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Existence of solution to scalar BSDEs

with weakly L
1+-integrable terminal values

Ying Hu∗ Shanjian Tang†

April 16, 2017

Abstract. In this paper, we study a scalar linearly growing BSDE with a weakly L1+-
integrable terminal value. We prove that the BSDE admits a solution if the terminal value
satisfies some Ψ-integrability condition, which is weaker than the usual Lp (p > 1) integrability
and stronger than L logL integrability. We show by a counterexample that L logL integrability
is not sufficient for the existence of solution to a BSDE of a linearly growing generator.

AMS Subject Classification: 60H10
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dual representation.

1 Introduction

Consider the following Backward Stochastic Differential Equation (BSDE):

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds −

∫ T

t
ZsdWs, (1.1)

where the function f : [0, T ]× Ω× R×R1×d → R satisfies

|f(s, y, z)| ≤ αs + β|y|+ γ|z|,

with α ∈ L1(0, T ), β ≥ 0 and γ > 0.
It is well known that if ξ ∈ Lp, with p > 1 , then there exists a solution to BSDE (1.1), see

e.g. [5, 4, 1]. The aim of this paper is to find a weaker integrability condition for the terminal
value ξ, under which the solution still exists .

Set
Ψλ(x) = xe(

2
λ
log(x+1))1/2 , (λ, x) ∈ (0,∞) × [0,∞).

Our sufficient condition is: there exists λ ∈ (0, 1
γ2T ) such that

E[Ψλ(|ξ|)] < +∞.
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Remark 1.1 Note that the preceding Ψλ-integrability is stronger than L1, weaker than Lp for
any p > 1, because for any ε > 0, we have,

x ≤ xe(
2
λ
log(x+1))1/2 ≤ xeε log(x+1)+ 1

2ελ ≤ e
1

2ελx(x+ 1)ε, x ≥ 0.

Moreover, for any p ≥ 1, there exists a constant Cp > 0 such that

xe(
2
λ
log(x+1))1/2 ≥ Cpx log

p(x+ 1).

We will see that even the condition

E[Ψλ(|ξ|)] < +∞

for a certain λ > 1
γ2T

(which implies that |ξ| logp(|ξ| + 1) ∈ L1) is still too weak to ensure the
existence of solution by giving a simple example in Example 2.3.

Note that if the generator f is of sublinear growth with respect to z, i.e. there exists q ∈ [0, 1),

|f(t, y, z)| ≤ α+ β|y|+ γ|z|q,

then there exists a solution for ξ ∈ L1, see [1].
Our method applies the dual representation of solution to BSDE with convex generator (see,

e.g. [4, 6, 3]) in order to establish some a priori estimate and then the localization procedure of
real-valued BSDE [2].

Let us close this introduction by giving the notations that we will use in all the paper. For
the remaining of the paper, let us fix a nonnegative real number T > 0. First of all, (Wt)t∈[0,T ]

is a standard Brownian motion with values in Rd defined on some complete probability space
(Ω,F ,P). (Ft)t≥0 is the natural filtration of the Brownian motion W augmented by the P-null
sets of F . The sigma-field of predictable subsets of [0, T ]× Ω is denoted by P.

Consider real valued BSDEs which are equations of type (1.1), where f (hereafter called the
generator) is a random function [0, T ] × Ω × R × R1×d → R and measurable with respect to
P ⊗ B(R) ⊗ B(R1×d), and ξ (hereafter called the terminal condition or terminal value) is a real
FT -measurable random variable.

Definition 1.2 By a solution to BSDE (1.1), we mean a pair (Yt, Zt)t∈[0,T ] of predictable pro-

cesses with values in R×R1×d such that P-a.s., t 7→ Yt is continuous, t 7→ Zt belongs to L2(0, T )
and t 7→ g(t, Yt, Zt) belongs to L1(0, T ), and P-a.s. (Y,Z) verifies (1.1).

By BSDE (ξ,f), we mean the BSDE of generator f and terminal condition ξ.
For any real p ≥ 1, Sp denotes the set of real-valued, adapted and càdlàg processes (Yt)t∈[0,T ]

such that

||Y ||Sp := E

[

sup
0≤t≤T

|Yt|p
]1/p

< +∞,

and Mp denotes the set of (equivalent class of) predictable processes (Zt)t∈[0,T ] with values in

R1×d such that

||Z||Mp := E

[

(
∫ T

0
|Zs|2 ds

)p/2
]1/p

< +∞.

