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Adaptive Attitude Trajectory Tracking Control of Rigid Body
Dynamics

Abdelaziz Benallegue, Yacine Chitour, Abdelhamid Tayebi

Abstract—This note presents a new adaptive attitude tracking con-
troller for rigid body systems with unknown inertia. The proposed control
scheme does not use any a priori attitude reconstruction; it explicitly
incorporates, in the feedback loop, biased angular velocity measurements
and body-frame measurements of some known inertial vectors. The pro-
posed control scheme guarantees almost global asymptotic convergence
of the attitude and angular velocity to their desired values.

I. INTRODUCTION

The rigid body attitude tracking problem is still relevant, despite
having been extensively studied in the literature for several decades.
Several solutions have been proposed in the literature in the full state
measurement case (i.e., attitude and angular velocity available for
feedback) using different attitude representations, see for instance,
[1]–[3]. Since there is no sensor that directly measures the orientation,
the explicit use of the attitude in the control law calls for efficient
attitude estimation algorithms (observers) that reconstruct the attitude
from the measurements provided by some appropriate sensors, such
as inertial measurements units (IMUs) typically including a gyro-
scope an accelerometer and a magnetometer. The attitude can be
determined using either static reconstruction algorithms [4] which are
vulnerable to measurement noise or dynamic attitude estimation algo-
rithms such as Kalman-type filters [5] and nonlinear-complimentary
filters [6]. Consequently, it is interesting to design control schemes
that bypass the attitude reconstruction through direct incorporation
of the available measurements or their filtered versions in the control
law. In this case, we don’t have to worry about stability issues of
the combination of separately designed attitude observer and attitude
controller.

The attitude tracking problem with biased angular velocity mea-
surements has been treated in [7] assuming that the attitude is
available for feedback. In [8], the attitude control problem has
been addressed in the presence of unknown angular velocity bias,
using IMU measurements in the state feedback, assuming that the
rigid body inertia is known. In [9], [10], for instance, the attitude
stabilization problem has been solved without attitude and angular
velocity measurements and without the knowledge of the inertia
matrix. The proposed control schemes rely directly on measurements
in the body frame of some known inertial vectors. The extension to
the case of trajectory tracking remains an open problem. In [11], the
attitude tracking problem using IMU measurements, with unknown
bias and unknown inertia has been addressed. Two control laws were
presented in [11]; the first one considers only the case of biased
angular velocity measurements, and the second one is an extension to
the case of unknown inertia matrix. These control laws are quaternion
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France and JRL-AIST (Joint Robotics Laboratory), Tsukuba, Ibaraki,
Japan. Y. Chitour is with Université Paris-Sud, CentraleSupélec, CNRS,
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based and seem to suffer from the unwinding phenomenon1. Note
also that, the number of parameters to be estimated is 24 and
some restrictive conditions on gains are imposed. Moreover, the non-
attractiveness of the undesired equilibria has not been proven.

In the present work, we aim to solve the attitude tracking problem
in the case where 1) the rigid body inertia is unknown, 2) the mea-
sured angular velocity is biased with an unknown constant bias, and
3) the attitude is not directly available for measurement. To handle
simultaneously the three above mentioned constraints, we derive an
adaptive control scheme that relies only on biased angular velocity
measurements and body-frame measurements of some known inertial
vectors. The control design relies on a transformation that allows to
linearly parameterize some terms in the system’s vector field with
respect to the unknown inertia matrix [9], [12]–[14]. Thereafter, an
almost global adaptive attitude tracking control scheme, involving
21 adaptive parameter, independent of the attitude representation,
is derived. Moreover, as it will be shown later, the unwinding
phenomenon is avoided in our approach.

