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Warped Gaussian processes and derivative-based sequential
design for functions with heterogeneous variations

Sébastien Marmin1,3,4,6,∗, David Ginsbourger2,1,6, Jean Baccou3,5,
Jacques Liandrat4

Gaussian process (GP) models have become popular for approximating and explor-
ing non-linear systems based on scarce input/output training samples and on prior
hypotheses implicitly done through prior mean and covariance functions. While it is
common to make stationarity assumptions and use variance-based criteria for space
exploration, in realistic test cases it is not rare that systems under study exhibit an
heterogeneous behaviour depending on considered regions of the parameter space.
With a class of problems in mind where high variations occur along unknown non-
canonical directions, we tackle the problem of uncovering and accommodating non-
stationarity in function approximation from two angles: first via a novel class of
covariances (called WaMI-GP) that simultaneously generalizes kernels of Multiple In-
dex and of tensorized warped GP models and second, by introducing derivative-based
sampling criteria dedicated to the exploration of high variation regions. The novel GP
class is investigated both through mathematical analysis and numerical experiments,
and it is shown that proposed kernels allow encoding much expressiveness while re-
maining with a moderate number of parameters to be inferred. On the other hand,
and independently of non-stationarity assumptions, we conduct (semi-)analytically
derivations for our new variance-based infill sampling criteria relying on a change
of focus from the GP to the norm of its associated gradient field. Criteria and GP
models are first compared on a mechanical test case taken from nuclear safety studies
conducted by IRSN. It is found on this application that some of the proposed sam-
pling criteria including derivatives outperform usual variance-based criteria in the
case of a stationary GP model, but that it is even better to use standard variance-
based criteria with the proposed novel class of covariances. Comparisons are also
done with the Treed Gaussian Processes (TGP) both on this application and on a
three-dimensional NASA test case. In the IRSN application, WaMI-GP dominates
TGP in static and sequential settings. In the NASA application, while TGP clearly
dominates in the static case, for small initial designs it is outperformed by WaMI-GP
in the sequential set up.
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Figure 1: Concentration of the prediction error around high variation zones (empirical assessment). Top:
functions with high variation zones (obtained by generating sample paths of a simple non-stationary GP)
with prediction curves from five evaluations. A classical interpolating model is used (GP model with
stationary covariance of type Matérn ν = 5

2 ). Bottom: absolute differences between predictions and true
values, averaged on a moving window of width 1

10 .

1 Introduction

Many experimental systems abruptly change regime: in material science, with percolation thresh-
old of porous media, in epidemiology, with outbreak of a pathogen according to uncertain char-
acteristics of a population, in thermodynamics with phase transition, etc. This situation is also
often encountered in nuclear safety analysis in which, to take one example, slight variations in
input parameters of computer codes may strongly impact responses quantifying system safety
due to a steep transition between competing mechanical phenomena. Let us assume that we aim
to study one real-valued response of some system with respect to d variables, formally a function
f : x ∈ D ⊂ Rd → f(x) ∈ R. For differentiable f ’s, abrupt changes of regime are reflected
for instance by changing magnitude of the gradient norm depending on regions of the input
space or, to take one alternative viewpoint, by spatially-varying main local frequencies. Here we
will informally refer to such f ’s as “functions with heterogeneous variations”. As illustrated in
figure 1, regions with abrupt changes in function values can lead to increased prediction errors.
Allocating more evaluation in these regions is a natural idea. However, practitioners are often
in the situation that they only know the existence of such heterogeneities without much precise
information regarding their location, shape, or orientation. In the context of expensive evalu-
ations it thus makes sense to appeal to modelling and sampling approaches that allow better
approximating f in those regions based on data. In sequential design of experiments, the choice
of evaluation points is typically guided by a (cheap) surrogate model of f . Often surrogate model
predictions come with prediction uncertainties, and sampling criteria rely upon them in order to
determine the most promising next evaluation point(s). Evaluations of f at points deemed most
promising and surrogate model updates are then repeated until stopping condition is met, e.g.
depletion of the evaluation budget.

Gaussian Process (GP) models are popular surrogate models, and have become a standard
in the design and analysis of computer experiments (see e.g. [38], [21] and [40]). They consist
in assuming that the unknown objective function f is a sample path of a prior GP Y indexed
by the source space of f . The term prior refers to probability distributions assumed before any
evaluation, to oppose to posterior distributions that take some evaluation results into account.
The free determination of a prior makes GP models versatile for guiding additional evaluations
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according to a user defined goal and for integrating practitioner’s initial knowledge on f . The
quality of the model depends both on the data set and on the adequacy between the prior GP
Y and the actual f to be predicted. Adapting the prior covariance of Y to specific classes of
objective functions f has inspired a lot of research results. For example, for objective functions
with a better representation in polar coordinate, [27] proposes GP models that incorporate the
geometry of the disk. Similarly, appropriate prior covariances exist for functions known to satisfy
degeneracies such as symmetries or harmonicity [14], and for functions with a sparse ANOVA
decomposition [11] [15]. In the absence of such specific prior assumption of f , it is common to
take stationary covariance functions [44]. A GP model with a stationary prior covariance means
that in absence of evaluation, the distribution of outputs (Yx, Yx′)

>, for every pair (x,x′) in
the input space, depends only on the difference x − x′. Among stationary kernels, the Matérn
class is quite popular as it allows tuning the order of (almost sure) differentiability of associated
GP realizations. Note that both tensor product Matérn kernels (e.g. in [37]) and their radial
counterparts (such as in [34]) have been used. For sequential settings it is interesting to keep in
mind however that a number of properties including stationarity vanish when conditioning on
data, as discussed notably in [36] with a focus on the tensor product (or “separability”) property.

Yet, when f is known to possess heterogeneous variations, it is sensible to depart from the
stationary hypothesis from the start and consider non-stationary prior covariances that account
for this property. Among various proposals from non-stationary GP modelling, we can cite con-
volution methods, see [26] [13], or input space warping approaches ([39]). In this last approach,
the non-stationary GP comes from the chaining of a GP with a warping function of D, corre-
sponding to what is often referred to as a change of time in stochastic process theory. A strongly
consistent approach for estimating warpings of a bivariate isotropic GP from dense evaluations
of a single (warped) realisation is provided by [1]. In contrast, challenges considered here rather
call for warping estimation from scarce evaluations in order to build appropriate non-stationary
surrogates for f ’s with arbitrary d-dimensional source space. Gibbs [13] tackled this problem
using parametric warpings relying on linear combinations of basis functions. Following this idea,
Xiong et al. [48] drastically reduced the number of parameters by taking tensor products of
univariate warpings. An additional well recognised model around the sphere of GP modelling,
Treed Gaussian Process (TGP) [16], is a spatial assembly of different GPs. Based on partition-
ing input space, its current implementation divides D into parallelepipeds on which individual
GPs are defined. While this method is very flexible and allows by construction accounting for
heterogeneous variations, it steps out the GP paradigm in the strict sense and hence does not
benefit from some of its convenient properties. In the present context of small data sets and
heterogeneous variations driven by unknown directions, GP surrogate models are needed that
enjoy the sparsity of Xiong et al.’s axial warping while keeping nice flexibility properties of TGP
or the Gibbs approach without relying on canonical axes. The last point notably refers to single
index models such as GP-SIM [19] and more generally to so-called multiple index models [47].
Our proposed kernel class is underlain by these considerations, as detailed in next sections.

