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I. INTRODUCTION

The rigid body attitude tracking problem is still relevant, despite having been extensively studied in the literature for several decades. Several solutions have been proposed in the literature in the full state measurement case (i.e., attitude and angular velocity available for feedback) using different attitude representations, see for instance, [START_REF] Wie | Quarternion feedback regulator for spacecraft eigenaxis rotations[END_REF]- [START_REF] Wen | The attitude control problem[END_REF]. Since there is no sensor that directly measures the orientation, the explicit use of the attitude in the control law calls for efficient attitude estimation algorithms (observers) that reconstruct the attitude from the measurements provided by some appropriate sensors, such as inertial measurements units (IMUs) typically including a gyroscope, an accelerometer and a magnetometer. The attitude can be determined using either static reconstruction algorithms [START_REF] Shusters | Three-axis attitude determination from vector observations[END_REF] which are vulnerable to measurement noise, or dynamic attitude estimation algorithms such as Kalman-type filters [START_REF] Crassidis | Survey of nonlinear attitude estimation methods[END_REF] and nonlinearcomplimentary filters [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF]. The attitude tracking problem with biased angular velocity measurements has been treated in [START_REF] Thienel | A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise[END_REF] assuming that the attitude is available for feedback. In [START_REF] Pounds | Attitude control of rigid body dynamics from biased imu measurements[END_REF], the attitude control problem has been addressed in the presence of unknown angular velocity bias, using IMU measurements, assuming that the rigid body inertia is known. In [START_REF] Luo | Inverse optimal adaptive control for attitude tracking of spacecraft[END_REF], [START_REF] Benziane | Velocity-free attitude stabilization with inertial vector measurements[END_REF], for instance, the attitude stabilization problem has been solved without attitude and angular velocity measurements and without the knowledge of the inertia matrix. The proposed control schemes rely directly on measurements in the body frame of some known inertial vectors. The extension to the case of trajectory tracking remains an open problem. In [START_REF] Khosravian | Rigid body attitude control using a single vector measurement and gyro[END_REF] the adaptive attitude tracking problem, with unknown inertia, has been addressed using the measurement in the body frame of a single (non-constant) inertial vector, assuming perfect angular velocity measurements. This observer-based controller is mainly suitable for non-stationary flights such as in satellite applications.

In [START_REF] Mercker | Rigid-body attitude tracking with vector measurements and unknown gyro bias[END_REF], the attitude tracking problem using IMU measurements, with unknown angular velocity bias and unknown inertia has been addressed. Two control laws were presented; the first one considers only the case of biased angular velocity measurements, and the second one is an extension to the case of unknown inertia matrix. The second controller which considers unknown inertia and gyrobias simultaneously, relies on the use of the attitude observer of [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF] which provides attitude estimates to be used in the tracking control law. The overall certainty-equivalence-type adaptive control scheme that has been proposed (without proof) seems to rely on a conjectured separation principle.

In the present work, we aim to solve the attitude tracking problem in the case where 1) the rigid body inertia is unknown, 2) the measured angular velocity is biased with an unknown constant bias, and 3) the attitude is not directly available for measurement. To handle the three above mentioned constraints simultaneously, we derive an adaptive control scheme that relies only on biased angular velocity measurements and body-frame measurements of some known inertial vectors. The control design relies on a transformation that allows to linearly parameterize some terms in the system's vector field with respect to the unknown inertia matrix [START_REF] Wen | The attitude control problem[END_REF], [START_REF] Luo | Inverse optimal adaptive control for attitude tracking of spacecraft[END_REF], [START_REF] Ahmed | Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification[END_REF], [START_REF] De Ruiter | Observer-based adaptive spacecraft attitude control with guaranteed performance bounds[END_REF]. Our approach is different from the one proposed in [START_REF] Mercker | Rigid-body attitude tracking with vector measurements and unknown gyro bias[END_REF], and does not rely on the certainty-equivalence principle with separate observer/controller design, but rather relies on a direct injection of the measurements in the control law, and the stability of the interconnection observer-controller is proven as a whole. Moreover, the number of adaptations and the order of the proposed tracking controller are lower than that of [START_REF] Mercker | Rigid-body attitude tracking with vector measurements and unknown gyro bias[END_REF].