II. BACKGROUND

A. Preliminaries

The quaternion set Q is a four-dimensional vector space over the
reals, which forms a group with the quaternion multiplication denoted
by “�”, which is distributive, associative but not commutative. The
multiplication of two quaternions P = (p0, p) and Q = (q0, q) is
defined as

P �Q = (p0q0 − pT q , p0q + q0p+ p× q), (1)

and has the quaternion (1,0) as the identity element. Note that, for a
given quaternion Q = (q0, q), one has Q�Q−1 = Q−1�Q = (1,0),
where Q−1 = (q0,−q)

‖Q‖2 .
Note that in the case where Q = (q0, q) is a unit-quaternion, the
inverse is given by Q−1 = (q0,−q).
The unit quaternion Q = (q0, q), composed of a scalar component
q0 ∈ R and a vector component q ∈ R3, represents the orientation
of the inertial frame I with respect to the body-attached frame B,
and are subject to the constraint q2

0 + qT q = 1. The rotation matrix,
related to the unit-quaternion Q, that brings the inertial frame into the
body-attached frame, can be obtained through the Rodrigues formula
R = R(Q) with the mapping R : S3 → SO(3) is defined as

R(Q) = I3 + 2q0S(q) + 2S2(q)
= (q2

0 − qT q)I3 + 2qqT + 2q0S(q)
(2)

where I3 is the 3-by-3 identity matrix and S(x) is the skew-
symmetric matrix associated to the vector x ∈ R3 such that
S(x)V = x × V for any vector V ∈ R3, where × denotes the
vector cross product of R3. Note that R(Q) = R(−Q) for every
Q ∈ Q and R defines a two-sheet covering of SO(3) by Q, i.e.,
for every R ∈ SO(3) there exist exactly two distinct quaternions

1This undesirable phenomena often occurs with the use of quaternion
representation, where some trajectories, for some initial conditions close to
the desired attitude equilibrium, can undergo an unnecessary homoclinic-like
orbit [2].
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verifying R(Q) = R. As a consequence every vector field f defined
on Q so that f(−Q) = −f(Q) for every Q ∈ Q defines a vector
field f̃ on SO(3).

Throughout this paper, we will denote by (0, X) the quaternion
associated to the three-dimensional vector X . A vector xI expressed
in the inertial frame I can be expressed in the body frame B by
xB = RTxI or equivalently in terms of unit-quaternion as (0, xB) =
Q−1 � (0, xI)�Q, where Q is the unit-quaternion associated to R
by (2).

Let us define the following mapping vect : Rn×n → Rn
2

, such
that for a given matrix A ∈ Rn×n, we associate the vector vect(A) =
[v1, . . . , vn]T , where vi, i = 1, . . . , n, are the row vectors of the
matrix A.

B. Equations of motion

In this work, we consider a rigid body whose rotational dynamics
are governed by

ΣR :

{
Q̇ = 1

2
Q� (0, ω),

Ibω̇ = τ − S(ω)Ibω,
(3)

where ω is the angular velocity of the rigid body expressed in the
body-attached frame B, τ is the external torque applied to the system
expressed in B and Ib ∈ R3×3 is a symmetric positive definite
constant inertia matrix (assumed to be unknown) of the rigid body
with respect to B of the form

Ib =

 I11 I12 I13

I12 I22 I23

I13 I23 I33

 .
III. MAIN RESULTS

A. Problem statement

Let us define the desired attitude trajectory in terms of the rotation
matrix Rd(t) governed by the following dynamics,

Ṙd = RdS(ωd),

with ωd(t) being the desired angular velocity vector.
An equivalent desired unit-quaternion Qd(t) is defined as Rd(t) =
R(Qd(t)). Its dynamics are governed by

Q̇d =
1

2
Qd � (0, ωd). (4)

The following assumptions are used throughout the paper:
A1. The rigid body is equipped with sensors that provide

measurements (in the body-attached frame) of constant and
known inertial vectors ri ∈ R3, i = 1, . . . , n ≥ 2. At least
two vectors, among the n inertial vectors, are non-collinear.
The vector measurements in the body-attached frame are
denoted by bi ∈ R3, i = 1, . . . , n. The vectors ri and bi
are related by bi = RT ri.

A2. The attitude (Q or R) is unknown (i.e., unavailable for
feedback).

A3. The measured angular velocity is assumed to be biased, so
that the relation between the actual and measured velocities
is given by

ω = ωm + δ,

where δ is the unknown constant bias, ω and ωm are the
actual and the measured velocity vectors respectively.

A4. The inertia matrix Ib is assumed to be unknown.
Our objective is to design a control input τ guaranteeing Almost
Global Asymptotic Convergence (AGAC) of the body attitude and
angular velocity to their desired values, under the above assumptions.