From a different perspective, GP models have been used for sequential design of computer
experiments, notably with variance-based sampling criteria like the Mean Squared Error (MSE)
and Integrated MSE (IMSE) that allow allocating evaluations to unexplored regions. While
strategies based on such criteria tend to fill the design space [45] and hence to eventually learn
high-variation regions, in stationary cases it is done in a non-adaptive way as then the prediction
variance does not depend on observations but solely on the location of points. In contrast, GP-
based adaptive criteria have been tackled for estimating target regions such as contour lines,
excursion sets and related [46, 33, 31, 2, 4]. On a different note, adaptive design criteria have
been used for global optimization (See notably [24, 21, 43]). Notably, input warping has been
recently shown to improve Bayesian optimization in non-stationary cases [42].
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Here we tackle the problem of learning functions with heterogeneous variations along unknown
directions from a limited number of evaluations both from the modelling and the sequential
design points of view. Contributions are organised in two parts. First we introduce the Warped
Multiple Index (WaMI) GP model. It relies on a new family of non-stationary covariance kernels
that combines features from Multiple Index GPs and tensorized warpings. A nice aspect of this
kernel family is the number of hyperparameters that increase affinely with the dimension (with
slope 1). Besides this, the model can incorporate any orientation of heterogeneous variations.
Regarding sampling aspects, we develop targeted criteria for adaptively sampling functions with
heterogeneous variations. Based on GP gradient norms, they make a trade-off between space-
fillingness and intensifying exploration in high variation regions of f .

We apply these contributions on functions arising from two mechanical engineering case
studies. The first test case stems from numerical simulations of fracture dynamics arising in risk
studies at the French Institute for Radioprotection and Nuclear Safety (IRSN). On this test case,
our proposed WaMI-GP model outperforms both a stationary GP model and a TGP model in
static prediction from a class of initial designs. Moreover the same test case is used to compare
performances of sequential design strategies by varying both the criteria (MSE and IMSE versus
introduced derivative based criteria) and GP models (stationary versus WaMI). Best results are
obtained using WaMI-GP (and to a lesser extent, TGP) combined with the classical variance-
based criteria, followed by a combination of a stationary GP model combined with one of the
proposed gradient-based criteria. In the second test case, a three-dimensional fluid dynamics
application from NASA that was used in seminal article about TGP, TGP remains the best
model at fixed space-filling design of experiments, but when both methods are combined with
sequential design (using the MSE criterion here) WaMI-GP outperforms TGP by successfully
detecting high variation regions and attributing them higher prediction variance values.

The paper is organised as follows: Section 2 is devoted to an overview on GP models with
a focus on non-stationary models, and their use for sequential design of experiments. Then
we introduce and investigate the WaMI-GP model in Section 3, followed by several proposals
of derivative-based criteria for the exploration of high-variation regions in Section 4. Finally,
experimental results and comparisons with classical approaches based on the two engineering
test cases are presented in Section 5.

2 State-of-the-art

2.1 Stochastic modelling for the emulation of computer experiments

2.1.1 Overview of Gaussian process modelling basics

In GP modelling, one assumes that the objective function is a realization of a Gaussian random
field Y ∼ GP(m(·), c(·, ·)) indexed by D, specified in distribution by its mean and covariance
functions m(·), c(·, ·). These functions are typically taken among some parametric families and
parameters are either estimated and plugged-in or treated as random variables in the full Bayesian
framework. Let us denote m = mθ1 and c = cθ2 , with an overall hyperparameter θ = (θ1,θ2)
(here a finite-dimensional vector). In this article, we adopt an empirical Bayes viewpoint, mean-
ing in the present context that the Bayesian paradigm is used when seeing f as a random element
with a GP prior, but the hyperparameter θ is treated as deterministic even if it is estimated
based on data. In other words, given θ, for all x1, . . . ,xp ∈ D, the corresponding response vector
(Y (x1), . . . , Y (xp))

> (standing for values of the objective functions at those points) is a priori
distributed as a multivariate normal distribution N ((mθ1(xi))

>
i=1,...,p , (cθ2(xi,xj))i,j=1,...,p). Es-

timators for θ can notably be defined by cross-validation minimization or by maximum likelihood
(see [28]) and then simply plugged-in. While in such case it is customary to distinguish the es-
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Figure 2: Stationary GP modelling of a toy function (equation (3)). From left to right: representation
of f ; locations and responses of eight initial evaluations; posterior mean of the Gaussian process; posterior
standard deviation.

timate from a fixed value by putting hat on θ, here estimated parameters are often implicit for
the sake of readability. Also, numerical details about mean and covariance parameter estimation
can be found in [37] and are omitted here for conciseness.

Now given n arbitrary points x1, . . .xn ∈ D and observed values (y(x1), . . . , y(xp)) of Y
at those points, the so-called kriging formulae and the underlying posterior GP model are ob-
tained by conditioning Y on the event An = {Y (x1) = y1, . . . , Y (xn) = yn}: cn : (x,x′) →
cov (Yx, Yx′ | An) informing on the prediction uncertainty, including the posterior standard devi-
ation defined as x→

√
cn(x,x). We have:

mn(x) = E (Yx| An) = m(x) + cn(x)>C−1n (y1:n − (m(xi))
>
i=1,...,n), and (1)

cn(x,x′) = cov (Yx, Yx′ | An) = c(x,x′)− cn(x)>C−1n cn(x′), (2)

where y1:n = (yi)
>
i=1,...,n, cn(x) = (c(x,xi))

>
1≤i≤n, and Cn = (c(xi,xj))1≤i,j≤n (assumed non-

singular here). A bivariate stationary GP model is illustrated in Figure 2, with

f : x ∈ [0, 1]2 → (sin(15x1) + cos(10x2))/ 5 + arctan (10(x1 + x2)− 15/2) . (3)

A model is built from 8 observations determined by a space filling algorithm : random LHS
design optimized with a maximin criterion (see e.g. [10]). While trends are parametrized by
basis functions coefficients in the case of Universal Kriging, here we focus mostly on the role of
the covariance and the trend is typically taken as a constant (estimated in the Ordinary Kriging
setting, as discussed in [37]). The covariance kernel used in Figure 2 is a stationary Matérn (See
[44, 34]) with ν = 5/2 and θ ∈ (R+\{0})d+1:

cθ
(
x,x′

)
= θd+1

(
1 +
√

5h+
5

3
h2
)

exp
(
−
√

5h
)
, where h =

√√√√ d∑
i=1

(xi − x′i)
2

θ2i
. (4)

In this example the function f has heterogeneous variations across the input space in the sense
that there is a steep region in a band around the line of equation x2 = 3/4 − x1. Localized
features question the choice of a stationary covariance, and actually a non-stationary model may
improve the model by fitting the heterogeneous behaviour of f as discussed below.

2.1.2 Non-stationary approaches: from warped GP to TGP

Non-stationary GP models are already widely applied. It often consists in injecting prior knowl-
edge about spatial-dependency. There are several approaches to achieve that. A trivial way is
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arbitrary warping (equation (5)), is represented on the left by the deformation of the grid ( i

18 ,
j
18 )i,j=0,...,18.

Then we display its approximations with different levels of precision.

based on vertical scaling (see e.g. [23] for a formulation): as c(x,x) = σ2 is constant for any
stationary covariance c, replacing c(x,x′) = σ2R(x,x′) (where R is the corresponding correla-
tion function) by c(x,x′) = σ(x)σ(x′)R(x,x′) where σ is a non-negative function that creates
a non-stationary covariance. Moreover, Paciorek and Schervish [26] address the issue of non-
stationarity by extending a convolution method proposed in [13] from a squared exponential
kernel to any covariance structure. Warping stationary GPs for creating non-stationary GPs is
also a common method (See, e.g., [39]). In this approach, called the non-linear map method, the
non-stationary covariance function c is derived from the GP x→ Yx = ZT (x), with Z a generally
stationary GP of covariance k(·, ·) on Rp × Rp, and T a function from D to Rp. The covari-
ance of Y is then obtained by chaining the stationary covariance with T ⊗ T ; i.e. ∀x,x′ ∈ D,
c(x,x′) = k(T (x), T (x′)).