II. BACKGROUND

A. Preliminaries

The quaternion set Q is a four-dimensional vector space over the reals, which forms a group with the quaternion multiplication denoted by " ", which is distributive, associative but not commutative. The multiplication of two quaternions P = (p0, p) and Q = (q0, q) is defined as

P Q = (p0q0 -p T q , p0q + q0p + p × q), (1) 
and has the quaternion (1, 0) as the identity element. Note that, for a given quaternion Q = (q0, q), one has

Q Q -1 = Q -1 Q = (1, 0), where Q -1 = (q 0 ,-q) Q 2 .
Note that in the case where Q = (q0, q) is a unit-quaternion, the inverse is given by Q -1 = (q0, -q). The unit quaternion Q = (q0, q), composed of a scalar component q0 ∈ R and a vector component q ∈ R 3 , represents the orientation of the inertial frame I with respect to the body-attached frame B, and are subject to the constraint q 2 0 + q T q = 1. The rotation matrix, related to the unit-quaternion Q, that brings the inertial frame into the body-attached frame, can be obtained through the Rodrigues formula R = R(Q) with the mapping R : S 3 → SO(3) is defined as

R(Q) = I3 + 2q0S(q) + 2S 2 (q) = (q 2 0 -q T q)I3 + 2qq T + 2q0S(q) ( 2 
)
where I3 is the 3-by-3 identity matrix and S(x) is the skewsymmetric matrix associated to the vector x ∈ R 3 such that S(x)V = x ∧ V for any vector V ∈ R 3 , where ∧ denotes the vector cross product of R 3 . Note that R(Q) = R(-Q) for every Q ∈ Q and R defines a two-sheet covering of SO(3) by Q, i.e., for every R ∈ SO(3) there exist exactly two distinct quaternions satisfying R(Q) = R. As a consequence every vector field f defined on

Q so that f (-Q) = -f (Q) for every Q ∈ Q defines a vector field f on SO(3).
Throughout this paper, we will denote by (0, X) the quaternion associated to the three-dimensional vector X. A vector xI expressed in the inertial frame I can be expressed in the body frame B by xB = R T xI or equivalently in terms of unit-quaternion as (0, xB) = Q -1 (0, xI) Q, where Q is the unit-quaternion associated to R by [START_REF] Chaturvedi | Rigid-body attitude control[END_REF].

Let us define the following mapping vect : R n×n → R n 2 , such that for a given matrix A ∈ R n×n , we associate the vector vect(A) = [v1, . . . , vn] T , where vi, i = 1, . . . , n, are the row vectors of the matrix A.

B. Equations of motion

In this work, we consider a rigid body whose rotational dynamics are governed by

ΣR : Q = 1 2 Q (0, ω), I b ω = τ -S(ω)I b ω, ( 3 
)
where ω is the angular velocity of the rigid body expressed in the body-attached frame B, τ is the external torque applied to the system expressed in B and I b ∈ R 3×3 is a symmetric positive definite constant inertia matrix (assumed to be unknown) of the rigid body with respect to B of the form

I b =   I11 I12 I13 I12 I22 I23 I13 I23 I33   .

III. MAIN RESULTS

A. Problem statement

Let us define the desired attitude trajectory in terms of the rotation matrix R d (t) governed by the following dynamics,

Ṙd = R d S(ω d ),
with ω d (t) being the desired angular velocity vector.

An equivalent desired unit-quaternion Q d (t) is defined as R d (t) = R(Q d (t)). Its dynamics are governed by

Qd = 1 2 Q d (0, ω d ). (4) 
The following assumptions are used throughout the paper: Assumption A1. The rigid body is equipped with sensors that provide measurements (in the body-attached frame) of constant and known inertial vectors ri ∈ R 3 , i = 1, . . . , n ≥ 2.

At least two vectors, among the n inertial vectors, are noncollinear. The vector measurements in the body-attached frame are denoted by bi ∈ R 3 , i = 1, . . . , n. The vectors ri and bi are related by bi = R T ri. Assumption A2. The attitude (Q or R) is unknown (i.e., unavailable for feedback). Assumption A3. The measured angular velocity is assumed to be biased, so that the relation between the actual and measured velocities is given by

ω = ωm + δ,
where δ is the unknown constant bias, ω and ωm are the actual and the measured velocity vectors respectively. Assumption A4. The inertia matrix I b is assumed to be unknown. Assumption A5. The desired angular velocity vector ω d and its first to sixth derivatives are bounded. Our objective is to design a control input τ guaranteeing Almost Global Asymptotic Convergence (AGAC) of the body attitude and angular velocity to their desired values, under the above assumptions. This means that there exists an equilibrium point Eq (in the appropriate state space) such that, for almost every initial condition (with respect to the Lebesgue measure in the state space), the corresponding trajectory of the closed loop system converges to Eq.