This means that there exists an equilibrium point Eq (in the appro-
priate state space) such that, for almost every initial condition (with
respect to the Lebesgue measure in the state space), the corresponding
trajectory of the closed loop system converges to Eq.

B. Linearly parameterized model for the control

Let us consider Assumptions A3 and A4 and define the following
parameters

θ1 = δ ∈ R3,

θ2 = S(δ)Ibδ ∈ R3,

θ3 = (I11, I22, I33, I23, I13, I12)T ∈ R6,

θ4 = vect(S(δ)Ib − S(Ibδ)) ∈ R9.

Using the second equation of (3), we can write the following

Ib(ω̇− ω̇d) = −(S(ωm)F1(ωm)+F1(ω̇d))θ3−F2(ωm)θ4−θ2 +τ,
(5)

where F1(ω) is defined as

F1(ω) =

 ω1 0 0 0 ω3 ω2

0 ω2 0 ω3 0 ω1

0 0 ω3 ω2 ω1 0


and F2(ω) as

F2(ω) =

 ω1 ω2 ω3 0 0 0 0 0 0
0 0 0 ω1 ω2 ω3 0 0 0
0 0 0 0 0 0 ω1 ω2 ω3

 .
The model given by Equation (5) can be written in a linear parame-
terization form as

Ib(ω̇ − ω̇d) = −G(ωm, ω̇d)Θ + τ, (6)

with

G(ωm, ω̇d) = [ I3 S(ωm)F1(ωm) + F1(ω̇d) F2(ωm) ] ∈ R3×18

and
ΘT = [ θT2 θT3 θT4 ] ∈ R18.

We also assume that ωd verifies the following additional assumption.

(Aδ): The desired angular velocity vector ωd and its six first
derivatives are bounded. Moreover, for every δ ∈ R, define

Hδ(ωd) = [ S(ωd − δ)F1(ωd − δ) + F1(ω̇d) F2(ωd − δ) ],

which is an 3 × 15 matrix-valued function of the time t and the
15× 15 matrix-valued function Jδ(ωd) given by

Jδ(ωd) =


d
dt

[
Hδ(ωd))

]
...

d5

dt5

[
Hδ(ωd))

]
 .

Then, the following holds true

lim sup
t→∞

| det Jδ(ωd)| > 0. (7)

Assumption (Aδ) is tailored to insure the following convergence
result.

Lemma 1. Let and δ ∈ R, ωd : [0,∞)→ R3 satisfying Assumption
(Aδ). Assume that there exists a measurable function Ψ : [0,∞)→
R15 such that limt→∞ Jδ(ωd)Ψ(t) = 0. Then lim inft→∞Ψ(t) = 0.

Proof: Assumption (Aδ) implies that lim inft→∞ ‖J−1
δ ‖ is

finite and since Ψ = J−1
δ (JδΨ) one immediately deduces the

conclusion.
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Remark 1. Assumption (Hδ) can be seen as a persistence of
excitation condition for the biased desired angular velocity ωd − δ
together with its first six time derivatives.

C. Control design

In the sequel, we assume that Assumptions A1 to A4 hold true,
as well as Assumption (Aδ). Define n vectors bdi and n vectors b̂i
corresponding to the desired and estimated vectors such that bdi =
RTd ri and b̂i = R̂T ri, for i = 1, . . . , n.

According to the model given by (6), we propose the following
adaptive control law

τ = G(ωm, ω̇d − ˙̂
θ1)Θ̂ + zγ − αω̄, (8)

with
ω̄ = ωm + θ̂1 − ωd,

zγ =

n∑
i=1

γiS(bdi )bi; zρ =

n∑
i=1

ρiS(b̂i)bi,

where α > 0, γi > 0 and ρi > 0 are constant scalar gains.
The attitude estimator is given by

˙̂
Q = 1

2
Q̂� (0, ω̂),

ω̂ = ωm + θ̂1 − zρ.