The estimation of T from data is a difficult problem. The non-linear map method flexibility
is also challenging for the estimation of T among the set of injections on D. A first restriction,
implicitly assumed in almost all applications, is to consider only continuous bijections. The
estimation of T is also often simplified to a finite dimension problem taking T = Tτ , with τ a
parameter vector. Gibbs’ method [13], for example, formulates Tτ as a multidimensional integral
of non-negative density functions, that ensure its bijectivity and continuity:

Tτ (x) = x0 +

(∫
P01

gi(u)ds

)>
i=1,...,d

,

with P01 a predefined path between x0 and x, for example the corresponding segment. These
density functions are expressed as linear combinations of radial basis functions. The estimation
of T reduces to the estimation of a finite number of weights. We see in Figure 3 how this method
allows an approximation of a given deformation

T0(x) = x+ 1/10 arctan(30(x21 + x2 − 1)). (5)

In this example, the basis functions were chosen as uncorrelated Gaussian functions with centres
positioned on a regular grid of size Nbasis and with range σbasis = 3/(5Nbasis). The weights were
computed directly with the values of the deformation at the centres of the basis functions.

We observe a degradation of the warping approximation with decreasing numbers of param-
eters to estimate: with a grid of 16 basis functions, i.e. requiring a computation of 32 weights in
dimension 2, the approximation fails despite a relatively large number of parameters. Here about
100 basis functions are needed to capture the non-stationarity in the whole domain. This reduces
the applicability of the method in contexts with drastically numbers of evaluations. Note that
keeping the same level of spatial precision, say r basis functions for each direction, the number
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drd of weights increases rapidly with d. Therefore an effort has been done to reduce the number
of parameters while preserving some flexibility. e.g. with the axial warping method [48].

In this method, it is assumed that for x ∈ D, T (x) = (Ti(xi))
>
i=1,...,d, with (Ti)i=1,...,d contin-

uous univariate bijections. They take for Ti, i = 1, . . . , p, piecewise second degree polynomials,
with differentiability constraints and nodes placed along the ith dimension. In Figure 4 we dis-
play the results of applying this method to the toy function already used in Figure 2, along with
the estimated axial warping densities.
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Figure 4: Gaussian process model with axial warping, applied to the running example function. From
left to right: estimated warping density functions for the axes; corresponding surface warping of [0, 1]2

(represented by deformation of a 10×10 regular orthogonal grid); prediction mean and standard deviation.

In some situations, warping only along canonical axis can be questioned. For instance, if
the expected, or ‘real’, warping is of the form T (x) = x + T1(x

>u)u, with u an arbitrary
non-canonical direction in Rd, an axial warping cannot incorporate that orientation. Although
this warping is simple, and potentially useful in many applications, the general Gibbs’ approach
needs a lot of parameters to approximate T . In Xiong et al. the number of parameters is reduced
but this simplification appears to be too rigid in some applications.

Another strategy for functions with high variation zones, and close to GP modelling, is
the (Bayesian) Treed Gaussian Process (TGP). This method is based on partitioning the input
space. Different GP models are then associated independently in each partition, allowing highly
heterogeneous behaviour across the input space. A strength of this method is that partitions and
their number are automatically determined according to the data. The discontinuity resulting
from partitioning could sound like a drawback, although it is shown that, due to Bayesian
averaging which is not detailed here, it does not increase notably the prediction error. Figure 5
shows the application on the toy function obtained with the R package ‘tgp’.
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We observe that the TGP model is able to estimate a partition of the input space in two
zones. The algorithm aims at discriminating regions of different variation behaviour. Indeed the
region x2 > 0.465 appears to have less variations than the region x2 ≤ 0.465. The partitions are
implemented to be defined in terms of the canonical axes. But one can expect that when adding
new evaluations, allowing partitions not parallel to these axes could improve the modelling.
Here, it can be expected that partitioning the space with respect to the line x1 +x2 = 3/4 could
constitute an improvement, because it takes into account the transition region.

2.1.3 Dimension reduction with the Multiple Index Model

With expensive evaluations, and therefore often small sample size, it is important to keep the
number of model parameters moderate. But in most anisotropic GP models, the dimension
of θ increases rapidly with d. Geometric anisotropies in dimension d require to parametrize a
rotation (d(d− 1)/ parameters) and length-scale parameters for each relevant directions (see e.g
[34] p. 106 for a presentation of the squared exponential anisotropic GP). To avoid this, one can
consider parsimonious multidimensional non-linear regression like the Single Index Model [3].
Gaussian Process-SIM (GP-SIM [6]) is a particular SIM that can be formulated as a stationary,
canonical Gaussian process model [19]. In our empirical Bayes context, the model is defined
by its prior covariance: a univariate covariance kβ, parametrised by a vector β, chained with a
scalar product with a vector a ∈ Rd:

cθ(x,x′) = kβ(a>x,a>x′). (6)

With this covariance function, the dimension of θ = {β,a} increases affinely in d with slope
1. In empirical Bayesian setting, this model produces constant predictions in all hyperplanes
orthogonal to a. Relaxing this constraint, the multiple index model is an extension proposed by
[47]. It uses a more complex q-variate covariance function for kβ, and extends the scalar product
to a matrix product:

cθ(x,x′) = kβ
(
Ax, Ax′

)
(7)

with q ∈ N\{0}, A a q× d matrix, and kβ a parametrized q dimensional definite positive kernel.
The main asset of MIM used in this work is its neutrality towards the canonical axis. Indeed, if
we create a new data set applying a linear invertible transformation of the input data x→ Qx,
the posterior distribution with parameters (β,A∗) for the original model (and thus the likelihood
and the cross validation) is the same as the posterior distribution of the transformed model with
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parameters (β,A∗Q−1). Any invertible linear pre-treatment of the data leads intrinsically to the
same estimation problem, which is not the case for many models that use the canonical axis as
an information for prediction.

2.2 Sampling

2.2.1 Principle and classic criteria

Once a GP model has been built from an initial, say space-filling design of Nini evaluations (like
—possibly optimized— LHS designs, minimax-distance designs, etc. See [32] for an overview),
the sequential design itself is a loop incrementing n, the current number of evaluations n =
Nini + 1, . . . , N . Sequential sampling is typically driven by the optimization of a family of infill
criteria Jn coupled with updating model parameters at each iteration. More precisely, in fully
sequential settings, the next evaluation xn+1 is selected as a point maximizing a criterion Jn:

xn+1 ∈ argmax
x∈D

Jn(x). (8)

Jn depends on past evaluations and is actually defined in terms of the mean mn(·) and the
covariance cn(·, ·) of the GP at step n.

A first idea for a criterion is to evaluate the point from which the prediction has the high-
est posterior variance, in order to reduce the uncertainty of the predicting GP. Classical criteria,
Mean Squared Error (MSE) and Integrated MSE (IMSE) are based on this idea. These criteria fo-
cus on the zones where the uncertainty on the prediction is high, i.e. where the function is still un-
explored according to the model. In the case of deterministic evaluations, the MSE criterion can
be reformulated in maximin terms by changing the metric on D to the canonical metric of the GP
model covariance cn, i.e. considering the distance d(x,x′) =

√
cn(x,x) + cn(x′,x′)− 2cn(x,x′).