B. Linearly parameterized model for the control

Let us consider Assumptions A3 and A4 and define the following parameters

θ1 = δ ∈ R 3 , θ2 = S(δ)I b δ ∈ R 3 , θ3 = (I11, I22, I33, I23, I13, I12) T ∈ R 6 , θ4 = vect(S(δ)I b -S(I b δ)) ∈ R 9 , Θ T = [ θ T 2 θ T 3 θ T 4 ] ∈ R 18 .
Using the second equation of (3), we can write the following

I b ( ω -ωd ) = -(S(ωm)F1(ωm) + F1( ωd ))θ3 -F2(ωm)θ4 -θ2 + τ, (5) 
where F1(ω) is defined as

F1(ω) =   ω1 0 0 0 ω3 ω2 0 ω2 0 ω3 0 ω1 0 0 ω3 ω2 ω1 0   and F2(ω) as F2(ω) =   ω1 ω2 ω3 0 0 0 0 0 0 0 0 0 ω1 ω2 ω3 0 0 0 0 0 0 0 0 0 ω1 ω2 ω3   .
The model given by Equation ( 5) can be written in a linear parameterizations form as

I b ( ω -ωd ) = -G(ωm, ωd )Θ + τ, (6) 
with

G(ωm, ωd ) = [ I3 S(ωm)F1(ωm) + F1( ωd ) F2(ωm) ] ∈ R 3×18
We also assume that ω d verifies the following additional assumption.

Assumption A6. We assume that

lim sup t→∞ | det J δ (ω d , ωd )| > 0, (7) 
where the 15 × 15 matrix-valued function J δ (ω d , ωd ) is given by

J δ (ω d , ωd ) =     d dt H δ (ω d , ωd ) . . . d 5 dt 5 H δ (ω d , ωd )     .
where H δ (ω d , ωd ) is a 3 × 15 matrix-valued function of the time t given by

H δ (ω d , ωd ) = [ S(ω d -δ)F1(ω d -δ) + F1( ωd ) F2(ω d -δ) ].
Assumption A6 is tailored to insure the following convergence result.

Lemma 1. Let δ ∈ R 3 and ω d : [0, ∞) → R 3 satisfying Assumption A6. Assume that there exists a measurable function Ψ : [0, ∞) → R 15 such that limt→∞ J δ (ω d , ωd )Ψ(t) = 0. Then lim inft→∞ Ψ(t) = 0.
Proof: Assumption A6 implies that lim inft→∞ J -1 δ is finite and since Ψ = J -1 δ (J δ Ψ) one immediately deduces the conclusion.

Remark 1. Assumption A6 can be seen as a persistence of excitation condition for the biased desired angular velocity ω d -δ together with its first six time derivatives.

C. Control design

Define n vectors b d i and n vectors bi corresponding to the desired and estimated vectors such that b d i = R T d ri and bi = RT ri, for i = 1, . . . , n.

According to the model given by ( 6), we propose the following adaptive control law

τ = G(ωm, ωd -θ1) Θ + zγ -αω, (8) 
with ω = ωm + θ1 -ω d and

zγ = n i=1 γiS(b d i )bi; zρ = n i=1 ρiS( bi)bi,
where α > 0, γi > 0 and ρi > 0 are constant scalar gains.

The attitude estimator is given by

Q = 1 2 Q (0, ω), (9) 
with ω = ωm + θ1 -zρ.

The adaptation scheme is given by 

θ1 = Γ1P roj(-(zγ + zρ), θ1, θm), Θ = Γ2P roj(-G(ωm, ωd -θ1) T ω, Θ, Θm), (10) 
P roj(x, ŷ, y0) = x - η1η2 4( 2 + 2 y0) n+1 y 2 0 ŷ, (11) 
with

η1 = (ŷ T ŷ -y 2 0 ) n+1 if ŷT ŷ > y 2 0 , 0 otherwise, η2 = 0.5ŷ T x + (0.5ŷ T x) 2 + µ 2 ,
where and µ are arbitrary real positive constants and n is an arbitrary positive integer. Let ȳ be a constant vector in By 0 = {y ∈ R n | ||y|| ≤ y0}, ŷ(0) ∈ By 0 and ỹ = ȳ -ŷ. Consider the adaptation algorithm ẏ = P roj(x, ŷ, y0), then the following properties hold [START_REF] Cai | A sufficiently smooth projection operator[END_REF] for every t ≥ 0:

P1) ||ŷ(t)|| ≤ y0 + P2) -ỹ(t) T P roj(-x, ŷ(t), y0) ≤ x T ỹ(t). P3) P roj(x, ŷ, y0) ∈ C n .
It is worth pointing out that the choice of this smooth projection algorithm is motivated by some technical reasons in the proof of our theorem that will be provided later. In fact, we will require the parameters estimates to be at least six times differentiable, and hence the integer n involved in the projection mechanism has to satisfy n ≥ 6.

D. Convergence analysis

Let us define the estimation error R = R RT and the tracking error R = RR T d of the attitude that correspond to the unit quaternion errors

Q = Q Q-1 ≡ (q0, q) and Q = Q Q -1
d ≡ (q0, q) respectively. The estimation error dynamics are given by

Q = q0 q = -1 2 qT R(ω -ω) 1 2 (q0I + S(q)) R(ω -ω) , (12) 
with ω -ω = zρ + θ1.

