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ABSTRACT 

Static mixers provide enhanced mixing via a motionless element inside a rigid pipe, and are 

widely used for continuous mixing and blending in industry. This study focuses on the 

emulsification of a silicon oil-in-water system stabilized by a surfactant through SMX+® static 

mixers involving no mass transfer between the two phases. The experiments covered a large 

domain of dispersed fraction from dilute conditions (5 %vol.) up to concentrated ones (60 %vol.) 

close to phase inversion and three different viscosities from 20 to 350 mPa s with transitional or 

turbulent flow regimes. The number of static mixers was studied until a constant drop size 

distribution monitored at line with a video probe was obtained. With the considered flow rates, 

only the five first SMX+ elements were necessary to achieve a complete drop breakup and 

coalescence equilibrium, the following ones only causing a supplementary pressure drop. The 

influence of the number of SMX+ and energy dissipation rate was found to be of first order 
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compared to the volume fraction or viscosity of the dispersed phase. According to the large 

amount of data, it was possible to establish a new form of a Middleman correlation dedicated to 

this type of mixer of new generation. The formula takes into account the number of static mixers 

besides other hydrodynamic and physicochemical parameters. 

KEYWORDS: Oil-in-water emulsions, SMX+ static mixers, viscous fluids, high volume 

fraction, Process Modelling 

1. INTRODUCTION 

The development of multiphase systems, such as mixing immiscible gas-liquid or liquid-liquid 

fluids, is one of the major challenges of engineering processes in different domains like cosmetic, 

pharmaceutical, chemical and food industries (Leng and Calabrese, 2003). Amongst them, Oil-in-

Water (O/W) emulsions represent an important sub-group where the dispersed phase is organic, 

i.e. the oil, and the continuous phase is aqueous. Controlling the drop size distribution (DSD), at 

lower power consumption, is important in these systems as it might affect mass transfer and 

potential reactions during the formation as well as the quality of many finished emulsion products 

(Becker et al., 2014). 

Emulsions can be realized using mechanical stirrers (such as turbines and rotor stators), high 

pressure homogenizers or static mixers. Stirred tanks are still assumed to be the reference for 

emulsification in most industrial applications because of their flexibility and the possibility of 

mixing viscous products which are difficult to pump. But, the emulsification efficiency is limited 

and spatially non-uniform (due to higher shear around the stirrer). Moreover, they suffer from 

space requirement, operating cost (OPEX) and capital cost (CAPEX), long residence-time 

distributions, non-isothermal operating condition and the decrease of safety conditions and 

process control due to the big volume (Ghanem et al., 2014). Consequently, the development of 

continuous processes have been promoted in order to reduce the size of the process unit, increase 
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the productivity, homogenize the shear rates, enhance heat transfer and allow faster scale-up from 

the lab-scale to the industrial-scale (Al Taweel et al., 2007; Ghanem et al., 2014; Laporte et al., 

2014; Thakur et al., 2003; Van Gerven and Stankiewicz, 2009). 

Static mixers allow continuous production with lower energy consumption than mechanical 

agitators (mainly compared to rotor stators or high pressure homogenizers) while maintaining 

good mixing performances (Anxionnaz et al., 2008; Bayat et al., 2012; Couvert et al., 2006; 

Thakur et al., 2003). They consist of small motionless elements, with complex porous structures. 

They are inserted in a pipe, where a fluid is pumped, to generate shear by redistributing the fluid 

in directions transverse to the main flow. The main energy consumption consists therefore of 

pumping the fluid in the unit, which increases with the pressure drop. The pressure drop thus and 

fluid velocity constitute the driving force for dispersing the two immiscible liquids when flowing 

through the mixing elements. Static mixing units require therefore optimization of energy 

(pressure drop, time and mixing length) as well as drop size. The mixing length is modified 

through the number of static mixers or the number of passes (that are equivalent if pumping 

effects are negligible). 

Different designs of static mixers are available commercially, and the most widely used are 

Kenics® helical mixer from Chemineer (Berkman and Calabrese, 1988; Chen and Libby, 1978; 

Haas, 1987; Middleman, 1974; Yamamoto et al., 2007) and more recently SMV® (Paglianti and 

Montante, 2013) and SMX® static mixers from Sulzer. SMX static mixers were used for mixing 

miscible fluids, as well as non-miscible fluids (gas-liquid and liquid-liquid), either in laminar 

(Anxionnaz et al., 2008; Das et al., 2013, 2005; Fradette et al., 2007; Kiss et al., 2011; Laporte et 

al., 2014; Legrand et al., 2001; Liu et al., 2005; Rama Rao et al., 2007; Thakur et al., 2003) or 

turbulent regimes (Anxionnaz et al., 2008; Lobry et al., 2011; Streiff et al., 1997; Thakur et al., 

2003; Theron et al., 2010; Theron and Sauze, 2011). SMX+ and SMX static mixers have the 

same X geometry but in SMX+ the crossed bars are thinner and less numerous which leads to a 
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reduction in the pressure drop to about 50 % compared to SMX (Hirschberg et al., 2009). SMX+ 

static mixers have already been used for liquid-liquid and gas-liquid systems (Baumann et al., 

2012; Hirschberg et al., 2009; Laporte et al., 2014; Meijer et al., 2012; Theron and Sauze, 2011). 

