that is independent of the exact assembly
of the reference genome over length scales larger than the
window size used to construct the interaction network.
The proposed methodology has no a priori on the size
and on the nature of the structural motifs. The applica-
tion of this protocol to 6 Hi-C datasets led to a database
of several thousands structural communities (Table 1).
The database of interval-communities in mitotic HeLaS3
cells that were described not to present a TAD-like
structural organisation [19], does not contain any inter-
mediary scale structural communities, illustrating the
robustness of the proposed methodology with regards
to the absence of structural motifs. Consistently with the
recent usage of Hi-C data for genome sequence assembly
[47, 48], we observed that structural-communities in
unsynchronised and G1 cells form hierarchies of chro-
mosome intervals of length ranging from the resolution
(100 kb) to the chromosome lengths (� 10 Mb) (Fig. 3).
The prevalence of interval-communities underlines that
chromosome folding is mainly driven by interactions
between neighbouring loci, at all scales of observation.
This constitutes a justification that TAD-like structural
motifs indeed correspond to chromosome intervals. For

domains significantly larger than the resolution of the
analysis (� 600 kb), a majority of the TADs [11] are
recovered as interval-communities (Fig. 5) and, whatever
the interval-community length, their borders present an
insulator-like behaviour (Fig. 4) as expected for TAD-like
structural motifs. Hence interval-communities capture
similar structural organisation patterns as TADs but over
the full chromosome range of scales.
This novel multi-scale structural decomposition of

human chromosomes provides an original framework
to question structural organisation and its relationship
to functional regulation. It allowed us to reformulate
the question of structural domain conservation between
different cell lines across the scales: a high level of
structural conservation between cell lines up to the
largest scales becomes apparent. For example, ∼ 65%
of the differentiated cell lines interval-communities
larger than 600 kb were also found to be structural-
communities in H1 ES cell line (Fig. 6a). It was
previously noted that there likely exists some links
between structural domains and replication domains
[23, 25, 27, 49] including the so-called replication timing
U-domains [24, 50]. U-domains are bordered by early
replicating master replication initiation zones that
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present similar insulating properties as the ones observed
for TADs and interval-communities borders (Fig. 4 and
Additional file 1: Figure S9) [24]. In Human ES cells,
master replication initiation zones are enriched in
CTCF and pluripotent transcription factors NANOG
and OCT4 that were recently shown to contribute to
the overall folding of embryonic stem cells genome via
specific long-range contacts [51, 52], and appear to be
fundamental determinants of pluripotency maintenance
[53, 54]. In particular they are at the heart of the so-called
consolidation phenomenon [17, 23, 55, 56] corresponding
to early to late transitions from embryonic stem cells
to differentiated cells coinciding with the emergence
of compact heterochromatin at the nuclear periphery
[54]. ES cell line are characterised by smaller replication
U-domains [24]. Here we observed in H1 ES cell line
an excess of interval-communities in the range of scales
from ∼ 500 kb to ∼ 1.5 Mb as compared to the differ-
entiated cell lines (Fig. 3b). These domains not observed
in differentiated cell lines might be subject to some
structural consolidation scenario during cell differenti-
ation, similar to the one described for replication timing
domains. For example, the strutural community bor-
der present in H1 ES and absent in IMR90 at position
∼ 84 Mb in Fig. 1 correspond to a replication timing
U-domain border specific of ES cell line. Further analysis
of the structural consolidation scenario is likely to shed
a new light on the role of structural organisation in the
epigenetically regulated chromatin reorganisation that
underlies the loss of pluripotency and lineage commit-
ment [54]. It was shown that master origins of replication
conserved between 6 cell lines are encoded in the DNA
sequence via a local enrichment in nucleosome exclud-
ing energy barriers [57, 58]. This raises the question
whether borders of the conserved structural community
borders (Fig. 6) might be specified by a similar genetic
mechanism.
A recent Hi-C experimental study at much higher (kb)

resolution has provided some refined partitioning of the
human genome by TADs of mean size ∼180 kb [20],
much closer to the estimate ∼100-kb previously reported
in Drosophila [16]. Interestingly, as in Drosophila, these
refined TADs seem to have some specific epigenetic chro-
matin identity that can change dramatically their func-
tional identity in different cell types [16, 20, 59]. Detecting
interval-communities at higher resolution can provide
better quantification of the chromatin state blocks as
epigenetic communities. The wavelet-based community
detection method provides us with a tool to investigate
further the existence of some underlying rules for the
association of structural/functional domains across scales.
The robustness of the proposed protocol with respect
to rearranged genomes is a key property to pursue this
research.

Additional file

Additional file 1: Supplementary Online Material. Additional data file 1
contains supplementary text: Graph wavelet transform and community
mining, supplementary Figures S1 to S12 and supplementary Table S1
(PDF). (PDF 3963 kb)
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