The tracking error dynamics are given by

Q = q0 q = -1 2 qT R d (ω -ω d ) 1 2 (q0I + S(q))R d (ω -ω d ) , ( 13 
)
where ω -ω d = ω + θ1, with θ1 = θ1 -θ1. Before stating our main results, we recall the following useful lemma given in [START_REF] Tayebi | Inertial vector measurements based velocity-free attitude stabilization[END_REF] that will be used throughout the paper. Lemma 2. Assume that there are n vectors bi, i = 1, . . . , n measured in the body attached frame, corresponding to n known inertial vectors ri, i = 1, . . . , n. Assume that the constant parameters γi and ρi are strictly positive and at least two vectors among the ri vectors are non-collinear. Then, the following properties hold

1) The vectors zγ and zρ satisfy

zγ ≡ n i=1 γiS(b d i )bi = -2R T d (q0I -S(q))Wγ q, ( 14 
) zρ ≡ n i=1 ρiS( bi)bi = -2 RT (q0I -S(q))Wρ q, ( 15 
)
where the matrices Wγ = -n i=1 γiS(ri) 2 and Wρ = -n i=1 ρiS(ri) 2 are real symmetric and positive definite. If the gains γi, ρi, i = 1, . . . , n, are such that Wγ and Wρ have two by two distinct eigenvalues, the following holds true.

2) zγ = 0 is equivalent to (q0 = 0, q = vγ) or (q0 = ±1, q = 0), where vγ is a unit eigenvector of Wγ. 3) zρ = 0 is equivalent to (q0 = 0, q = vρ) or (q0 = ±1, q = 0), where vρ is a unit eigenvector of Wρ.

The closed loop attitude error dynamics are given by

Q = q0 q = -1 2 qT R d (ω + θ1) 1 2 (q0I + S(q))R d (ω + θ1) , (16) 
Q = q0 q = q0 qT Wρ q -1 2 qT Rθ 1 -(I -q qT )Wρ q + 1 2 (q0I + S(q)) Rθ 1 , (17) 
I b ω = -αω + zγ -G(ωm, ωd -θ1) Θ, ( 18 
) θ1 = -Γ1P roj(-(zγ + zρ), θ1, θm), (19) 
Θ = -Γ2P roj(-G(ωm, ωd -θ1) T ω, Θ, Θm) . ( 20 
)
where θ1 = θ1 -θ1 and Θ = Θ -Θ.

Note that these dynamics are non-autonomous. Define X = ( Q, Q, ω, θ1, Θ) in the state space

X := S 3 × S 3 × R 3 × R 3 × R 18 .
Note that X has dimension 30. The above dynamics can be written as

Ẋ = f (X, R d (t), ω d (t), ωd (t)), (21) 
where f is a time-varying vector field defined on X . Now, one can state our main result in the following theorem:

Theorem 1. Consider the rigid body dynamics (3) with the adaptive control scheme (8)- [START_REF] Benziane | Velocity-free attitude stabilization with inertial vector measurements[END_REF], resulting in the closed loop attitude error dynamics given by ( 16)-(20). Then under Assumptions A1-A5 and the gains γi, ρi, i = 1, . . . , n, are chosen such that Wγ and Wρ have two by two distinct eigenvalues, all the signals of the closed loop-system are bounded and i) limt→∞( θ1(t), ω(t) -ω d (t)) = (0, 0), limt→∞(q0(t), q(t)) = ((±1, 0) or (0, vγ)) and limt→∞(q0(t), q(t)) = ((±1, 0) or (0, vρ)) where vγ and vρ are, respectively, the unit eigenvectors of Wγ and Wρ.

ii) The undesired equilibria characterized by q0 = 0 and/or q0 = 0 are unstable. iii) If, in addition Assumption A6 is satisfied, then limt→∞ Θ(t) = 0. iv) Moreover, if the gain matrices Wγ and Wρ satisfy the following condition

4λmin(M ) -TrM -αTrI -1 b > 0, for M ∈ {Wγ, Wρ}, (22) 
then, for almost any initial condition X0 ∈ X , the corresponding trajectory of (21) converges to a point of Ω1 = {((±1, 0), (±1, 0), 0, 0, 0)}.

Proof. Let us consider the following Lyapunov function candidate

V = 2q T Wγ q + 2q T Wρ q + 1 2 ωT I b ω + 1 2 θT 1 Γ -1 1 θ1 + 1 2 ΘT Γ -1 2 Θ . ( 23 
)
The time derivative of (23), in view of ( 16), ( 17), (18) and Property P2) of the projection operator, is given by

V ≤ -αω T ω -z T ρ zρ. (24) 
According to (24), V is non-increasing along trajectories of the dynamical system, implying that ω, q, q, θ1 and Θ are bounded and V converges to a non negative limit. One checks easily that V is bounded for every trajectory of the system, implying that V is uniformly continuous, hence that V → 0. On the other hand, the time derivative of zρ and zγ are given by