Indeed, the MSE criterion is defined as:

JMSE
n (x) = cn (x,x) . (9)

The latter property highlights that MSE maximization amounts to maximizing a minimal dis-
tance to available design points, but taking a distance that accounts for covariances given by the
model rather than the Euclidean distance. For IMSE, the aim is to reduce the integral of the
MSE over the whole domain D. Thus minimizing the IMSE corresponds to look for a point x
minimizing the integral of the future MSE if x is added:

J IMSE
n (x) =

∫
u∈D

cn,x (u,u)du, (10)

with cn,x(u,u) = var (Yu| An,x) , An,x = An ∪ {(x,mn (x))} . The term cn,x can theoretically
be obtained using the kriging formula (2), but substantial computational saving are made using
‘update formula’, see [5] for details.

Figure 6 illustrates the first step of a sequential sampling procedure on the toy function
that exhibits a high variation zone in the vicinity of the line x1 + x2 = 3/4. The construction
procedure is based on the MSE criterion and exploits the three previously recalled modelling
(stationary, non-stationary with axial warping and TGP). As proposals for next evaluations,
three MSE maxima can be seen that depend on the model for the running example function.
Note that TGP model is not strictly speaking a GP model, but the notion of MSE criterion can
still be extended to it.

Non-stationary modelling therefore appears to be a promising choice to tackle the problem
of designing experiments in the case of objective functions exhibiting heterogeneous variations.
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Figure 6: Different GP models of a function f : x ∈ [0, 1]2 → sin(15x1)+cos(10x2)
5 +arctan

(
20(x1+x2)−15

2

)
.

The different models are stationary anisotropic, Xiong’s axial approach, and treed GP. For each method,
we see the first and last step of the sequential design of experiments, displaying the MSE criterion, the
selected point for the next evaluation (blue triangle), and the absolute difference with the real function.

However, as mentioned in Section 2.1.2, existing methods appear to not be fully satisfactory for
reducing evaluation budget in some situations. We introduce in the next section a new class
of non-stationary models that allows different directions of deformation (other than canonical)
while limiting the number of parameters.

3 WaMI-GP: a multiple index model with tensorial deformations

We now present WaMI-GP, a novel of GP models that is dedicated to multivariate functions
with heterogeneous variations along non-canonical axes. While this class involves a number of
parameters in order to describe the axes as well as the deformations coming into play, their
cardinality is kept moderate thanks to the tensorial nature of the involved warping functions. In
this section we first introduce the model and gradually illustrate its flexibility, then we provide
and prove some of its important properties and finally we show how WaMI outperforms other
considered GP classes on our running example both statically and when combined with a state-
of-the-art sequential design of experiments approach.

3.1 Formulation of the WaMI covariance

We focus here on the covariance kernel of the proposed GP class as, without loss of generality,
the GP mean is assumed constant here and in the following.

Definition 1 (WaMI kernel: combining tensorial deformations and multiple index modelling).
Let q ∈ N\{0}, A = [a1, . . . ,aq]

> ∈ Rq×d, Ti(·, τi) : R 7→ R be functions parametrized by τ i
(i = 1, . . . , q) and kβ be a positive definite kernel on Rq parametrized by β. Assuming that the
parametric form of the Ti’s is given and denoting by θ a vector of parameters containing A, the
τ i’s and β, we define the associated WaMI (Warped Multiple Index) kernel on D by

cθ : (x,x′) ∈ D ×D → cθ(x,x′) = kβ

((
Ti(a

>
i x; τ i))

)
i=1,...,q

,
(
Ti(a

>
i x
′; τ i)

)
i=1,...,q

)
. (11)

While the symmetric definite positiveness (in the wide sense) of the WaMI kernel is inherited
from the basis kernel kβ through the overall warping consisting of A and the univariate deforma-
tions (or univariate warpings) Ti, more is established below in Section 3.3 after some examples.
Before we get there, let us already get a feeling of what the WaMI kernel means seen from both
individual points of view of axial warping and Multiple Index Modelling (MIM):

10



1. from the point of view of the axial warping method, we allow non-canonical directions for
orientation of the univariate deformations by acting on the input space via a linear map
with matrix A. Note that this kernel also accomodates dimension reduction (and thus
reducing the number of axial warpings) in case q < d.

2. from the MIM perspective, we introduce non-stationarity into the covariance by applying
non-linear deformations to the result of each scalar product a>i x, (ai)i=1,...,q.

Naturally, it is possible to take identity Ti’s for one to several dimensions, hence reducing the
number of deformations and also of covariance parameters. Besides this, the class can be easily
generalized to cases where the warpings are not scalar but rather defined on subspaces of Rq.
With our parametrization the total number of parameters is qd + #β +

∑q
i=1 #τ i where #α

stands for the cardinality of α where α is an arbitrary parameter.

3.2 Examples

The flexibility of the WaMI-GP as a generative model is depicted in this section with various
examples. In what follows we take for the base kernel kβ a radial kernel of the Matérn type (See
equation (4), i.e. with ν = 5/2).

Stationary subcase. Let us first illustrate the case where all univariate deformations are the
identity. In Figure 7 we illustrate the warped space (here the overall warping amounts to A),
the WaMI kernel and corresponding GP sample paths with

A =

(
5 10

7.5 2.5

)
. (12)
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Figure 7: WaMI-GP model in the case of a stationary base kernel and no axial deformation. From left to
right: warping represented by mapping of the grid ( i

10 ,
j
10 )i,j=0,...,10, the covariance function c(·, (0, 0)>),

and three corresponding WaMI-GP realizations.

Note that in case of an isotropic base kernel kβ , the first eigen vectors of AA>, ordered
increasingly by their eigen values, give the directions of high variations appearing in the sample
paths. This simple property can be used in a step-by-step parameter estimation procedure for
choosing directions in which it is a priority to unlock non-stationarity.

Axial warping subcase. Before combining the effect of a linear transformation and a tensorial
warping, we now illustrate the case of axial deformations alone (see Figure 8). We take A equal
to the identity matrix. We keep T2 as the identity function but T1 = I(·; 5, 5), where I(·; δ1, δ2) is
a cumulative distribution function (CDF) of a beta distribution. It provides a relatively diverse
family of non-linear deformations of a segment with only two shape parameters δ1, δ2. This
function has been also used in other situations for defining univariate deformations, e.g. in [42].
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Figure 8: WaMI-GP with axial deformations. From left to right: density function of the deformations in
each direction, warping of the grid ( i

10 ,
j
10 )i,j=0,...,10, the covariance function c(·,x′)) for different values

of x′, and two corresponding WaMI GP realisations.

We observe that this covariance setting allows high variations in the vertical direction, at
x2 = 1/2 where the density of the axial warping is the highest.

Example of non-canonical orientation and two high variation zones. Having a neutral
parametrisation towards canonical axes is the key idea for estimating arbitrary directions of
heterogeneous variations. We now take

A =

(
cos(π/12) − sin(π/12)
sin(π/12) cos(π/12)

)
. (13)

In addition, we take here T2 with two ridges,

T2 = x+ I(2x; 15, 15) + I(2(x− 1/2); 15, 15), (14)

one creates two variation zones. One can observe in Figure 9 the links between high variation
regions of realisations and the corresponding overall warping appearing in the corresponding
WaMI kernel.
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Figure 9: Example of a WaMI-GP with two regions of high variations. From left to right: den-
sity functions of the deformations in each direction after the linear transformation, warping of the grid
( i
10 ,

j
10 )i,j=0,...,10, the covariance function c(·,x′)) for different values of x′, and two corresponding WaMI-

GP realizations.

3.3 Strict positive-definiteness and differentiability properties

We prove here properties about the WaMI kernel and the associated (centred) WaMI-GP. First
we ensure that under conditions on kβ , A, and Ti’s, the WaMI kernel is strictly positive definite.
Although the strict definiteness is not necessary for a covariance function, this property is useful
for avoiding singularity issues with covariance matrices.