Understanding and modelling the mechanisms taking place in liquid-liquid emulsification using 

static mixers are still not completely achieved. This is due to the wide range of geometries and 

working conditions, such as the flow rates, flow regime (laminar to turbulent), surfactant 

dynamics, fluid type (Newtonian or non-Newtonian), volume fraction of the dispersed phase, or 

the ratios of densities and viscosities of the dispersed phase to the continuous phase. Due to the 

lack of complete experimental data, the available models are still not universal for the various 

static mixers and fluids. In particular, the available literature of liquid-liquid emulsification using 

static mixers is limited to dilute systems, with a dispersed phase volume fraction (Фd) rarely 

higher than 35 %vol. However, the increase of the dispersed phase volume fraction might have an 

effect on both the droplet size and the pressure drop, for instance due to an increase in the 

apparent viscosity (if the dispersed phase is more viscous than the continuous one). 

This work aims to characterize oil-in-water emulsions through SMX+ static mixers involving no 

mass transfer between the two phases. It investigates the influence of the fluids viscosities and 

densities, the dispersed phase volume fraction (from diluted systems to highly concentrated ones), 

the Reynolds number (from transitional to turbulent flows) and the number of SMX+ static 

mixers on the drop size distribution and the Sauter mean diameters. These impacts are then 

described using a new optimized correlation. The correlation accounts thus for the number of 

mixers and hydrodynamic and physicochemical parameters. 
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2. MATERIALS AND METHODS 

2.1 Emulsion ingredients 

The investigated oil-in-water emulsions are made up of silicon oil, which constitutes the 

dispersed phase (supplied by Bluestar Silicone/France), and distilled water as the continuous 

phase. Three viscosities of silicon oils are studied, 20, 100 and 350 mPa s, hereafter denoted V20, 

V100 and V350 respectively. The emulsions are stabilized by the surfactant polyoxyethylene (20) 

sorbitan monolaurate (Montanox 20®), C58H114O26 (supplied by SEPPIC). The physicochemical 

properties of the different fluids are summarized in Table 1. 

2.2 Static mixers 

The recently developed SMX+ static mixers (supplied by Sulzer, cf. Figure 1) are used in this 

work for their ability to limit the pressure drop and improve the mixing performance of viscous 

fluids (Hirschberg et al., 2009). Each element is composed of an array of crossed bars (6 in each 

direction) arranged at an angle of 45° relative to the flow direction. Note that SMX mixers have 8 

crossed bars in each direction which causes higher pressure drop (Hirschberg et al., 2009). The 

diameter and the height of each SMX+ is about 5 mm, which results in an aspect ratio of length 

to diameter per static mixer of L/D = 1. They have a 75% global porosity (ϕ), a hydraulic 

diameter of 𝐷𝐷ℎ = 1.42×10-3 m (taking into account the tube walls) and a specific area of 𝑎𝑎𝑔𝑔 = 

1527 m2 m-3 (neglecting the tube surface). The used mixers are made of stainless steel. 

2.3 Experimental Setup 

The used experimental set-up is described in Figure 2. The SMX+ static mixers are placed into a 

transparent tube of equivalent diameter (5 mm) made of PVC. The tube slightly compresses the 

mixers which avoids radial rotations. Consecutive static mixers are rotated by an angle of 90° 

each with respect to the previous one. No space is allowed between the mixers. A piece of copper 
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pipe is inserted in the pipe after the last static mixer in order to stick it and to avoid any axial 

displacement of the mixers in the pipe. 

The continuous and the dispersed phases are stored in separate feed tanks placed on electronic 

scales to measure their flow rates precisely during the experiment. These flow rates are used to 

calculate the volume fraction of the dispersed phase: 

  Фd = 100 Qd
(Qd+Qc)

 (1) 

Where Qd and Qc represent the volume flow rates (m3 s-1) of the dispersed and continuous phases 

respectively. The fluids are pumped using two MCP-Z Ismatec® gear pumps equipped with 

Micropump® magnetically driven heads. 

The phases enter in contact in the pipe thanks to a T-junction with a ϒ’s form (cf. Figure 2) 

placed before the static mixers, which introduces the oil phase into the flowing continuous phase. 