The rest of the paper is organized as follows. Section 2 establishes a necessary and sufficient
condition for the existence of solution to BSDE (1.1) for the typical form of generator f(t, y, z) =
αt+βy+γ|z|. Section 3 gives the Ψλ integrability condition for the existence of solution to BSDE
(1.1) for f(t, y, z) = αt + βy+ γ|z|. Section 4 is devoted to the sufficiency of the Ψλ-integrability
condition for the existence of solution to BSDE (1.1) of the general linearly growing generator.
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2 Typical Case

Let us first consider the following BSDE:

Yt = ξ +

∫ T

t
(αs + βYs + γ|Zs|)ds−

∫ T

t
ZsdWs, (2.2)

where α ∈ L1(0, T ), and β ≥ 0 and γ > 0 are some real constants. We suppose further that the
terminal condition ξ is nonnegative. Note that if Y is a solution belonging to class D, then as
eβtYt is a local supermartingale, it is a supermatingale, from which we deduce that Y ≥ 0. In
this subsection, we restrict ourselves to nonnegative solution.

For ξ ∈ Lp (p > 1), BSDE (2.2) has a unique solution. It has a dual representation as follows
(see, e.g. [4, 3])

Yt = ess sup
q∈A

{Eq[e
β(T−t)ξ|Ft]}+

∫ T

t
eβ(s−t)αsds, (2.3)

where A is the set of progressively measurable processes q such that |q| ≤ γ,

dQq

dP
= M

q
T ,

with

M
q
t = exp{

∫ t

0
qsdWs −

1

2

∫ t

0
|qs|2ds}, t ∈ [0, T ],

and Eq is the expectation with respect to Qq.

Theorem 2.1 Let us suppose that ξ ≥ 0. Then BSDE (2.2) admits a solution (Y,Z) such that
Y ≥ 0 if and only if there exists a locally bounded process Ȳ such that

ess sup
q∈A

{Eq[e
β(T−t)ξ|Ft]}+

∫ T

t
eβ(s−t)αsds ≤ Ȳt.

Proof. If BSDE (2.2) admits a solution (Y,Z) such that Y ≥ 0, then we define a sequence of
stopping times

σn = T ∧ inf{t ≥ 0 : |Yt| > n},
with the convention that inf ∅ = +∞.

As W q
s = Ws −

∫ s
0 qrdr is a Brownian motion under Qq, we have

Yt∧σn = Yσn +

∫ σn

t∧σn

(αs + βYs + γ|Zs| − Zsqs)ds−
∫ σn

t∧σn

ZsdW
q
s .

Applying Itô’s formula to eβsYs, we deduce

eβ(t∧σn)Yt∧σn = eβσnYσn +

∫ σn

t∧σn

eβs(αs + γ|Zs| − Zsqs)ds−
∫ σn

t∧σn

eβsZsdW
q
s ,

from which we obtain

Eq[e
β(σn−t∧σn)Yσn +

∫ σn

t∧σn

eβ(s−t∧σn)αsds|Ft] ≤ Yt∧σn .

Fatou’s lemma yields that

Eq[e
β(T−t)ξ|Ft] +

∫ T

t
eβ(s−t)αsds ≤ Yt.
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On the other hand, if there exists a locally bounded process Ȳ such that

ess sup
q∈A

{Eq[e
β(T−t)ξ|Ft]}+

∫ T

t
eβ(s−t)αsds ≤ Ȳt,

then we construct the solution by use of a localization method (see e.g. [2]). We describe this
method here for completeness. Let (Y n, Zn) be the unique solution in S2 ×M2 of the following
BSDE

Y n
t = ξ1{ξ≤n} +

∫ T

t
(αs + βY n

s + γ|Zn
s |)ds −

∫ T

t
Zn
s dWs.

By comparison theorem, Y n is nondecreasing with respect to n. Moreover, setting qns = γ sgn(Zn
s ),

we obtain

Y n
t = Eqn [e

β(T−t)ξ1{ξ≤n}|Ft] +

∫ T

t
eβ(s−t)αsds

≤ Eqn [e
β(T−t)ξ|Ft]}+

∫ T

t
eβ(s−t)αsds

≤ Ȳt.

Set
τk = T ∧ inf{t ≥ 0 : Ȳt > k},

and
Y n
k (t) = Y n

t∧τk , Zn
k (t) = Zn

t 1t≤τk .

Then (Y n
k , Zn

k ) satisfies

Y n
k (t) = Y n

k (T ) +

∫ T

t
1s≤τk(αs + βY n

k (s) + γ|Zn
k (s)|)ds −

∫ T

t
Zn
k (s)dWs. (2.4)

For fixed k, Y n
k is nondecreasing with respect to n and remains bounded by k. We can now

apply the stability property of BSDE with bounded terminal data (see e.g. Lemma 3, page 611
in [2]). Setting Yk(t) = supn Y

n
k (t), there exists Zk such that limn Z

n
k = Zk in M2 and

Yk(t) = sup
n

Y n
τk

+

∫ τk

t
(αs + βYk(s) + γ|Zk(s)|)ds −

∫ τk

t
Zk(s)dWs. (2.5)

Finally, noting that

Yk+1(t ∧ τk) = Yk(t ∧ τk), Zk+11t≤τk = Zk1t≤τk ,

we conclude the existence of solution (Y,Z).
�

Remark 2.2 Consider the case d = 1. If BSDE (2.2) admits a solution (Y,Z) such that Y ≥ 0,
by taking q = γ and q = −γ, we deduce that both ξeγWT and ξe−γWT are in L1(Ω), which implies
that ξeγ|WT | ∈ L1(Ω), as

ξeγ|WT | ≤ ξeγWT + ξe−γWT .