Proposition 1. Positive definiteness: Assume that kβ is strictly positive definite, that the
Ti(·; τ i) are injective and that the rank of A is equal to d. Then the WaMI kernel of equation (11)
is strictly positive definite.

Proof. Assuming the existence of z, z′ ∈ D, with T (z) = T (z′), gives ∀i = 1, . . . , p, Ti(zi; τ i) =
Ti(z

′
i; τ i) and thus z = z′. Moreover, as the rank of A equals the number of its columns, A is

injective. So the composition of
⊗p

i=1 Ti (
⊗

refeers to tensor product) with x→ Ax is injective.
Finally the positive definiteness of kβ is conserved by injective chaining.

Let us now focus on differentiability questions. We give conditions for getting mean square
differentiability and sample path differentiability of the WaMI-GP. Mean squared differentiability
of a GP Z at a point x ∈ D in the ith canonical direction is established by the existence of a
random variable Z(1)

i of order 2 (∈ L2) such that

lim
h→0

[
E

((
Zx+hei − Zx

h
− Z(1)

i

)2
)]

= 0. (15)

The random vector ∇Zx =
(
Z

(1)
i , . . . , Z

(1)
d

)>
, the gradient of Z at x, will be used later in section

4 for the definition of new criteria.
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Proposition 2. Mean-squared differentiability. The centred Gaussian process with the co-
variance c defined in (11) is mean-squared differentiable (i.e. has mean-squared derivaritives in
all canonical directions) under the following conditions:

• For all i ∈ {1, . . . , q}, Ti(·; τ i) have regularity C1 on R. We denote by T ′i (·; τ i) their
derivatives.

• For all j, j′ ∈ {1, . . . , q} and u ∈ Rq, ∂2kβ(v,v
′)

∂vj∂v′j′

∣∣∣∣
(u,u)

exists and is finite.

Proof. The tensor product T of the Ti(·; τ i) functions is also C1 on Rd. Using the regularity of
kβ and T , the chain rule applied to Equation (11) gives that ∀x ∈ D, ∂c(u,u′)

∂ui∂u′i

∣∣∣
(x,x)

exists and is

finite. Thus the corresponding GP is mean square differentiable (see e.g. [25] p. 49).

Another relevant property when defining a covariance function is the almost sure differen-
tiability of sample paths of the associated GP. In general finite-dimensional distributions of a
stochastic process do not determine sample paths, and studying sample path properties from a
covariance function calls for additional assumptions such as separability, as assumed here. In
more generality, existence of separable versions is discussed in [8], see e.g. [25] for a summary.

Proposition 3. Sample path differentiability. With the same assumptions on Ti(·; τ i)’s and
kβ as in proposition 2, and assuming in addition that

• D is compact,

• there exist C0, η0, ε0 > 0 such that ∀j, j′ ∈ {1, . . . , q}, and ∀u,u′ ∈ Rq, ||u− u′|| < ε0, we

have ∂2kβ(v,v
′)

∂vj∂v′j′

∣∣∣∣
(u,u)

+
∂2kβ(v,v

′)
∂vj∂v′j′

∣∣∣∣
(u′,u′)

− 2
∂2kβ(v,v

′)
∂vj∂v′j′

∣∣∣∣
(u,u′)

≤ C0

|ln ||u−u′|||1+η0 ,

then the covariance c gives rise to a centred Gaussian Process possessing a version with differ-
entiable sample paths.

Proof. Let us take C, η > 0 and 0 < ε ≤ 1/CT (with CT a Lipschitz constant of x → T (Ax))
such that:

1. C = C0

q∑
j=1

q∑
j′=1

aj1aj′1 supx∈D

(
T ′j
(
a>1 x

))
supx∈D

(
T ′j′
(
a>1 x

′)),
2. ∀x,x′ ∈ D, ||x− x′|| < ε implies ||T (Ax)− T (Ax′)|| < ε0 (by continuity of T ),

3. ∀x,x′ ∈ D, ||x − x′|| < ε implies 1
|ln(CT ||x−x′||)|1+η0

≤ 1
|ln ||x−x′|||1+η (by existence of the

limit limh→0

(
ln | ln |h||

ln | ln(CT )+ln |h||(1 + η0)− 1
)

= η0 > 0).

Then we have for all x,x′ ∈ D, ||x− x′|| < ε,

∂2c(u,u′)
∂u1∂u′1

∣∣∣
(x,x)

+ ∂2c(u,u′)
∂u1∂u′1

∣∣∣
(x′,x′)

− 2 ∂2c(u,u′)
∂u1∂u′1

∣∣∣
(x,x′)

=

q∑
j=1

q∑
j′=1

aj1aj′1T
′
j

(
a>1 x

)
T ′j′
(
a>1 x

′
) ∂2kβ(v,v

′)
∂vj∂v′j′

∣∣∣∣
(T (Ax′),
T (Ax′))

+
∂2kβ(v,v

′)
∂vj∂v′j′

∣∣∣∣
(T (Ax),
T (Ax))

− 2
∂2kβ(v,v

′)
∂vj∂v′j′

∣∣∣∣(T (Ax),
T (Ax′))


≤ C

|ln ||T (Ax)− T (Ax′)|||1+η0
≤ C

|ln ||x− x′|||1+η
(16)

Using the theorem of sample path continuity for GP derivatives (see e.g. [41] p. 55, or the
supplementary material with the notations of the article), we get the sample path continuity for
the GP ∂Y/∂x1 and thus ∇Y by generalizing to all components.
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Figure 10: Prediction errors of four competing models on the running example function. The different
models are a stationary anisotropic GP, an axial warping GP, Treed GP and WaMI-GP. For each method,
we see the tenth step of a sequential design driven by the MSE criterion (shared initial design).

Remark 1. These properties can be extended to higher order of differentiation with equivalent
hypotheses on higher order of differentiability for the Ti(·; τ i)’s and kβ.

Remark 2. On the estimation procedure. In this article, the estimation of A and of
the τ i parameters (i = 1, . . . , p) are performed by maximum likelihood; gradients are calculated
analytically and the numerical optimization relies on the BFGS algorithm with one or several
initial points, using the R package kergp [7].

3.4 WaMI-GP interpolation and sequential design on the running example

Let us now come back to our running example function already used earlier for illustrating
a stationary model (Figure 2), the axial warping method (Figures 4), and the TGP model
(Figure 5). For the sake of brevity, we directly look at the results of an MSE-driven sequential
design of experiments under the WaMI-GP model compared to three competitor models covered
in the last section: stationary GP, GP with axial warping, and TGP. In Figure 10, we display
the absolute difference between the real function and predictions from the four models after 10
sequential design steps based on the MSE criterion. Looking at the points selected along the
four competing sequential designs, we see that the MSE design relying on the WaMI-GP model
allocates more evaluations in the high variation region (around the line of equation 0.75 = x1+x2)
and less evaluations in the flat regions (upper right). For the other models, prediction errors tend
to occur in the high variation region. Hence our model, by detecting the high variation region
and also associating a higher MSE there, enables to comparatively achieve enhanced prediction
performance as illustrated in Figure 11.