żρ = -S(ω -θ1)zρ + n i=1 ρiS( bi)S(bi) (zρ + θ1), żγ = -S(ω d )zγ + n i=1 ρiS(b d i )S(bi) (ω -ω d ),
which are clearly bounded. Since, for any given trajectory of the closed loop system, V is bounded, one deduces that ω → 0 and zρ → 0 as time tends to infinity. Using Lemma 2, one sees that (q0I -S(q))Wρ q → 0 as time tends to infinity, which implies that either (q0, q) → (±1, 0) or (q0, q) → (0, vρ) where vρ is a unit eigenvector of Wρ. Since q0 and q are bounded, and in view of the previous results, it is clear that q0 → 0 and q → 0. Hence, in view of (17) one can conclude that θ1 → 0 then t tends to infinity. Using (19), and the fact that zρ → 0 and żγ is bounded, it can be concluded that θ1 → 0 and therefore zγ → 0. Using Lemma 2, one concludes that either (q0, q) → (±1, 0) or (q0, q) → (0, vγ) as t tends to infinity, where vγ is a unit eigenvector of Wγ. We just proved item (i) of the Theorem. Now, let us prove item (ii). From earlier proven facts, it is clear that limt→∞ Θ(t) = Θ l with ||Θ l || ≤ 2Θm + . The undesired equilibria characterized by q0 = 0 and/or q0 = 0 are given by X1 = (vγ, vρ, 0, 0, Θ l ), X2 = (vγ, 0, 0, 0, Θ l ) and X3 = (0, vρ, 0, 0, Θ l ). Let us show that X1 = (q = vγ, q = vρ), ω = 0, θ1 = 0, Θ = Θ l ) is unstable. The proof of instability of X2 and X3 follow similar steps and hence omitted here. The proof consists in showing that there exists X * 1 = ((q * 0 , q * ), (q * 0 , q * ), ω * , θ * 1 , Θ * ) ∈ X arbitrarily close to X1 such that V (q * , q * , ω * , θ * 1 , Θ * ) < V (vγ, vρ, 0, 0, Θ l ). This, with the fact that V is non-increasing on X proves the instability of X1. Let us apply small rotations on the unit-quaternion (0, vγ) and (0, vρ); that is

q * 0 q * = 0 vγ η0 η = -η T vγ η0vγ + S(vγ)η . (25) q * 0 q * = 0 vρ η0 η = -η T vρ η0vρ + S(vρ)η . (26) 
Letting ∆V = V (q * , q * , ω * , θ * 1 , Θ * ) -V (vγ, vρ, 0, 0, Θ l ), one gets

∆V = + 1 2 ω * T I b ω * + 1 2 θ * T 1 Γ -1 1 θ * 1 + 1 2 Θ * T Γ -1 2 Θ * -1 2 ΘT l Γ -1 2 Θl + 2(η 2 0 -1)λγ + 2(S(η)vγ) T Wγ(S(η)vγ) + 2(η 2 0 -1)λρ + 2(S(η)vρ) T Wρ(S(η)vρ). ( 27 
)
where we used the fact that Wγvγ = λγvγ and Wρvρ = λρvρ since vγ and vρ are the unit eigenvectors associated, respectively, to λγ and λρ.

Let us pick η = ˜ vγ and η = ¯ vρ, with |˜ | and |¯ | arbitrarily small. The unit-quaternion (η0, η) = (1-˜ 2 , ˜ vγ), corresponds to a rotation about vγ by an angle θ˜ = 2 arcsin ˜ . Similarly, The unit-quaternion (η0, η) = (1 -¯ 2 , ¯ vρ), corresponds to a rotation about vρ by an angle θ¯ = 2 arcsin ¯ .

With this choice, (27) leads to

∆V = + 1 2 ω * T I b ω * + 1 2 θ * T 1 Γ -1 1 θ * 1 + 1 2 Θ * T Γ -1 2 Θ * -1 2 ΘT l Γ -1 2 Θl + 2(η 2 0 -1)λγ + 2(η 2 0 -1)λρ. ( 28 
)
It follows that ∆V < 0 as long as

˜ 2 = 1 -η2 0 > 1 4λγ (ω * T I b ω * + θ * T 1 Γ -1 1 θ * 1 + Θ * T Γ -1 2 Θ * -ΘT l Γ -1 2 Θl ), (29) 
or

¯ 2 = 1 -η2 0 > 1 4λρ (ω * T I b ω * + θ * T 1 Γ -1 1 θ * 1 + Θ * T Γ -1 2 Θ * -ΘT l Γ -1 2 Θl ), (30) 
Consequently, there exist ω * , θ * 1 , ˜ and ¯ arbitrarily small in magnitude, and Θ * arbitrarily close to Θ l , such that X * 1 is arbitrarily close to X1 and ∆V < 0. Since the Lyapunov function V is shown to be non-increasing, it is clear that X1 is unstable. Now, under the additional assumption A6, we prove item (iii). Notice that ΘT Γ -1 2 Θ admits a limit as t tends to infinity and therefore, to prove the lemma it is enough to prove that lim inft→∞ Θ(t) = 0. Notice also that the projection algorithm is smooth and all the parametric estimation errors are bounded as well as their first to sixth time derivatives. Since ω → 0 and ω is bounded, it is clear that ω → 0, which in view of (18) and the fact that zγ → 0 implies that G(ωm, ωd -θ1) Θ tends to zero at t goes to infinity. Defining