This represents the first step of the emulsification process. Similar online pre-mixing strategies 

were used by (Hirschberg et al., 2009; Theron et al., 2010). Theron et al. (Theron et al., 2010) 

chose to inject the dispersed phase perpendicularly to the flowing continuous phase just before 

the first static mixer while Hirschberg et al. (Hirschberg et al., 2009) introduced the dispersed 

phase in parallel of the continuous phase directly on the first static mixer. Note that some authors 

first realise a pre-emulsion using another device (Hoevekamp, 2002; van der Zwan et al., 2008), 

but in this case, one should be careful to the pumping effects on the pre-emulsion size due to the 

generated shear and possible breakup, that should be checked at the inlet for each experiment. 

Baumann et al. (Baumann et al., 2012) indicated that online pre-mixing gives similar drop sizes 

as off-line pre-mixing but higher standard deviations. 

A pressure gauge (0-6 bar, ± 3 mbar) placed at the inlet of static mixers (between the T and the 

mixers) measures the differential pressure. The static mixers outlet pressure corresponds to the 

atmospheric pressure. An online Turbiscan (from Formulaction®/France) is placed at the outlet of 

the static mixers tube to monitor the backscattering signal. A collecting vessel is placed after the 
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Turbiscan. A sample of each experiment is also withdrawn at the outlet to measure the drop size 

distribution at-line with a video back lighting probe EZ Probe-D25-L1300 (Becker et al., 2011) 

after eventual dilution with the continuous phase depending on the dispersed phase fraction. 

Indeed, the image treatment is limited to about 10%vol. dispersed phase fraction for the 

considered drop size. 

2.4 Emulsification procedure 

Emulsifications were performed at room temperature. The dispersed phase was put on the scale 

without any additives. The continuous phase was also put on a scale, and consisted of distilled 

water in which the surfactant was dissolved. 

The surfactant (Montanox 20) hydrophilic-lipophylic balance (HLB) is 16.7, which is large 

enough to form direct O/W emulsion when dissolved in the aqueous phase. Its critical micellar 

concentration (CMC), and therefore saturation concentration at 21°C in pure water, is 8.04×10-5 

mol L-1. In order to ensure an excess of surfactant, two Montanox 20 concentrations that are 

higher than the CMC were prepared: 10 g L-1 (1%wt., or 8.15×10-3 mol L-1) and 25 g L-1 

(2.5 %wt., or 2.037×10-2 mol L-1). According to Becker et al. (Becker et al., 2014), the interfacial 

tension of silicon oil-water containing between 0.5 to 3.0%wt. of surfactant does not vary 

significantly. The surfactant has a polar head surface of about 120 Å (Rosen and Kunjappu, 

2012). Using this value, the surface coverage of droplets by the surfactant was calculated to be 

much higher than 100% for all experiments. 

The volume fraction of the dispersed phase was varied from 5 to 60%vol., which is close to the 

theoretical value of phase inversion (Brochette, 1999). Experiments with higher volume fraction 

of the dispersed phase (75%vol.) were investigated but phase inversion of the samples was 

observed with naked eyes. As mentioned above, three different silicon oils, with different 
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viscosities and densities, were used (cf. Table 1). The number of SMX+ static mixers was varied 

from 1 to 15. The total flow rate was varied between 120 and 1627 mL min-1. 

For each experiment, care was taken to achieve steady state conditions, reflected by a constant 

backscattering signal using the Turbiscan. Typically, steady state in transitional or turbulent flow 

regimes was achieved very quickly, after 2 minutes. 

3. THEORETICAL ASPECTS 

Different correlations have been proposed in the literature under equilibrium for both the pressure 

drop, which determines the energy requirements, and the droplet size determining the product 

quality, stability and eventual kinetics. 

3.1 Flow characteristics 

The pressure drop (∆P) caused by friction between the fluid and the surfaces is useful to predict 

the energy characteristics of the flow. Correlations for Newtonian single phase fluids in porous 

media are present for laminar (Liu et al., 2006) and turbulent regimes (Cybulski and Werner, 

1986; Pahl and Muschelknautz, 1980; Streiff et al., 1999), as well as for non-Newtonian fluids 

(Li et al., 1997, 1996; Shah and Kale, 1991). For turbulent flow in a pipe, the pressure drop is 

described by dimensionless ratio of resistance to inertial forces using Newton number (Ne) and 

the Reynolds number (Re) as the ratio of inertial to viscous forces: 

 Ne = 2fF = ∆P
ρus2

D
L
 (2) 

 Re = ρusD
µ

 (3) 

Where fF represents the friction factor (-), ∆P is the pressure drop (Pa), D is the tube diameter (m) 

and L its length (m), ρ is the apparent fluid density (kg m-3), µ is the apparent fluid viscosity 

(Pa s), and us is the superficial velocity (m s-1) defined by: 
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   us =  4Q
πD2

 (4) 

Where Q is the volume flow rate of the fluid (m3 s-1). 