Example 2.3 Let us set d = 1, T = 1, β = 0, γ = 1, µ ∈ (0, 1), and

ξ = e
1
2
W 2

1−µ|W1|+ 1
2
µ2 − 1.
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In this case, BSDE (2.2) does not admit a solution (Y,Z) such that Y ≥ 0, as ξe|W1| does not
belong to L1(Ω) by the following direct calculus:

E[ξe|W1|] =
1√
2π

∫ +∞

−∞
(e

1
2
|x|2−µ|x|+ 1

2
µ2 − 1)e|x|e−

1
2
|x|2dx = +∞.

Whereas it is straightforward to see that for any p ≥ 1, ξ logp(ξ + 1) ∈ L1(Ω).
For λ > 1, consider the following terminal condition

ξ = e
1
2
W 2

1−µ|W1|+ 1
2
µ2 − 1, µ ∈ (

1√
λ
, 1).

We have Ψλ(ξ) ∈ L1 by the following straightforward calculus:

E[Ψλ(ξ)] =
1√
2π

∫ +∞

−∞
(e

1
2
|x|2−µ|x|+ 1

2
µ2 − 1)e

1√
λ

∣

∣|x|−µ
∣

∣

e−
1
2
|x|2dx < +∞,

while BSDE (2.2) has no solution, in view of the fact that ξe|W1| does not belong to L1(Ω).

3 Sufficient Condition

Let us now look for a sufficient condition for the existence of a locally bounded process Ȳ such
that

ess sup
q∈A

{Eq[e
β(T−t)ξ|Ft]}+

∫ T

t
eβ(s−t)αsds ≤ Ȳt.

For λ > 0, define the functions Φλ and Ψλ:

Φλ(x) = e
1
2
λ log2(x), x > 0,

Ψλ(y) = ye(
2
λ
log(y+1))1/2 , y ≥ 0.

Then we have

Proposition 3.1 For any x ∈ R and y ≥ 0, we have

exy ≤ Φλ(e
x) + e

2
λΨλ(y).

Proof. Set

z = (
2

λ
log(y + 1))1/2 ≥ 0,

then
y = e

λ
2
z2 − 1.

It is sufficient to prove that for any x ∈ R and z ≥ 0,

e
1
2
λx2−x + (e

λ
2
z2 − 1)(ez+

2
λ
−x − 1) ≥ 0.

It is evident to see that the above inequality holds when z + 2
λ − x ≥ 0.

Consider the case z + 2
λ − x < 0. Then x > z + 2

λ > 0. Hence

e
1
2
λx2−x + (e

λ
2
z2 − 1)(ez+

2
λ
−x − 1)

= e
1
2
λ(x− 1

λ
)2− 1

2λ + e
λ
2
z2+z+ 2

λ
−x + 1− ez+

2
λ
−x − e

λ
2
z2

≥ e
1
2
λ(z+ 1

λ
)2− 1

2λ − e
λ
2
z2

≥ 0.

�

5



Proposition 3.2 Let 0 < λ < 1
γ2T

. For any q ∈ A,

E[Φλ(e
∫ T
t

qsdWs)|Ft] ≤
1

√

1− λγ2(T − t)
.

Proof. Firstly, by use of Girsanov’s lemma, for θ ∈ R,

E[eθ
∫ T
t qsdWs |Ft]

= E[eθ
∫ T
t

qsdWs− θ2

2

∫ T
t

|qs|2dse
θ2

2

∫ T
t

|qs|2ds|Ft]

≤ e
θ2γ2

2
(T−t).

Then we apply

eλ
x2

2 =
1√
2π

∫ +∞

−∞
e
√
λyx− y2

2 dy

to deduce that

E
[

Φλ(e
∫ T
t qsdWs)

∣

∣Ft

]

= E
[

e
λ
2
(
∫ T
t

qsdWs)2
∣

∣Ft

]

=
1√
2π

∫ +∞

−∞
E[e

√
λy

∫ T
t qsdWs− y2

2 |Ft]dy

≤ 1√
2π

∫ +∞

−∞
e

(
√

λyγ)2

2
(T−t)− y2

2 dy

=
1

√

1− λγ2(T − t)
.