G d := G(ω d -θ1, ωd ) = [ I3 H δ (ω d , ωd ) ], (31) 
one can easily show that

G(ωm, ωd -θ1) -G d → 0,
as t tends to infinity, since (ω -ω d ) → 0 and θ1 → 0. Consequently, G d Θ → 0 as t goes to infinity. Since

d 2 dt 2 (G d Θ) is bounded, one deduces that d dt (G d Θ)
is uniformly continuous, and hence tends to zero as t tends to infinity. Using Property P3), and the boundedness of all signals involved in the closed-loop system, one can easily show that Θ tends to zero. The latter fact combined with the convergence to zero of d dt (G d Θ) yield that dG d dt Θ tends to zero as t tends to infinity. One can also show that G d Θ is sufficiently differentiable, thanks to property P3) of the projection algorithm. Therefore, by an easy induction argument, it can be concluded that, for 0 ≤ k ≤ 5,

lim t→∞ d (k) G d dt k Θ = 0.
Setting Ψ(t) := ( θT 3 , θT 4 ) T , one has

G d Θ = θ2 + H δ (ω d , ωd )Ψ(t). ( 32 
)
Differentiating (32) and using the fact that θ2 → 0 and Ψ → 0, one concludes that d dt H δ (ω d , ωd )Ψ → 0 as t goes to infinity. Using similar arguments, one can show that d k dt k H δ (ω d , ωd )Ψ → 0 as t goes to infinity, for 1 ≤ k ≤ 5. Consequently, limt→∞ J δ (ω d , ωd )Ψ(t) = 0, where J δ (ω d , ωd ) has been defined in Assumption A6. According to Lemma 1, it follows that limt→∞ Ψ(t) = 0, and consequently, in view of (32), limt→∞ θ2(t) = 0. This proves that lim inft→∞ Θ(t) = 0.

Right now, We have proved that

• The trajectories of (21) converge to the following subsets of

S 3 × S 3 × R 3 × R 3 × R 18
given by Ω1 = {((±1, 0), (±1, 0), 0, 0, 0)} , Ω2 = {((±1, 0), (0, vjρ), 0, 0, 0), j = 1, 2, 3} , Ω3 = {((0, viγ), (±1, 0), 0, 0, 0), i = 1, 2, 3} , Ω4 = {((0, viγ), (0, vjρ), 0, 0, 0), i = 1, 2, 3; j = 1, 2, 3} , with viγ and vjρ are unit eigenvectors of Wγ and Wρ respectively for 1 ≤ i ≤ j ≤ 3. • The equilibria of the subsets Ω2, Ω3 and Ω4 are unstable. Now, we will show that from almost all initial conditions, the closed loop trajectories will converge to Ω1 if condition ( 22) is satisfied, which proves the last statement of the theorem.

Let Xeq be an element in some Ωi and write a trajectory as

x(•) = Xeq + Z(•)
where Z = (Zq 0 , Zq, Zq 0 , Zq, Zω, Zθ 1 , Z Θ) T . First note that ω = Zω and we set zγ = Zγ and zρ = Zρ with

Zγ = -2R T d [λγZq 0 vγ -S(vγ)WγZq + Zq 0 WγZq -S(Zq)WγZq] ,
if Q = (0, vγ), and

Zγ = -2R T d [WγZq + (Zq 0 I3 -S(Zq)) WγZq] , if Q = (1, 0) and Zρ = -2 RT [λρ(Zq 0 I 3 -S(Zq))vρ -S(vρ)WρZq +(Zq 0 I 3 -S(Zq))WρZq],
if Q = (0, vρ), and

Zρ = -2 RT (WρZq + (Zq 0 I3 -S(Zq)) WρZq) , if Q = (1, 0).
If Qeq = (0, vγ), the corresponding quaternion constraint yields

Z 2 q0 + vγ + Zq 2 = 1, (33) 
and then

Z 2 q0 + Zq 2 + 2v T γ Zq = 0. (34) 
Similarly, if Qeq = (0, vρ), one deduces from the corresponding quaternion constraint that

Z 2 q0 + Zq 2 + 2v T ρ Zq = 0. (35) 
If Qeq = (1, 0), the corresponding quaternion constraint yields

Z 2 q0 + Zq 2 + 2Zq 0 = 0, (36) 
and similarly, if Qeq = (1, 0), one deduces from the corresponding quaternion constraint that

Z 2 q0 + Zq 2 + 2Zq 0 = 0. (37) 
We will actually prove that the points of the state space converging to the undesired equilibrium points in Ω2, Ω3 and Ω4, form a set of measure zero.