For pipelines containing mixer elements, pressure drop is usually assumed as uniformly 

distributed along the pipeline. Therefore, similar correlations were developed for single phase 

turbulent flow in static mixers, while accounting for the global porosity (ϕ) of the pipes 

containing static mixers (Cavatorta et al., 1999; Couvert et al., 2002; Morancais et al., 1999; Pahl 

and Muschelknautz, 1980; Shah and Kale, 1991; Streiff, 2003; Streiff et al., 1999, 1997; 

Tallmadge, 1970; Thakur et al., 2003; Theron et al., 2010). This allows comparison between 

differently structured mixers. 

The superficial velocity (us, expressed in m s-1), i.e. in an empty tube, is hence replaced by the 

interstitial velocity (ui, in m s-1) according to: 

   ui = us
φ

 (5) 

And the pipe diameter (D, m) is replaced by the hydraulic diameter of the pipe (Dh, m): 

   Dh = 4φ
ag

 (6) 

Where ag is the mixer specific surface area (m2 m-3) (Streiff et al., 1999). In this case, the 

hydraulic Newton number (Neh, dimensionless) for a circular pipe containing mixers becomes 

(Etchells and Meyer, 2003): 

 Neh = ∆P φ2

ρ us2
Dh
L

 (7) 

And the hydraulic Reynold number (Reh, dimensionless) is given by: 

 Reh = ρ usDh
φµ

 (8) 

In two phase fluids, the apparent viscosity of the emulsion is defined by (Taylor, 1932): 
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 µ = µc �1 + 2.5 Фd �
µd+2 5�  µc
µc+µd

�� (9) 

And the apparent fluid density of the emulsion is defined according to (Legrand et al., 2001): 

 ρ = Фd ρd +  (1 −Фd)ρc (10) 

Where ρd and ρc (kg m-3) are the densities of the dispersed phase and the continuous phase 

respectively while µc and µd (Pa s) are the dynamic viscosities of the dispersed phase and the 

continuous phase respectively (cf. Table 1). 

In this work, the interstitial velocity in a pipe containing the mixers varies from ui = 0.13 −

1.82 m s-1 (i.e. us = 0.10 − 1.38 m s-1 in an empty pipe), which gives a hydraulic Reynolds 

number ranging between Reh =  160 −  1000 (i.e. Re =  425 −  2642). According to Theron 

and Sauze (Theron and Sauze, 2011), the turbulent regime in SMX+ mixers is achieved when 

Re > 710 (i.e. Reh > 260, with the porosity considered in this work). 

3.2 Correlations for the drop size in turbulent flow 

Based on the theory of Kolmogorov (1949) and Hinze (1955), drop breakup is caused by large 

shear and pressure gradients associated with eddies generated in turbulent flow field. In this 

theory, breakup takes place either at the turbulent-inertial sub-range (i.e. drops are larger than the 

smallest eddies, where inertial stresses act on the drop surfaces) or turbulent-viscous dissipation 

sub-range (i.e. drops are smaller than the smallest eddies, where viscous stresses act on the drop 

surfaces). The size of smallest eddies is proportional to the Kolmogorov length scale (λK) (m), 

defined by: 

 λK = � µ
3

ρ3ϵ
�
1/4

  (11) 

Where ϵ is the average rate of energy dissipation per unit mass of fluid (W kg-1), expressed by 

(Ghanem et al., 2014): 
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 ϵ =  Δp us
ρc Lφ

 (12) 

In this work, λK varies from 2 to 10µm, and is therefore smaller than the drop size in all 

experiments which corresponds to the turbulent-inertial sub-range. 

Static mixers redistribute the fluid in the radial and tangential directions (transverse to the main 

flow) using the pumping energy of the flowing fluid which causes distributive mixing by 

convection. Therefore, they can play the role of promoters of turbulence formation leading to an 

increase in the energy of eddies, shear and pressure gradients locally, therefore causing drop 

breakup. 

Assuming isotropic flow field and uniform shear and pressure gradients, it is possible to use 

Kolmogorov-Hinze theory and relate the drop size to the power input and interfacial tension (σ) 

between the dispersed phase and continuous phase (see (Legrand et al., 2001; Streiff et al., 1997; 

Theron et al., 2010) for SMX and (Hirschberg et al., 2009) for SMX+). Most correlations assume 

drop size equilibrium (equal breakup and coalescence rates), except those explicitly accounting 

for the number of static mixers (ne). 