�

Applying the above two propositions, we deduce the following sufficient condition.

Theorem 3.3 Let us suppose that there exists λ ∈ (0, 1
γ2T

) such that

E[Ψλ(ξ)] < +∞.

Then

ess sup
q∈A

{Eq[e
β(T−t)ξ|Ft]}+

∫ T

t
eβ(s−t)αsds ≤ Ȳt, (3.6)

with

Ȳt = eβ(T−t)

(

1
√

1− λγ2(T − t)
+ e

2
λE[Ψλ(ξ)|Ft]

)

+

∫ T

t
eβ(s−t)αsds,

and (2.2) admits a solution (Y,Z) such that

Yt ≤ Ȳt.

Proof. Applying the above two propositions, we deduce

Eq[ξ|Ft] = E[M q
T (M

q
t )

−1ξ|Ft] ≤ E

[

e
∫ T
t qsdWsξ

∣

∣

∣
Ft

]

≤ E[Φλ(e
∫ T
t qsdWs)|Ft] + e

2
λE[Ψλ(ξ)|Ft]

≤ 1
√

1− λγ2(T − t)
+ e

2
λE[Ψλ(ξ)|Ft].

Then we get (3.6) and the rest follows from Theorem 2.1. �
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4 General Case

Consider the following BSDE:

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds −

∫ T

t
ZsdWs, (4.7)

where f satisfies
|f(s, y, z)| ≤ αs + β|y|+ γ|z|, (4.8)

with α ∈ L1(0, T ), β ≥ 0 and γ > 0.

Theorem 4.1 Let f be a generator which is continuous with respect to (y, z) and verifies (4.8),
and ξ be a terminal condition. Let us suppose that there exists λ ∈ (0, 1

γ2T
) such that

E[Ψλ(|ξ|)] < +∞.

Then BSDE (4.7) admits a solution (Y,Z) such that

|Yt| ≤ eβ(T−t)

(

1
√

1− λγ2(T − t)
+ e

2
λE[Ψλ(|ξ|)|Ft]

)

+

∫ T

t
eβ(s−t)αsds.

Proof. Let us fix n ∈ N∗ and p ∈ N∗ and set ξn,p = ξ+∧n− ξ−∧p. Let (Y n,p, Zn,p) be the unique
solution in S2 ×M2 of the BSDE (|ξn,p|, f). Set

f̄(s, y, z) = αs + βy + γ|z|,

and (Ȳ n,p, Z̄n,p) be the unique solution in S2 ×M2 of the BSDE (|ξn,p|, f̄).
By comparison theorem,

|Y n,p
t | ≤ |Ȳ n,p

t |.
Setting q

n,p
s = γ sgn(Zn,p

s ), we obtain,

|Y n,p
t | ≤ |Ȳ n,p

t |

= Eqn,p

[

eβ(T−t)|ξn,p|
∣

∣

∣
Ft

]

+

∫ T

t
eβ(s−t)αsds.

From inequality (3.6),
|Y n,p

t | ≤ Ȳt,

with

Ȳt = eβ(T−t)

(

1
√

1− λγ2(T − t)
+ e

2
λE

[

Ψλ(|ξ|)
∣

∣

∣
Ft

]

)

+

∫ T

t
eβ(s−t)αsds.

Moreover, Y n,p is nondecreasing with respect to n, and nonincreasing with respect to p. Once
again, we apply the localization method as follows to conclude the existence of solution.

Set
τk = T ∧ inf{t ≥ 0 : Ȳt > k},

and
Y

n,p
k (t) = Y

n,p
t∧τk , Z

n,p
k (t) = Z

n,p
t 1t≤τk .

Then (Y n,p
k , Z

n,p
k ) satisfies

Y
n,p
k (t) = Y

n,p
k (T ) +

∫ T

t
1s≤τkf(s, Y

n,p
k (s), Zn,p

k (s))ds −
∫ T

t
Z

n,p
k (s)dWs. (4.9)
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For fixed k, Y n,p
k is nondecreasing with respect to n and nonincreasing with respect to p, and

remains bounded by k. We can now apply the stability property of BSDEs with bounded terminal
data. Setting Yk(t) = infp supn Y

n,p
k , there exists Zk in M2 such that limp limn Z

n,p
k = Zk in M2

and

Yk(t) = inf
p
sup
n

Y n,p
τk

+

∫ τk

t
f(s, Yk(s), Zk(s))ds −

∫ τk

t
Zk(s)dWs. (4.10)

Finally, noting that

Yk+1(t ∧ τk) = Yk(t ∧ τk), Zk+11t≤τk = Zk1t≤τk ,

we conclude the existence of solution (Y,Z).
�
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