The adaptation algorithms are given by

˙̂
θ1 = Γ1Proj(−(zγ + zρ), θ̂1, θm),
˙̂
Θ = Γ2Proj(−G(ωm, ω̇d − ˙̂

θ1)T ω̄, Θ̂,Θm),

with ||θ̂1(0)|| ≤ θm and ||Θ̂(0)|| ≤ Θm. The matrices Γ1 and Γ2

are real symmetric positive definite. The positive parameters θm and
Θm are the upper bounds of θ1 and Θ, i.e., ||θ1|| ≤ θm, ||Θ|| ≤ Θm.
For n a positive integer, the projection operator Proj is defined on
Rn × Rn × R+ as follows:

Proj(x, ŷ, y0) = x− η1η2

4(ε2 + 2εy0)n+1y2
0

ŷ, (9)

with

η1 =

{
(ŷT ŷ − y2

0)n+1 if ŷT ŷ > y2
0 ,

0 otherwise,
(10)

η2 = 0.5ŷTx+
√

(0.5ŷTx)2 + δ2, (11)

where ε and δ are arbitrary positive constants. Let ȳ be a constant
vector in By0 = {y ∈ Rn | ||y|| ≤ y0}, ŷ(0) ∈ By0 and ỹ =
ȳ − ŷ. Consider the adaptation algorithm ˙̂y = Proj(x, ŷ, y0), then
the following properties hold [15] for every t ≥ 0:

P1) ||ŷ(t)|| ≤ y0 + ε,
P2) −ỹ(t)TProj(−x, ŷ(t), y0) ≤ xT ỹ(t).

D. Convergence analysis

Let us define the estimation error R̄ = RR̂T and the tracking error
R̃ = RRTd of the attitude that correspond to the unit quaternion errors
Q̄ = Q� Q̂−1 ≡ (q̄0, q̄) and Q̃ = Q�Q−1

d ≡ (q̃0, q̃) respectively.
The estimation error dynamics are given by

˙̄Q =

[
˙̄q0
˙̄q

]
=

[
− 1

2
q̄T R̂(ω − ω̂)

1
2
(q̄0I + S(q̄))R̂(ω − ω̂)

]
, (12)

with
ω − ω̂ = zρ + θ̃1.

The tracking error dynamics are given by

˙̃Q =

[
˙̃q0
˙̃q

]
=

[
− 1

2
q̃TRd(ω − ωd)

1
2
(q̃0I + S(q̃))Rd(ω − ωd)

]
, (13)

where

ω − ωd = ω̄ + θ̃1,

with θ̃1 = θ1 − θ̂1. Before stating our main results, we recall the
following useful lemma given in [16] that will be used throughout
the paper.

Lemma 2. Assume that there are n vectors bi, i = 1, . . . , n measured
in the body attached frame, corresponding to n known inertial vectors
ri, i = 1, . . . , n. Assume that the constant parameters γi and ρi are
strictly positive and at least two vectors among the ri vectors are
non-collinear. Then, the following properties hold

1) The vectors zγ and zρ verify

zγ ≡
n∑
i=1

γiS(bdi )bi = −2RTd (q̃0I − S(q̃))Wγ q̃, (14)

zρ ≡
n∑
i=1

ρiS(b̂i)bi = −2R̂T (q̄0I − S(q̄))Wρq̄, (15)

where the matrices Wγ = −
∑n
i=1 γiS(ri)

2 and Wρ =
−
∑n
i=1 ρiS(ri)

2 are real symmetric and positive definite. If
the gains γi, ρi, i = 1, . . . , n, are chosen such that Wγ and
Wρ have two by two distinct eigenvalues, the following holds
true.

2) zγ = 0 is equivalent to (q̃0 = 0, q̃ = vγ) or (q̃0 = ±1, q̃ = 0),
where vγ is a unit eigenvector of Wγ .

3) zρ = 0 is equivalent to (q̄0 = 0, q̄ = vρ) or (q̄0 = ±1, q̄ = 0),
where vρ is a unit eigenvector of Wρ.