According to the Kolmogorov-Hinze theory, the maximum diameter of stable drops (dmax) in the 

turbulent-inertial regime is given by (Baumann et al., 2012): 

 dmax = C1 �
σ
ρc
�
0.6
ϵ−0.4 (13) 

Where C1 is a tuning parameter and σ is the interfacial tension (N m-1). 

Thereafter, different correlations were proposed using several process parameters as driving force 

for drop breakup (e.g. Weh, Neh, Reh, ϵ, us, number of static mixers) and accounting for 

different fluid properties (dispersed phase fraction, viscosity ratio, density ratio).  
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Streiff (Streiff et al., 1997) introduced to Eq. 13 the effect of density ratios between the 

continuous and dispersed phase �ρc
ρd
�  based on the energy dissipation as driving force for breakup 

in SMX mixers: 

 d =  C2  � σ
ρc
�
0.6
�ρc
ρd
�
0.1
ϵ−0.4 (14) 

Middleman (Middleman, 1974) adapted Eq. 13 of Kolmogorov-Hinze for Kenics static mixers 

using as driving forces for drop breakup the hydraulic Newton number (Eq. 7) and the hydraulic 

Weber number (Weh, ratio of inertial to interfacial forces, Eq.16), but both correlations may be 

considered equivalent if the energy dissipation is assumed to be given by Eq.12: 

 dmax
Dh

= C1 Weh−0.6Neh−0.4 (15) 

 Weh =  ρcus
2Dh

φ2σ
 (16) 

Assuming Neh ∝ Reh−0.25 (Blasius law), Eq. 15 is reduced to: 

 dmax
Dh

= C3 Weh−0.6Reh0.1 (17) 

The volume fraction of the dispersed phased (Фd) was accounted for using hydraulic Weber 

number alone as a driving force for drop breakup, (Poux and Canselier, 2004), which added a 

second tuning parameter: 

 d32
Dh

= C4 s(1 + C5 Фd)We−3/5  (18) 

Calabrese et al. (Calabrese et al., 1986) and Davies (Davies, 1985) introduced the effect of the 

ratio of the viscosity of the dispersed phase to the continuous phase to the Middleman equation 

(Eq. 15): 

 dmax
Dh

= C6 �1 + C7 �
µd
µc
� � d

Dh
�
1/3 Weh Neh

1 3⁄

Reh
�
0.6

Weh−0.6Neh−0.4 (19) 
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The combined effect of dispersed phased fraction and density ratio was accounted for by Streiff 

et al. (Streiff et al., 1997) based on the drop breakup driving forces of energy dissipation and 

interstitial velocity: 

 d =  C8 (1 + C9 Фd) �(1+ C10 ui)Wec
2

�
0.6
� σ
ρc
�
0.6
�ρc
ρd
�
0.1
ϵ−0.4 (20) 

Where Wec is the critical Weber number (-). Note that this equation has three tuning parameters. 

The superficial velocity was also directly considered as a driving force for breakup (Barega et al., 

2013): 

 d32
D

=  (1 + C11 Фd ) �ρ us2D
σ
�
α(Фd)

�ρ usD
µc

�
β(Фd)

�µd
µc
�
γ
 (21) 

Where α, β, γ and C11 are tuning parameters. 

Theron et al. (Theron et al., 2010), as Maa and Hsu before (Maa and Hsu, 1996), introduced the 

number of SMX static mixer elements (ne) in Middleman equation as follows: 

 d32
D

=  C12We−0.6Re0.1ne−0.2 (22) 

The mean diameters, d32 (i.e. the Sauter mean diameter) and d43, can be calculated using the drop 

size distribution in number, n(d) (Middleman, 1974): 

 dab = �∑  ni di
an

i=1
∑  ni di

bn
i=1

�
� 1
a−b�

 (23) 

As the objective of this work is to develop a correlation that describes the drop size for flow 

regimes going from transitional to turbulent, for low and high Reynolds numbers, then the 

approximation of Blasius will not be used, as the Reynolds and Newton numbers may not be 

correlated. The proposed correlation should thus be based on either the energy dissipation or 

Newton number. Moreover, it is aimed to take into account the number of static mixers in the 

correlation. 
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4. RESULTS AND DISCUSSION 

The evolution of the droplets diameter and the droplets size distribution in static mixer processes 

is governed by physicochemical parameters (such as the viscosity and density ratios, the 

surfactant dynamics and efficiency), concentrations (fraction of the dispersed phase, surfactant), 

and hydrodynamic parameters. These latter are affected by the flow rate and the geometrical 

parameters (mixer diameter, length, porosity and structure).  