These first results, that will be complemented by additional tests on two applications in
Section 5, illustrate that WaMI-GP is able to account for heterogeneous regions in a semi-
automated way (here all parameters including axes are estimated by MLE but the based kernel
and the number of warping dimensions is fixed in advance) and hence to improve the performance
of variance-based sequential design provided that some prior knowledge is available regarding the
heterogeneities of the unknown function. In contrast, it might be the case that users do not feel
confident to appeal to models where the number of parameters is inflated compared to the
standard stationary situation, all the more so when the amount of available information on the
objective function is drastically limited and the number of evaluations in the initial design is
scarce. For those reasons we explore in the next section an alternative approach where the prior
covariance is arbitrary (it may be a stationary one, a WaMI or any other kind of kernel) and
the emphasis is put on infill sampling criteria rather than on the covariance structure. The goal
is then to explore derivative-based criteria for the exploration of high-variation regions under
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Figure 11: Prediction error of the running example function by the four considered models at each step
of MSE-driven sequential designs.

any GP model. Later on is Section 5 the two approaches of working on kernels and/or on
the sampling criteria for learning functions with heterogeneous variations will be compared and
combined within a numerical benchmark. For now let us present and work out some novel infill
sampling criteria based on GP derivatives.

4 Novel sampling criteria for detection of high variations

We saw in Section 3.4 above regarding the approximation of the running example function by
diverse GP-related methods that exploring high-variation regions was key to quickly reduce
the overall approximation error, hence explaining the good performances of WaMI-GP both in
static conditions and in MSE-based sequential settings. Now, let us change the perspective by
assuming that a prior covariance kernel is given (that may be thought of as a stationary kernel
without any loss of generality) and putting the focus on infill sampling criteria dedicated to space
exploration with an intensification on high-variation regions. With such a goal it is legitimate
to aim at investing evaluation credit in regions where the data shows more local variability.
A problem however with variance-based criteria such as considered so far in the paper is that
they are homoscedastic in the observations, or in other words depend solely on the geometry of
the experimental design and not on the response values. Hence trying to locate high-variation
regions with variance-based criteria does not make much sense, unless the model accounts for
heterogeneities through estimated parameters that reflect them, such as with WaMI-GP. Our
approach here, assuming that the GP possesses sufficient differentiability properties, is to rely
instead on the gradient of the GP in order to add points in unexplored regions with potentially
high slopes.

The starting point is to acknowledge that, under sufficient regularity conditions, (∇Y (x))x∈D
is a vector-valued Gaussian Process and that its conditional distribution knowing An is driven by
derivatives of mn and cn (See e.g. theorem 5.3.10 of [41]). Assuming indeed the differentiability
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of mn and the existence for all i of derivatives ∂2

∂ti∂t′i
cn(t, t′)

∣∣∣
t=t′=x

for all x,x′ ∈ D,

E (∇Yx | An) = ∇mn(x) (17)

cov (∇Yx| An) =

 ∂2

∂ti∂t′j
cn(t, t′)

∣∣∣∣∣
t=x,t′=x′


i,j=1,...,d

. (18)

From there, there are a number of ways scalar indicators can be defined that quantify local
variations and related uncertainties. In this work we chose to focus essentially on variance-based
criteria for (exponentiated) gradient norms. To this means, let us consider the squared gradient
norm process (Qx)x∈D defined by

Qx = ||∇Yx||2Rd = ∇Y >x ∇Yx. (19)

Although the squared gradient norm is obtained by applying a simple operation (taking the
squared Euclidean norm) to a vector-valued Gaussian process, working out its distribution is not
straightforward. Actually, even by fixing x, working out the probability distribution of quadratic
forms in arbitrary Gaussian variables is involved and while it is tempting to build up on such
distribution for sequential design, coming up with tractable sampling criteria is more demanding
than in the Gaussian case. Yet, as we develop next, some (fractional) moments of Qx can be
calculated in closed form and/or computed efficiently, leading to practical infill sampling criteria.
Let us generalize indeed MSE and IMSE criteria to the (exponentiated) gradient norm.

Definition 2 (Gradient Norm Variance criterion and generalizations). Given n function evalu-
ation results and x ∈ D, we define the Gradient Norm Variance (GNV) criterion as

JGNV
n (x) = var ( ||∇Yx|| | An) = var

(√
Qx

∣∣∣An) (20)

JGNV
n can be straightforwardly generalized by elevating the norm to some power η > 0, leading to

JGNV,η
n (x) = var ( ||∇Yx||η | An) = var

(
Q
η/2
x

∣∣∣An) . (21)

Note that while the transformed norm loses its homogeneity, we abusively refer to this criterion as
“GNV with exponent η” or “GNV(η)”. GNV(1) is hence the previous GNV, and in what follows
we will also pay a particular attention to GNV(2). Besides this, this class of criteria can also be
generalized in the same way as IMSE generalizes MSE by integration, defining IGNV by

J IGNV,η
n (x) =

∫
u∈D

E
(

var
(
Q
η/2
u

∣∣∣An, Yx)∣∣∣An)du. (22)

The following property gives a close formula for GNV in the case η = 2 and semi-analytical
in the η = 1 case, followed by integral formulae for the corresponding IGNV criteria.

Proposition 4. Let x ∈ D and denote by (λi(x))1≤i≤d the eigenvalues of ∇⊗∇>cn(x,x). Then,
the GNV(2) criterion can be written as follows:

JGNV,η=2
n (x) = 4 ∇mn(x)>∇⊗∇>cn(x,x)∇mn(x) + 2

d∑
i=1

λi(x)2. (23)

Furthermore, the GNV(1) criterion can be expanded as follows:

JGNV,η=1
n (x) = ||∇mn(x)||2 + tr

(
∇⊗∇>cn(x,x)

)
− E

(√
Qx|An

)2
. (24)

17



Finally, the corresponding integral criterion with η = 1 writes

J IGNV,η=1
n (x) =

∫
D

(
||∇mn(u)||2 +

1

cn(x,x)
κn(u,x)>κn(u,x)

)
du

+

∫
D

(
tr
(
∇⊗∇>cn,x(u,u)

)
− E

(
E
(√

Qu|An, Yx
)2∣∣∣∣An)) du,

(25)

and its counter part in the case η = 2 can be expanded as

J IGNV,η=2
n (x) =

∫
u∈D

(
4∇mn(u)>∇⊗∇>cn,x(u,u)∇mn(u) + 2

d∑
i=1

λi,x(u)2

)
du

+
4

var (Yx| An)

∫
u∈D

κn(u,x)>∇⊗∇>cn,x(u,u)κn(u,x) du

(26)

where λi,x(u) are the eigenvalues of ∇⊗∇>cn,x(u,u) = cov (∇Yu| An, Yx) and κn(u,x) is the
vector of covariances between the components of ∇Yu and Yx knowing An.

Proof of Proposition 4. Let us first address the case η = 1 using the notation Zc
x = Zx −mx

with mx = ∇mn(x). The first step is to expand the criterion as follows:

var
(
||Zx||2

)
= var

(
Z>xZx

)
= var

(
2m>xZ

c
x +Zc

x
>Zc

x

)
= 4 var

(
m>xZ

c
x

)
+ 2 cov

(
m>xZ

c
x,Z

c
x
>Zc

x

)
︸ ︷︷ ︸

=0 (nullity of 3th order moments)

+ var
(
Zc
xZ

c
x
>
)
.

The term var
(
Zc
x
>Zc

x

)
can be further expanded as Zc

x = UxD
1
2
xN with Ux an orthogonal

matrix, Dx the diagonal matrix of eigenvalues and N a standard Gaussian vector:

var
(
Zc>

xZ
c
x

)
= var

(
(UxN)>Dx(UxN)

)
=

d∑
i=1

λ2i,x var
(
N2
i

)︸ ︷︷ ︸
=2

.

For η = 1, considering the variance of ||Zx|| in terms of raw moments gives:

var (||Zx||) = E
(
Z>xZx

)
− E

(√
Z>xZx

)2

,

= m>xmx + 2m>xE (Zx −mx)︸ ︷︷ ︸
=0

+

d∑
i=1

var ([Zx]i)− E
(√

Qx

)2
.