Consider, for instance, a point in Ω2, let say Xeq = ((1, 0), (0, vρ), 0, 0, 0) where vρ is a unit-length eigenvector of Wρ. If x ∈ R 3 , we use x ⊥ to denote the vector in the two-dimensional plane v ⊥ ρ given by x ⊥ = x-(v T ρ x)vρ and W ⊥ ρ the restriction of Wρ to v ⊥ ρ . Recall first that the dimension of the state space X is equal to 30 and, by using the equations ( 35) and (36), one deduces that

Z q0 = - Z q 2 1 + 1-Z q 2 , v T ρ Zq = - Z 2 q0 + Z ⊥ q 2 1 + 1 -(Z 2 q0 + Z ⊥ q 2 )
.

The reduced variable Z red is given by

Z red = (Z q , Zq 0 , Z ⊥ q , Zω, Z θ1 , Z Θ) T ,
belongs to a smooth manifold Meq of dimension 30. Fix a neighborhood N of the origin for the reduced variable so that the projection operators are equal to the corresponding identity operators in N . Then, as long as the corresponding trajectory lies in N it obeys to the following dynamics

Żred = A(t)Z red + F (t, Z red ), (38) 
where A(t) and F (t, Z red ) are given in the appendix. We decomposed the error dynamics in (38) into a linear part and a super linear one, i.e, there exists a positive constant C 0 such that F verifies an estimate of the type

F (t, Z red ) ≤ C 0 Z red 2 , |divF (t, Z red )| ≤ C 0 Z red , (39) 
for every (t, Z red ) ∈ R + × Meq. Note also that the time-varying matrix A(•) does not depend on Z red and its trace is constant and equal to

TrA(t) ≡ 4λρ -TrWρ -αTrI -1 b := ξ. ( 40 
)
Since the matrix Wρ satisfies (22), the right-hand side ξ of (40) is strictly positive. Assume now that the conclusion of the theorem does not hold true and more particularly, that there exist a measurable subset set J of X with positive measure such that all trajectories of (21) starting in J converge to Xeq. Let J(t), the image of J at time t by the flow ψ(t, 0) of the reduced dynamics. Since J(t) converges to {Xeq} as t tends to infinity, one can assume, with no loss of generality, that J is chosen close enough to Xeq so that J(t) lies in the neighborhood N for every t ≥ 0 and therefore ψ(t, 0) is the flow associated with the time-varying equation (38). Moreover, if m(J(t)) denotes the measure of J(t), then m(J(t)) must tend to zero as t tends to infinity.

On the other hand, one has for t ≥ 0,

m(J(t)) = J(t) dZt = J | det(t, Z)|dZ,
where det(t, Z) denotes the determinant of Dψ(t, 0, Z), the differential of ψ(t, 0, Z) with respect to the initial condition Z ∈ J. Recall that, for every t ≥ 0, one has ∂d(t, Z) ∂t = (TrA(t) + divF (t, ψ(t, 0, Z))) d(t, Z), d(0, Z) = 1.

By taking into account (39) and (40), one deduces that det(t, Z) ≥ e ξt/2 for t large enough, hence m(J(t)) ≥ e ξt/2 m(J) which tends to infinity as t tends to infinity. We reached a contradiction. For the other equilibrium points of Ω 2 , Ω 3 and Ω 4 , one proceeds similarly to show that there does not exist a measurable subset J of X with positive measure and such that trajectories of (21) starting in J would converge to that equilibrium point. Therefore, for almost any initial condition X 0 ∈ X , the corresponding trajectory of (21) converges to a point of Ω1 .

The following proposition provides a useful result that will help in the design of the parameters γi and ρi satisfying (22). Proposition 1. Let r1 and r2 be two non-collinear 3-dimensional vectors. Let r3 = r1 × r2 and θ ∈ (0, π) the angle between r1 and r2. Set Ri = ||ri|| > 0 for i = 1, 2 and R3 = R1R2 sin(θ). If Wγ = -3 i=1 γiS(ri) 2 defined in Lemma 2, then the following hold true:

a) The eigenvalues of Wγ are equal to λ1

= R 2 1 γ1 + R 2 2 γ2, λ2 = R 2 3 γ3 + λ 1 2 (1 + √ 1 -D) and λ3 = R 2 3 γ3 + λ 1 2 (1 - √ 1 -D), with D = 4R 2 1 R 2 2 γ 1 γ 2 sin 2 (θ) λ 2 1 . b) Set η = R 2 2 γ 2 R 2 1 γ 1
. Note that D = 4η sin 2 (θ) (1+η) 2 . Then, Condition (22) is satisfied, if the parameters γi and α are chosen such that