The closed loop attitude error dynamics are given by

˙̃Q =

[
˙̃q0
˙̃q

]
=

[
− 1

2
q̃TRd(ω̄ + θ̃1)

1
2
(q̃0I + S(q̃))Rd(ω̄ + θ̃1)

]
, (16)

˙̄Q =

[
˙̄q0
˙̄q

]
=

[
q̄0q̄

TWρq̄ − 1
2
q̄T R̂θ̃1

−(I − q̄q̄T )Wρq̄ + 1
2
(q̄0I + S(q̄))R̂θ̃1

]
,

(17)

Ib ˙̄ω = −αω̄ + zγ −G(ωm, ω̇d − ˙̂
θ1)Θ̃, (18)

˙̃
θ1 = −Γ1Proj(−(zγ + zρ), θ̂1, θm), (19)

˙̃Θ = −Γ2Proj(−G(ωm, ω̇d − ˙̂
θ1)T ω̄, Θ̂,Θm) . (20)

where θ̃1 = θ1−θ̂1 and Θ̃ = Θ−Θ̂ = [ θ̃T2 θ̃T3 θ̃T4 ]T . Note that
these dynamics are non-autonomous. Define X = (Q̃, Q̄, ω̄, θ̃1, Θ̃)
in the state space X := S3 × S3 ×R3 ×R3 ×R18. Note that X has
dimension 30. The above dynamics can be written as

Ẋ = f(X,Rd(t), ωd(t), ω̇d(t)), (21)

where f is a time-varying vector field defined on X .
Let us define the following Lyapunov function candidate

V = 2q̃TWγ q̃ + 2q̄TWρq̄ + 1
2
ω̄T Ibω̄

+ 1
2
θ̃T1 Γ−1

1 θ̃1 + 1
2
Θ̃TΓ−1

2 Θ̃
. (22)

The time derivative of (22), in view of (16), (17), (18) and property
P2 of the projection operator, is given by

V̇ ≤ −αω̄T ω̄ − zTρ zρ. (23)
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According to (23), V is non-increasing along trajectories of the
dynamical system, implying that ω̄, q̄, q̃, θ̃1 and Θ̃ are bounded
and V converges to a non negative limit. One checks easily that V̈
is bounded for every trajectory of the system, implying that V̇ is
uniformly continuous, hence that V̇ → 0. On the other hand, the
time derivative of zρ and zγ are given by

żρ = −S(ω − θ̃1)zρ +

(
n∑
i=1

ρiS(b̂i)S(bi)

)
(zρ + θ̃1),

żγ = −S(ωd)zγ +

(
n∑
i=1

ρiS(bdi )S(bi)

)
(ω − ωd),

which are clearly bounded. Since, for any given trajectory of (21),
V̈ is bounded, one deduces that ω̄ → 0 and zρ → 0 as time tends
to infinity. Using Lemma 2, one sees that (q̄0I − S(q̄))Wρq̄ → 0
as time tends to infinity, which implies that either (q̄0, q̄)→ (±1, 0)
or (q̄0, q̄)→ (0, vρ) where vρ is a unit eigenvector of Wρ. Since ¨̄q0
and ¨̄q are bounded, (17) implies that θ̃1 → 0. Therefore, using (19),
and the fact that zρ → 0 and żγ is bounded, it can be concluded
that ˙̃

θ1 → 0 and therefore zγ → 0. Using Lemma 2, one concludes
that either (q̃0, q̃)→ (±1, 0) or (q̃0, q̃)→ (0, vγ) where vγ is a unit
eigenvector of Wγ .

Lemma 3. With the notations above and assuming that ωd verifies
Assumption (Aδ), one deduces that Θ̃ converges to zero as t tends
to infinity.

Proof: Notice that Θ̃TΓ−1
2 Θ̃ admits a limit as t tends to

infinity and therefore, to prove the lemma it is enough to prove that
lim inft→∞ ‖Θ̃(t)‖ = 0.

Define

Gd := G(ωd − θ1, ω̇d) = [ I3 Hδ(ωd − θ1) ]. (24)

Then one has
G(ωm, ω̇d − ˙̂

θ1)−Gd → 0,

as t tends to infinity. Since ω̄ tends to zero and ¨̄ω is bounded, one
deduces that ˙̄ω tends to zero at t tends to infinity and therefore so
does GdΘ̃. By an easy induction argument, it can be concluded that,
for 0 ≤ k ≤ 5,

lim
t→∞

d(k)

dtk
GdΘ̃ = 0.