The influence of key parameters was investigated as follows: a process configuration was 

selected, i.e. a number of SMX+ static mixers and a series of oil-in-water emulsion experiments 

were performed for each oil viscosity according to the protocol detailed in the materials and 

method section. For each series of experiments, the Reynolds number and the volume fraction of 

the dispersed phase were varied randomly to avoid any memory effect of one experiment on the 

following one. At the end of the series, the first experiment was repeated to validate the whole 

series. And between each series, the experimental setup was abundantly rinsed with distilled 

water. 

4.1 Droplet size distribution measurement 

The droplet size distribution was measured at-line by the video probe for all experiments. This 

measurement technique was widely used for emulsion size characterisation (Becker et al., 2014). 

It has the advantage of working online for diluted emulsions, up to 10%vol. As the volume 

fraction in this work is increased up to 60%vol., a sample is withdrawn, diluted 10 times, e.g. 

10mL of sample is diluted in a 100mL volumetric flask with the continuous phase, and measured 

using the video probe under gentle mixing (at-line). The attainment of reproducible results is 

indeed an essential pre-requisite for any emulsification experiment with a volume fraction of the 

dispersed phase higher than 10%vol. 
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Turbiscan was used for backscattering measurement online in order to detect equilibrium in drop 

size (equal breakup and coalescence). Note that backscattering measurements may be used to 

predict the mean drop size after three-dimensional calibration (as a function of the volume 

fraction of the dispersed phase, drop size and refractive index), which quickly becomes time-

consuming. Moreover, this would only give the mean diameter and not the drop size distribution. 

Figure 3 shows the cumulative size distributions measured using the video probe with varying 

operating conditions. It can be seen that the reproducibility of the experiments is good regardless 

the volume fraction, viscosity or Reynolds number. The dilution of the sample for video probe 

measurements can also be assumed not to influence the measurement of the drop size 

distribution. 

4.2 Influence of the number of SMX+ mixers elements  

The influence of the geometrical parameter is studied by varying the number of SMX+ in the 

pipe from 1 to 15.  

Figure 4 a) shows the effect of the number of SMX+ static mixers on d32 for different oil 

fractions (using V20 Silicon oil) and Figure 4 b) for different silicon oil viscosities (using Фd = 

20%vol). The results were obtained with a hydraulic energy dissipation of about 1000W kg-1. 

Both figures show that increasing the number of SMX+ static mixers in the pipe allows 

decreasing the drop size. This is due to the increase in the residence time and therefore dispersion 

kinetics. Figure 4 a) shows that regardless the volume fraction of the dispersed phase; the drop 

size reaches an equilibrium value after 5 SMX+ which means that the breakup is importantly 

reduced after the 5th mixer (equilibrium between breakup and coalescence). This indicates that 

the first five SMX+ are mainly efficient for breakup, and the following mixers will be responsible 

for an increase in the pressure drop, which has to be avoided. By the same way, much more 

breakup takes place between the 1st and 3rd mixer than between the 3rd and 5th one. In this work, 
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we will be interested in modelling the part of this curve where drop size evolves. It can be seen 

on Figure 4 a) that the oil volume fraction has a negligible effect on the drop size.  

Figure 4 b) also shows that the increase of the number of SMX+ induces a decrease in the drop 

size with the V20 silicon oil. Here again, the drop size reaches an equilibrium value after 5 

SMX+ confirming the result presented above. However, it has to be noted that surprisingly the 

increase of the oil viscosity is responsible of a decrease of the drop size. This effect is more 

pronounced when the oil viscosity is increased from 20 to 100 mPa s; while the effect is non-

existent when the increase of the oil viscosity is from 100 to 350 mPa s. Note that these 

experiments were realized with 20%vol dispersed phased fraction. These experiments were 

repeated for the different oil concentrations. At low oil fractions, the tendency was previously 

found to be almost opposite (Becker et al., 2011), and so in accordance to the literature (Baumann 

et al., 2012). This reveals a combined effect of concentration and viscosity.  

4.3 Influence of the hydrodynamic parameter 

The influence of the hydrodynamic parameter on the drop size is investigated by changing the 

total input flow rate, leading to different energy dissipation levels. The volume fractions of 

20%vol., 35%vol., 50%vol. and 60%vol. of the dispersed phase with a V20 viscosity are 

considered in these series of experiments. The number of SMX+ static mixers is fixed at 10-11 in 

order to ensure a constant drop size. 