For the proof of IGNVη=1,2, we focus on the integrand. As for (23), we formulate the case η = 2
as follow:

E (var (Qu | An, Yx)| An) = 4 E
(
E (∇Yu| An, Yx)>∇⊗∇>cn,x(u,u)E (∇Yu| An, Yx)

∣∣∣An)
+ 2

d∑
i=1

λ2i,x. (27)
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We get the result with E (∇Yu| An, Yx) = ∇mn(u) + Yx−mn(x)
cn(x,x)

κn(u,x).
For η = 1, using the calculations for deriving (27), we obtain

E
(

var
(√

Qu

∣∣∣An, Yx)∣∣∣An) =E
(
||E (∇Yu| An, Yx) ||2

∣∣An)+ tr
(
∇⊗∇>cn,x(u,u)

)
− E

(
E
(√

Qu|An, Yx
)2∣∣∣∣An) . (28)

Finally, replacing E (∇Yu| An, Yx) by its analytic formula gives the result.

Remark 3. For u, x in D, the expectation terms are approximated by quadrature formulas of
univariate or bivariate integrals:

E
(√

Qx

)
=

∫
R

√
qfQ

(
q;∇mn(x),∇⊗∇>cn(x,x)

)
dq (29)

E
(
E
(√

Qu|An, Yx
)2∣∣∣∣An) =

∫
R

(∫
R

√
qfQ (q;µn(y;u,x),Γn(u,x)) dq

)2

ϕn(y;x)dy,

with µn(y;u,x) = ∇mn(u) + y−mn(x)
cn(x,x)

κn(u,x), Γn(u,x) = ∇⊗∇>cn,x(u,u) and ϕn(·;x) the
normal probability density function of Yx (mean mn(x) and variance cn(x,x)). Different methods
for computing the distribution fQ(·;µ,Γ) of the quadratic form Q = Z>Z, Z ∼ N (µ,Γ), are
summed-up, compared in [9] and implemented in a R package CompQuadForm. The earliest
method is based on approximating with a distribution of a central quadratic form, tuned for
egalizing the three first moments [29] (equal skewness). The recent method of [22] is closely
related to this, and provides error bounds. There exist also methods for which the error can be
made arbitrarily small, that use numerical inversion of the characteristic function [20] or an
infinite series formulation [12].

Figure 12 displays the values of the four criteria, GNV and IGNV for η = 1, 2, in case of the
running example test function (equation (3)) with the GP model of Figure 2. Integrated criteria
(IMSE, IGNV) require more computational resource, but can be preferred for their generally
smoother variations, and also lower values at the edges of the input space compared to MSE and
GNV. As expected from variance-based criteria, we see that they do not provide a higher criterion
value for the high variation region in the bottom left quarter of the input space. On the contrary,
we notice that gradient-based criteria provide higher values where f has high variations. In case
of integrated gradient based criteria, surroundings of evaluation points are penalized. These
figures suggest that integrated gradient-based criteria should be useful as expected in order
to perform some kind of compromise between global uncertainty reduction and focus on high
variations. This will be investigated in the next section, where the different approaches developed
throughout the article will be tested and compared based on two engineering test cases.

5 Applications

This section deals with two numerical applications coming from a nuclear safety study conducted
by IRSN and from a NASA case study on fluid mechanics. A special attention is devoted to
the assessment of the capability of the methodological contributions developed in this paper
for the approximation of functions with heterogeneous variations and to their comparison with
existing approaches, be it in terms of criteria (MSE, IMSE, GNVη=1,2, IGNVη=1,2) or surrogate
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Figure 12: Classical and proposed criteria according to a stationary Gaussian process modelling.

models (stationary anisotropic, TGP, WaMI-GP). This assessment is achieved in both test cases
by focusing on estimates of the L2 prediction error:

∆ =

√√√√∫
D

(µ(x)− f(x))2dx, (30)

with µ one or the other predictor based on some experimental design strategy. Experimental
design strategies are replicated by starting from different initial designs, as detailed next.

We also consider a simplification of the IGNVη=1,2 criteria, where the mean value of Yx is
plugged in the integrand, more precisely,

J
IGNV
plugin ,η
n (x) =

∫
u∈D

var ( ||∇Yu||η| An, Yx = mn(x)) du. (31)

5.1 Cracking simulation of heterogeneous materials

This test case concerns mechanical studies in nuclear installations. More precisely, the objective
is to analyse the crack propagation inside an heterogenous material such as concrete using the
IRSN Xper code [30]. Two input variables are considered, related to geometrical and mechanical
properties of the material. They are denoted W (ratio of interface energy) and L (inclusion
length). The output of interest is the cracking energy which is the smallest energy required to
break the material apart. Simulation times are long: depending on the input, they vary from
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Figure 13: Cracking energy of an heterogeneous material depending on a mechanical parameter, log(W )
the logarithm of the ratio of interface energy. The images (top left) represent three different crackings
of a component. According to the inputs, we see that it propagates around (left) or through (right) the
inclusion. These two modes correspond respectively to high or low cracking energy. A transition zone
appears in between with high variations.

one day to one week. Therefore, evaluations should be chosen carefully in order to capture the
function behaviour. The available dataset includes 216 points corresponding to the simulation
of the response on a 36 × 6 grid (Figure 13). We show a 1D cut of the cracking energy with
respect to log(W ). We observe a “cliff”, as it is sometimes called in the applied literature: a
region where a small variation of the inputs impacts drastically the output. Coming back to
Figure 13, this high variation zone is located along a straight line, slightly non-aligned to the
canonical axes. Several series of tests are conducted. For sake of simplicity, the input variables
are rescaled between 0 and 1 and are denoted by x1 and x2.

We first compare the predictive performances of stationary GP, WaMI-GP and TGP methods.
We built 5000 space-filling designs of size 20 (a set of random LHS designs optimized with a
maximin criterion see e.g. [10]). For each initial design, predictions are performed with the three
competing models, in a noise-free setting. For the WaMI-GP covariance, we take for T1 and
T2 cumulative distribution functions of beta distibutions. The results displayed on Figure 14
indicate that our approach outperforms the two other ones in terms of L2 prediction errors.

It is also informative to analyse the estimated (overall) warpings, as displayed by Figure 15
(we take the warping from the design giving a median prediction errors). It appears that, as
expected, our model dilates the space around the high variation region. We also display in
the input space, the lines of the of maximal distortion (where the determinant of the Jacobian
matrix of the warping is maximal) and the lines partitioning the input space in the TGP method.
These lines are both in the same area, meaning that both methods can somehow detect the high
variation region. However, since the method allows linear transformation of the input space,
they are not exactly vertical in the case of the WaMI-GP, adapting with more freedom their
directions to the shape of the actual high variation region.

A second test is performed to investigate the capability of the proposed criteria in sequential
design of experiments procedures. For each criterion (MSE/IMSE, GNVη=1,2/IGNVη=1,2), we
repeat 10 steps of the sequential design: point selections coupled with model updates. We choose
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Table 1: Required number of steps for reaching a median error (computed from the 100 initial designs)
below a reference value of 1.405 (the value of the median error after 6 evaluations sampled with IMSE
criterion and stationary model), with respect to the choice of model and criterion.

MSE IMSE GNV,
η = 1

IGNV,
η = 1
plugin

GNV,
η = 2

IGNV,
η = 2
plugin

Stationary GP model 10 6 >10 3 9 4
WaMI-GP model 5 4 >10 4 9 4

to take as GP models a stationary isotropic and a WaMI one. The whole workflow is replicated
100 times with a space-filling design of n = 20 points uniformly drawn among optimized LHS
designs. The results are displayed in Figure 16 and Table 1.

Let us first notice that the WaMI-GP model leads generally to the smallest prediction errors
since it is adapted to the function f exhibiting a steep transition region.