Setting Ψ(t) := (θ̃T3 , θ̃
T
4 ), one has GdΘ̃ = θ̃2 + Hδ(ωd − θ1)Ψ(t)

and limt→∞ Jδ(ωd)Ψ(t) = 0, where Jδ(ωd) has been defined
in Assumption (Aδ). According to Lemma 1, this implies that
lim inft→∞ ‖Θ̃(t)‖ = 0 and Lemma 3 is proved.

Using Lemma 2 and Lemma 3, we have proved that trajectories of
(21) converge to the following subsets of S3 × S3 ×R3 ×R3 ×R18

given by

Ω̃1 = {((±1, 0), (±1, 0), 0, 0, 0)} ,
Ω̃2 = {((±1, 0), (0,±vjρ), 0, 0, 0), j = 1, 2, 3} ,
Ω̃3 = {((0,±viγ), (±1, 0), 0, 0, 0), i = 1, 2, 3} ,
Ω̃4 = {((0,±viγ), (0,±vjρ), 0, 0, 0), i = 1, 2, 3; j = 1, 2, 3} ,

with viγ and vjρ are unit eigenvectors of Wγ and Wρ respectively
for 1 ≤ i ≤ j ≤ 3.

Let Xeq be an element in some Ω̃i and write a trajectory as

x(·) = Xeq + Z(·)

where
Z = (Zq̃0 , Zq̃, Zq̄0 , Zq̄, Zω̄, Zθ̃1 , ZΘ̃)T .

First note that ω̄ = Zω̄ and we set zγ = Zγ and zρ = Zρ with

Zγ = −2RTd [λγZq̃0vγ − S(vγ)WγZq̃ + Zq̃0WγZq̃ − S(Zq̃)WγZq̃] ,

if Q̃ = (0, vγ), and

Zγ − 2RTd [WγZq̃ + (Zq̃0I3 − S(Zq̃))WγZq̃] ,

if Q̃ = (1, 0) and

Zρ =
−2R̂T [λρ(Zq̄0I3 − S(Zq̄))vρ − S(vρ)WρZq̄
+(Zq̄0I3 − S(Zq̄))WρZq̄ ],

if Q̄ = (0, vρ), and

Zρ = −2R̂T (WρZq̄ + (Zq̄0I3 − S(Zq̄))WρZq̄) ,

if Q̄ = (1, 0).

If Q̃eq = (0, vγ), the corresponding quaternion constraint yields

Z2
q̃0+ ‖ vγ + Zq̃ ‖2= 1, (25)

and then (
Z2
q̃0+ ‖ Zq̃ ‖2

)
+ 2vTγ Zq̃ = 0. (26)

Similarly, if Q̄eq = (0, vρ), one deduces from the corresponding
quaternion constraint that(

Z2
q̄0+ ‖ Zq̄ ‖2

)
+ 2vTρ Zq̄ = 0. (27)

If Q̃eq = (1, 0), the corresponding quaternion constraint yields(
Z2
q̃0+ ‖ Zq̃ ‖2

)
+ 2Zq̃0 = 0, (28)

and similarly, if Q̄eq = (1, 0), one deduces from the corresponding
quaternion constraint that(

Z2
q̄0+ ‖ Zq̄ ‖2

)
+ 2Zq̄0 = 0. (29)

We now state in the following theorem the convergence result
obtained for the closed loop attitude error dynamics.

Theorem 1. Consider the closed loop attitude error dynamics given
by Eqs. (16)-(20), where the desired angular velocity vector ωd
verifies Assumption (Aδ) and the gain matrices Wγ and Wρ have
two by two distinct eigenvalues and verifie the following assumption

(W ): one has

4λmin(M)− TrM − αTrI−1
b > 0, for M ∈ {Wγ ,Wρ}.

Then, for almost any initial condition X0 ∈ X , the corresponding
trajectory of (21) converges to a point of Ω1.

Proof: We will actually prove that the points of the state space
converging to the equilibrium points in Ω̃2, Ω̃3 and Ω̃4, form a set
of measure zero.