Figure 5 a) shows the effect of the energy dissipation on d32 for different dispersed phase 

fractions while Figure 5 b) shows the effect of the energy dissipation on d32 for different oil 

viscosities. In accordance with the literature (Barega et al., 2013; Das et al., 2013; Theron et al., 

2010), both figures show that increasing ϵ (or the velocity or the Reynolds number) induces a 

slight decrease in d32 due to the increase in the level of turbulence involving higher inertial forces 

and pressure gradients. However, d32 is constant above hydraulic ϵ= 1000 W kg-1, which could be 

explained by a balance between breakup and coalescence mechanisms. The effects of the 
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dispersed phase fraction or viscosity are found to be negligible in front of that of ϵ. Thus, the 

influence of the energy dissipation is to be of first order compared to the volume fraction or 

viscosity of the dispersed phase, as will be confirmed in the next section. 

Note that the apparent density and viscosity of the fluid phase, used in the calculation of the 

energy dissipation rate and the Reynolds number, are quite the same for all the experiments and 

ranged respectively between 958 to 998 kg m-3 and 1.015 to 3.158 mPa s respectively, while the 

flow rate varied from 120 to 1627 mL min-1. 

4.4 Correlation to predict the Sauter mean diameter (d32) 

This part of the study intends to propose a new form of the Middleman correlation which 

considers the flow properties through the hydraulic Newton number and properties of the droplets 

surface through the hydraulic Weber number. The correlation is aimed to be able to forecast the 

drop size evolution until a constant size is reached. Thus, the influence of the number of SMX+ 

static mixer (ne) (equivalent to a residence time) is added to these two dimensionless numbers. As 

reported above, the experimental results highlighted that the influence of the viscosity is of the 

second order and the influence of the volume fraction of the dispersed phase is negligible on the 

range studied; while the influence of the number of SMX+ and the Reynolds number are of first 

order. Hence, the influence of the viscosity ratio and the volume fraction of the dispersed phase 

are lumped into the tuning parameter C1. Note also that it was preferred to use the original 

correlation of Middleman that uses the hydraulic Newton number, rather than the latter 

correlations based on the Reynolds number, in order to avoid adding a supplementary assumption 

that Neh ∝ Reh−0.25 (Blasius law). Indeed, some of the results are reached in a transitional flow 

while the other part is achieved in turbulent flow; thus, the linearity relationship between the 

Reynolds number and the Newton number is not confirmed. Note also that the Middleman 

correlation constitutes the equivalence of the original Kolmogorov-Hinze correlation proposed 
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for turbulent systems, for static mixers. The results are presented on Figure 6 and the obtained 

correlation is: 

 d32
Dh

= C1 Weh−0.6 Neh−0.4 ne
−C2 = 1

Dh
C1  � σ

ρc
�
0.6
ϵ−0.4 ne

−C2 (24) 

The correlation was established by using experimental results obtained with 1 to 5 SMX+ , 

according to the results presented above which highlighted that only the first five SMX+ are 

efficient to breakup. A volume fraction of the dispersed phase ranging from 5 to 60%vol. was 

considered, and the three silicon oil viscosities (20, 100 and 350 mPa s) were considered. Finally, 

the hydraulic Newton number was varied between 5 and 130, corresponding to a hydraulic 

Reynolds number ranging from 220 to 950. Thus, the correlation is usable both in the transitional 

and turbulent flow regimes. 

Figure 6 shows the modelling results. The values of the parameters, obtained by linear regression, 

are C1 = 1.7 and C2 = 0.27. Only the experiments done at low energy dissipation are not caught 

by the model. This is due to the fact that at low energy dissipation, the drop size distribution is 

very wide. Therefore, the calculation of d32 might be disturbed by the presence of small number 

of big drops detected by image treatment. Moreover, at very low flow rates, controlling precisely 

the flow rates and therefore the volume fraction of oil is more difficult with the used pumps. It 

has to be noted that the exponent values of the hydraulic Weber number (i.e. -0.6) and the 

hydraulic Newton number (i.e. -0.4) are the same as those reported in the Middleman correlation 

(Middleman, 1974). The obtained exponent value of ne is close to those reported in the literature 

for other static mixers (Baumann et al., 2012; Theron et al., 2010). Hence, the influence of the 

static mixers type (SMX, SMX+, Kenics) on the process performances seems to be negligible. 

5. CONCLUSIONS 

The objective of this study was to push the limit of modelling the emulsification process by new 

SMX+ static mixers. This kind of static mixers is particularly recommended for viscous liquid-
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liquid dispersion causing limited pressure drop. The reported experimental results allow 

investigating the influence of some physicochemical parameters (the volume fraction of the 

dispersed phase and its viscosity), the geometric parameter through the number of SMX+ in the 

pipe and the hydrodynamic parameter (the Reynolds diameter) on the drop size. The comparison 

was based on the Sauter mean diameter (d32).  