η = 1, 4R 2 3 γ3 = λ1(1 + 3 √ 1 -D), λ1 > 2αTrI -1 b 1 - √ 1 -D . (41) 
Proof. First of all, notice that ||r3|| = R3 > 0 and 0 < D < 1 since r1 and r2 are non-collinear and η

= 1. Set e1 = [1 0 0] T , e2 = [cos(θ) sin(θ) 0] T , e3 = [0 0 1] T and E = [e1 e2 e3] and Rr = [ r 1 R 1 r 2 R 2 r 3 R 3 ]. Then the matrix U = ER -1
r is clearly orthogonal. Finally, set µi = R 2 i γi for i = 1, 2, 3 and W = -3 i=1 µiS(ei) 2 . It is immediate to see that W = U WγU T , implying that W and Wγ have the same eigenvalues. Moreover, a direct computation shows that

W = ( 3 i=1 µi)I -3 i=1 µieie T i =   µ3 + µ2 sin 2 (θ) -µ2 cos(θ) sin(θ) 0 -µ2 cos(θ) sin(θ) µ1 + µ3 + µ2 cos 2 (θ) 0 0 0 µ1 + µ2   .
(42) Straightforward calculations lead to the result of item (a). We next define γ2 and γ3 according to the definition of η and the second part of Eq.( 41). This choice implies that λ3 < λ2 < λ1. Finally, the third part of Eq.( 41) imposes a choice on γ1 and yields that Condition (22) is satisfied.

IV. SIMULATION RESULTS

In this section, we present simulation results showing the effectiveness of the proposed adaptive attitude trajectory tracking controller. We have considered for the simulations the inertia matrix I b = diag (0.0797, 0.0797, 0.1490), the gyro bias δ = [0.2, 0.1, -0.1] T and the inertial vectors r1 = [0, 0, 1] T and r2 = [1, 1, 1] T / √ 3. The simulation sampling time is 0.01sec. The control parameters have been chosen as γ1 = γ2 = 2, ρ1 = ρ2 = 10 and α = 2. The adaptation gains are Γ1 = 1 and Γ2 = 1. The parameters of the projections are given by n = 6, = 0.1, µ = 0.1, θm = 0.3 and Θm = 0.3. The desired angular velocity vector ω d has been chosen to satisfy the persistency excitation condition mentioned in assumption A6. We performed two simulation tests Test1 and Test2 to show the performance of the proposed control scheme and confirm the avoidance of the unwinding phenomenon. In the first simulation test, we considered the following initial conditions: ω(0) = [0, 0, 0] T , Q d (0) = [0.8, 0, 0.6, 0] T , Q(0) = [-0.8, 0, 0.6, 0] T and Q(0) = [1, 0, 0, 0] T . In the second simulation test, we considered the same initial conditions except for Q, where we started the scalar part of the unit quaternion from a negative value, i.e., Q(0) = [-1, 0, 0, 0] T . Figure 1 shows the evolution of the four components of the unitquaternion tracking errors with respect to time for Test1 and Test2, respectively. Figure 2 shows the evolution of the unit-quaternion estimation error with respect to time for Test1 and Test2 respectively. We can clearly see that the unwinding phenomenon is avoided since both equilibria given by Ω1 are asymptotically stable. Figures 3 and4 show the norm of the input signals and the angular velocity tracking error respectively. Fig. 5 shows that the parameter error θ1 converges to zero relatively fast, while the rest of the parameter errors Θ converge to zero relatively slow. This is due to the fact that only Θ depends on the richness of the reference signal.

V. CONCLUSION

A new adaptive attitude tracking control scheme, relying on inertial vector measurements, has been proposed for rigid body systems with unknown inertia and unknown angular velocity bias. Global boundedness of the system state variables and almost global asymptotic convergence of the body attitude and angular velocity to their desired values are proven. The convergence of the adaptive parameters to their true values is guaranteed under some kind of persistency of excitation condition on the reference trajectories. Compared to [START_REF] Mercker | Rigid-body attitude tracking with vector measurements and unknown gyro bias[END_REF], the proposed control scheme involves fewer parameter adaptations 

  with || θ1(0)|| ≤ θm and || Θ(0)|| ≤ Θm. The matrices Γ1 and Γ2 are real symmetric positive definite. The positive parameters θm and Θm are the upper bounds of θ1 and Θ, i.e., ||θ1|| ≤ θm, ||Θ|| ≤ Θm. The projection operator P roj is defined on R n × R n × R+ as follows:
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 123 Fig. 1: Unit-quaternion tracking error Q for Test1 and Test2
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 4 Fig. 4: Angular velocity errors ω -ω d .
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 5 Fig. 5: Parameter estimation errors θ1 in blue and Θ in red.

APPENDIX

The expressions of A(t) and F (t, Z red ) are given by