Consider, for instance, a point in Ω̃2, let say Xeq =
((1, 0), (0, vρ), 0, 0, 0) where vρ is a unit-length eigenvector of Wρ.
If x ∈ R3, we use x⊥ to denote the vector in the two-dimensional
plane v⊥ρ given by x⊥ = x−(vTρ x)vρ and W⊥ρ the restriction of Wρ

to v⊥ρ . Recall first that the dimension of the state space X is equal
to 30 and, by using the equations (27) and (28), one deduces that

Zq̃0 = − ‖ Zq̃ ‖2

1 +
√

1− ‖ Zq̃ ‖2
, vTρ Zq̄ = −

Z2
q̄0+ ‖ Z⊥q̄ ‖2

1 +
√

1− (Z2
q̄0

+ ‖ Z⊥q̄ ‖2)
.

The reduced variable Zred is given by

Zred = (Zq̃, Zq̄0 , Z
⊥
q̄ , Zω̄, Zθ̃1 , ZΘ̃)T ,

belongs to a smooth manifoldMeq of dimension 30. Fix a neighbor-
hood N of the origin for the reduced variable so that the projection
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operators are equal to the corresponding identity operators in N .
Then, as long as the corresponding trajectory lies in N it obeys to
the following dynamics

Żred = A(t)Zred + F (t, Zred), (30)

where A(t) and F (t, Zred) are given in the appendix.
We decomposed the error dynamics in (30) into a linear part and

a super linear one, i.e, there exists a positive constant C0 such that
F verifies an estimate of the type

‖ F (t, Zred) ‖≤ C0 ‖ Zred ‖2, |divF (t, Zred)| ≤ C0 ‖ Zred ‖,
(31)

for every (t, Zred) ∈ R+ ×Meq . Note also that the time-varying
matrix A(·) does not depend on Zred and its trace is constant and
equal to

TrA(t) ≡ 4λρ − TrWρ − αTrI−1
b := ξ. (32)

Since the matrix Wρ verifies Assumption (W ), the right-hand side ξ
of (32) is strictly positive. Assume now that conclusion of the theorem
does not hold true and more particularly, that there exist a measurable
subset set J of X with positive measure such that all trajectories of
(21) starting in J converge to Xeq . Let J(t), the image of J at time
t by the flow ψ(t, 0) of the reduced dynamics. Since J(t) converges
to {Xeq} as t tends to infinity, one can assume, with no loss of
generality, that J is chosen close enough to Xeq so that J(t) lies in
the neighborhood N for every t ≥ 0 and therefore ψ(t, 0) is the flow
associated with he time-varying equation (30). Moreover, if m(J(t))
denotes the measure of J(t), then m(J(t)) must tend to zero as t
tends to infinity.

On the other hand, one has for t ≥ 0,

m(J(t)) =

∫
J(t)

dZt =

∫
J

| det(t, Z)|dZ,

where det(t, Z) denotes the determinant of Dψ(t, 0, Z), the differ-
ential of ψ(t, 0, Z) with respect to the initial condition Z ∈ J . Recall
that, for every t ≥ 0, one has

∂d(t, Z)

∂t
= (TrA(t) + divF (t, ψ(t, 0, Z))) d(t, Z), d(0, Z) = 1.

By taking into account (31) and (32), one deduces that det(t, Z) ≥
eξt/2 for t large enough, hence m(J(t)) ≥ eξt/2m(J) which tends
to infinity as t tends to infinity. We reached a contradiction.

For the other equilibrium points of Ω̃2, Ω̃3 and Ω̃4, one proceeds
similarly to show that there does not exist a measurable subset J of
X with positive measure and such that trajectories of (21) starting
in J would converge to that equilibrium point. Therefore, for almost
any initial condition X0 ∈ X , the corresponding trajectory of (21)
converges to a point of Ω1.