When the model is stationary, the MSE and IMSE criteria do not focus on adding points in
the steep transition region (one can say these methods explore D in a space-filling way). On
the contrary, the IGNVη=1 criterion detects regions where the gradient’s norm is high, leading
to a better model training and to a reduction of 50% of the number of points (and therefore of
simulations with the computer code) required to reach the same median error. When the model
is non-stationary and well-adapted to the behavior of f , the IMSE focuses naturally on the high
variation zone and allows a reduction of about 30% of the number of simulations compared to the
stationary framework. Finally, coupling WaMI-GP modelling and gradient-based criterion leads
to rather poor results on Figure 16 since, by construction, both aspects contribute to exploitation
with detrimental consequences on the exploration side.
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Figure 17: Simple three-dimensional interpolation of the available data on the Langley Glide-Back
Booster simulation test case (only 3 slices of the input cube are displayed).

Table 2: Prediction errors of the models.

N0 = 50 N0 = 100 N0 = 150 N0 = 300 N0 = 700
median q95% median q95% median q95% median q95% median q95%

WaMI-GP 6.887 7.889 6.516 7.057 6.326 6.765 6.135 6.206 6.750 6.825
TGP 6.879 7.980 6.095 7.424 5.798 7.647 5.569 6.409 4.954 5.576

5.2 The Langley Glide-Back Booster simulation

The Langley Glide-Back Booster is a rocket booster developed at NASA. Its behaviour is studied
via numerical simulations. More details on the system behaviour and purpose are provided in
[35]. Three input variables of the computer code controlling the trajectory of the rocket are
considered: speed (measured in mach), angle of attack (alpha angle), and sidelip angle (beta).
The output of interest is the lift force. Available data are displayed in Figure 17. We see that
variations are this time mainly directed by canonical axis. The zone around the plane of equa-
tion x1 = 0.1 (i.e. around mach one) has higher variations than in the rest of the domain,
where the function is smoother. This calls for a non-stationary model. Some discontinuity is
suggested by the data, which can be observed for example at the bottom right of the first plot
(region x1 ≈ 0.5, x2 ≥ 0.5, x3 ≤ 0.5). These are due to the complexity of the simulator whose
convergence depends on a solver which sometimes returns inaccurate values despite automatic
checks [17]. Thus the models will be next considered in noisy settings in order to smooth out
the convergence errors.

We investigate the capability of our non-stationnary covariance introduced in Definition 1 to
model and predict the code output with and without sequential design of experiments. In order
to study the influence of a fixed initial number of evaluations (maximin-optimized LHS), several
tests are performed for designs including from 50 to 700 points. To account for stochastic effects
due to the choice of the design, all experiments are repeated 50 times with different optimized
space-filling designs. We then focus on the median and 95% quantile of the errors. Table 2
provides the prediction error associated with our WaMI-GP approach vesus TGP [19].

It turns out that for a small training dataset, WaMI-GP leads to similar predictive perfor-
mance as TGP in terms of median error but with a slightly lower 95%-quantile. When increasing
the number of points in the initial design, TGP outperforms WaMI-GP. This makes sense as TGP
model increases its complexity (i.e. its number of partitions and estimated parameters) accord-
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ing to the data while in its present form WaMI-GP has a fixed structure prescribed by the user.
However, as we develop now, WaMI-GP outperformed TGP when adding experiments based in
the MSE criterion.

Let us now focus indeed on sequential design of experiments. From initial designs of size 50,
we perform 20 new evaluations chosen by MSE maximization. Results obtained in prediction
with TGP and the WaMI-GP model are presented in Figure 18. We see that the prediction
errors are reduced faster using our model. Indeed, the estimated warping allows to dilate the
input space in the region of high variations (around mach 1). It results as an increased model
variance in this area and thus a more dense exploration of it via MSE maximization. Note that
the TGP method combined with the MSE criterion also leads to search patterns focusing in high
variation regions, as each partition has a GP with different variance levels (see e.g. [18], where
similar variance-based criteria, Active Learning-MacKay and Active Learning-Cohn, are used in
a pure Bayesian Framework). We also compared again a gradient-based criterion, IGNV, η = 2
with a classical criterion IMSE relying on a stationary anisotropic GP model (Figure 18).

We see that the IGNV(η = 2) criterion leads to slightly lower prediction errors than IMSE cri-
terion based on the small budget of 20 points in dimension 3. Even if moderate, this improvement
can be attributed to a more intense sampling of high variation region with the gradient-based
criterion. To conclude this experimental section, reinforcing exploration in high-variation re-
gions appears as a sound option to improving predictivity of surrogate models such as GPs, be
it through adapted non-stationary covariances or via sampling criteria dedicated to this goal.

6 Conclusion

We have proposed non-stationary modelling and sampling approaches for predicting and design-
ing experiments in a context of function with heterogeneous variations. The proposed WaMI-GP
(Warped Multiple Index Gaussian Process) model was introduced, showing its link with existing
modelling approaches such as Multiple Index modelling and the non-linear map method. We
presented conditions under which the WaMI kernel is provably strictly positive definite and the
corresponding centred GP is mean-square differentiable or respectively, possesses differentiable
sample paths almost surely. We applied the model on toy examples and on functions from en-
gineering case studies in dimensions 2 and 3. Although the number of parameters of WaMI-GP
is kept affine rather than an exponential in the dimension, thanks to component-by-component
univariate warpings, performances are competitive with respect to stationary GP and Treed
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Gaussian Process (TGP) modelling. With bigger data sets, we experienced better performances
of the TGP model in the second engineering test case. For smaller initial data sets, WaMI-GP
and TGP obtained comparable performances at the start, but WaMI-GP proved better at ap-
proximating the response as more points where added by MSE maximization. It is also relevant
to point that in case of a high variation zone slightly not aligned with a canonical axis, our model
is favoured because its linear component can estimate an appropriate rotation of the data before
the non-linear warping (note that non-axial partition in TGP is not currently implemented but
is theoretically possible and could be implemented). In contrast, our method directly inherits
from the non-linear map method the ability to estimate an input space warping. This change of
variables, dilating the space where there are high variations, and contracting smooth areas, can
be used by practitioners as a tool for working out and visualizing “stationarisation”.

From a different viewpoint, we have also constructed novel criteria in sequential design of
experiments for exploring function with high variation regions. These criteria are based on the
gradient norm variance (GNV) of the modelling GP. These criteria are designed to sample prefer-
ably in high variation regions, where prediction errors are typically higher, but still performing a
global exploration of the input space. We applied them for adaptively approximating functions
arising from the two engineering case studies. Numerical results are different according to the
model. When the covariance of the GP model is a priori stationary, some of the proposed criteria
lead to a better prediction than MSE and IMSE thanks to their focus on steep regions. When
combining the novel criteria with WaMI-GP however, the effects are somehow cumulated and
new evaluations are mostly concentrated around the high variation region leading to predictions
that are less trustful when looking at performances over the whole domain.

This work paves the way to further research on sequential design of experiments for functions
with heterogeneous variations, be it through the incorporation of non-stationarity within the
models themselves, through targeted sampling criteria, or combinations of both. Perspectives
include the definition of additional classes of criteria, relying for instance on the Stepwise Uncer-
tainty Reduction paradigm [2], weighted IMSE approaches [31] or other. Also, batch-sequential
versions of the proposed criteria and their extensions owe to be defined and worked out. Focusing
finally on the WaMI-GP model, several directions call for additional research. This includes no-
tably investigations on efficient estimation algorithms for higher dimensions beyond brute force
likelihood maximization, and also model selection versus full Bayesian approaches for inferring
q and further parameters, pertaining for instance to the univariate deformations.
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