The obtained results show that the increase of the energy dissipation rate or the number of SMX+ 

static mixers induce a decrease in the d32 diameter while the increase of the dispersed fraction has 

a negligible effect and its viscosity seems to have no significant effect when it is higher than 

100 mPa s. More importantly, the decrease in the d32 with the increase of the number of SMX+ is 

mainly limited to the first five SMX+, whatever the value of the energy dissipation rate (or the 

Newton number or the Reynolds number), in the studied range. In fact, the following SMX+ 

static mixer added after the five first ones will only increase the pressure drop but will not have 

any influence on the d32. Hence, it clearly appears that the influence of the energy dissipation rate 

and the number of the SMX+ static mixer are of the same order of magnitude whereas the 

influence of the volume fraction of the dispersed phase and its viscosity are lower. 

Finally, a correlation of type Middleman was established. This one takes into consideration the 

number of SMX+ mixer elements. The correlation is adapted to situations where the drop size 

distribution is not yet fully established. The exponents of each parameter of the correlation 

confirmed that the number of SMX+ has almost the same influence on the d32 as the Newton 

number.  
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SYMBOLS 

ag  : Specific diameter (m2 m-3) 

D  :  Pipe diameter (m) 

d  : Drop diameter (µm) 

d32  : Sauter mean diameter (µm) 

dmax : Maximum diameter of stable drops (µm) 

Dh  : Hydraulic pipe diameter (m) 

DSD : Drop size distribution 

fF  : Friction factor (-) 

L  :  Length (m) 

Ne  :  Newton number (-) 

Neh : Hydraulic Newton number (-) 

ne   : Number of SMX+ in the pipe (-) 

Q  :  Volume flow rate (m3 s-1) 

Qd  :  Volume flow rate of the dispersed phase (m3 s-1) 

Qc  :  Volume flow rate of the continuous phase (m3 s-1) 

Re  : Reynolds number (-) 

Reh :  Hydraulic Reynolds number (-) 

ui  : Interstitial velocity (m s-1) 

us  : Superficial velocity (m s-1) 

We :  Weber number (-) 
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Weh :  Hydraulic Weber number (-) 

Greek symbols 

ΔP  :  Pressure Drop (Pa) 

Ɛ  : Porosity, i.e. void fraction of the static mixer (-) 

ϵ  : Energy dissipation rate (W kg-1) 

ϕ  : Global porosity (%) 

Φd  :  Volume fraction of the dispersed phase (%vol.) 

λK  : Kolmogorov length scale (m) 

µ  : Apparent dynamic viscosity of the emulsion (Pa s) 

µd  : Dynamic viscosity of the dispersed phase (Pa s) 

µc  : Dynamic viscosity of the continuous phase (Pa s) 

ρ  : Apparent density of the emulsion (kg m-3) 

ρd  : Density of the dispersed phase (kg m-3) 

ρc  : Density of the continuous phase (kg m-3) 

σ  : Interfacial tension (N m-1) 
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Figure captions: 

Figure 1: Pictures of SMX+ static mixer used. 

Figure 2: Schematic diagram of the experimental set-up. 

Figure 3: Examples of cumulative drop size protocol validation on emulsification 

process. Results are carried out with 5 SMX+ static mixers in the pipe. 

Figure 4: Influence of the number of SMX+ mixers: a) Effect of numbers of 

SMX+ (V20, Energy dissipation rate = 5000 W kg-1); b) Effect of numbers of 

SMX+ (φd = 20%vol., Energy dissipation rate = 3000 W kg-1). 

Figure 5: Influence of the hydrodynamic parameters: a) Effect of the volume 

fraction of the dispersed phase (V20, 10 SMX+); b) Effect of the viscosity on d32 

(φd = 10%vol., 10 SMX+). 

Figure 6: Middleman type correlation for the experimental data in terms of Weber 

number, Reynolds number, SMX+ static mixers number and viscosity ratio. 
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Figure 5 
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Figure 6 
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Table 1 

Physico-Chemical properties of silicon oil in distilled water 

emulsion stabilized using Montanox 20, at 20°C 

 

Properties 
Silicon Oil 

V20 V100 V350 

Dispersed phase density ρd (kg m-3) 948.8 964.4 967.6 

Continuous phase density ρc (kg m-3) 998.4 

Density ratio 𝜌𝜌𝑑𝑑
𝜌𝜌𝑐𝑐

  (-) 0.95 0.97 0.97 

Dispersed phase dynamic viscosity µd (Pa s) 19 10-3 96.5 10-3 339.5 10-3 

Continuous phase dynamic viscosity µc (Pa s) 1.01 10-3 

Viscosity ratio µ𝑑𝑑
µ𝑐𝑐

  (-) 18.8 95.4 335.6 

Refractive index (-) 1.400 1.402 1.402 

Interfacial tension for 1%wt. surfactant 

(mN m) 
9.65 10.14 10.60 
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