IV. SIMULATION RESULTS

In this section, we present simulation results showing the effective-
ness of the proposed adaptive attitude trajectory tracking controller.
We have considered for the simulations the inertia matrix J =
diag(0.5, 0.5, 1), the gyro bias δ = [0.1, 0.8,−0.6]T and the inertial
vectors r1 = [0, 0, 1]T and r2 = [0.4340,−0.0091, 0.9009]T . The
simulation sampling time is 0.01sec. The control parameters have
been chosen as γ1 = γ2 = 10 and ρ1 = ρ2 = 10. The desired
angular velocity vector ωd has been chosen to verify the persistency
excitation condition mentioned in assumption (Aδ). We performed
two simulation tests Test1 and Test2 to show the performance of the
proposed control scheme and confirm the avoidance of the unwinding
phenomenon. In the first simulation test, we considered the following
initial conditions: ω(0) = [0, 0, 0]T , Qd(0) = [0.8, 0, 0.6, 0]T ,
Q̂(0) = [−0.8, 0, 0.6, 0]T and Q(0) = [1, 0, 0, 0]T . In the second

simulation test, we considered the same initial conditions except for
Q, where we started the scalar part of the unit quaternion from
a negative value, i.e., Q(0) = [−1, 0, 0, 0]T . Figure 1 shows the
evolution of the four components of the unit-quaternion tracking
errors with respect to time for Test1 and Test2, respectively. Figure
2 shows the evolution of the unit-quaternion estimation error with
respect to time for Test1 and Test2 respectively. We can clearly see
that the unwinding phenomenon is avoided since both equilibria given
by Ω̃1 are asymptotically stable. Figures 3 and 4 show the input
signals and the angular velocity tracking signals respectively. Figures
5 shows that the parameter errors θ̃1 converging to zero relatively fast,
while in figures 6, 7 and 8 the rest of the parameter errors Θ̃ converge
to zero relatively slow. This is due to the fact that only Θ̃ depends
on the richness of the reference signal.
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Fig. 1: Unit-quaternion tracking error Q̃ for Test1 and Test2

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2: Unit-quaternion estimation error Q̄ for Test1 and Test2
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Fig. 3: Input torques τ

V. CONCLUSION

A new adaptive attitude tracking control scheme, relying on inertial
vector measurements, has been proposed for rigid body systems with
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Fig. 4: Angular velocities ω and ωd
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0 500 1000 1500 2000 2500

Time (s)

-1.5

-1

-0.5

0

0.5

1

Fig. 6: Parameter estimation errors θ̃2

unknown inertia and unknown angular velocity bias. Global bound-
edness of the system state variables and almost global asymptotic
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Fig. 7: Parameter estimation errors θ̃3
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Fig. 8: Parameter estimation errors θ̃4

convergence of the body attitude and angular velocity to their desired
values are proven. The convergence of the adaptive parameters to
their true values is guaranteed under some kind of persistency of
excitation condition on the reference trajectories. Compared to [11],
the proposed control scheme involves fewer parameter adaptations
and avoids the unwinding phenomenon. The performance of the
proposed controller is illustrated through some simulation results.
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APPENDIX

The expressions of A(t) and F (t, Zred) are given by

A(t) =



0 0 0 1
2
Rd

1
2
Rd 0

0 λρ 0 0 − 1
2
vTρ R̂ 0

0 0 λρI2 −W⊥ρ 0 1
2
S(vρ)R̂ 0

−2I−1
b RTdWγ 0 0 −αI−1

b 0 −I−1
b Gd

−2Γ1R
T
dWγ −2λρΓ1R̂

T vρ 2Γ1R̂
TS(vρ)(λρI2 −W⊥ρ ) 0 0 0

0 0 0 Γ2G
T
d 0 0

 , (33)

F (t, Zred) =



1
2
[(Zq̃0Id3 + S(Zq̃))Rd(Zω̄ + Zθ̃)]

Zq̄0(2λρv
T
ρ Zq̄ + ZTq̄ WρZq̄)− 1

2
ZTq̄ R̂Zθ̃

λρv
T
ρ Zq̄Z

⊥
q̄ + 1

2
[(Zq̄0Id3 + S(Zq̄))R̂Zθ̃)]

⊥

−2I−1
b RTd (Zq̃0Id3 − S(Zq̃))WγZq̃ − I−1

b G(Zω̄ + Zθ̃,Γ1(Zγ + Zρ))ZΘ̃

−2Γ1R
T
d [Zq̃0Id3 − S(Zq̃))WγZq̃]− 2Γ1R̂

T [(Zq̄0I3 − S(Zq̄))WρZq̄]
Γ2G

T (Zω̄ + Zθ̃,Γ1(Zγ + Zρ))Zω̄

 . (34)
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