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Adaptive Attitude Tracking Control of Rigid Body Systems
with Unknown Inertia and Gyro-bias

Abdelaziz Benallegue, Yacine Chitour, Abdelhamid Tayebi

Abstract—This note presents a new adaptive attitude tracking con-
troller for rigid body systems, with unknown inertia and unknown gyro-
bias, using inertial vector measurements. The proposed control scheme
guarantees almost global asymptotic convergence of the attitude and
angular velocity to their desired values. Simulation results are provided
to illustrate the effectiveness of the proposed approach.

I. INTRODUCTION

The rigid body attitude tracking problem is still relevant, despite
having been extensively studied in the literature for several decades.
Several solutions have been proposed in the literature in the full state
measurement case (i.e., attitude and angular velocity available for
feedback) using different attitude representations, see for instance,
[1]–[3]. Since there is no sensor that directly measures the orien-
tation, the explicit use of the attitude in the control law calls for
efficient attitude estimation algorithms (observers) that reconstruct
the attitude from the measurements provided by some appropriate
sensors, such as inertial measurements units (IMUs) typically includ-
ing a gyroscope, an accelerometer and a magnetometer. The attitude
can be determined using either static reconstruction algorithms [4]
which are vulnerable to measurement noise, or dynamic attitude
estimation algorithms such as Kalman-type filters [5] and nonlinear-
complimentary filters [6]. The attitude tracking problem with biased
angular velocity measurements has been treated in [7] assuming that
the attitude is available for feedback. In [8], the attitude control
problem has been addressed in the presence of unknown angular
velocity bias, using IMU measurements, assuming that the rigid body
inertia is known. In [9], [10], for instance, the attitude stabilization
problem has been solved without attitude and angular velocity
measurements and without the knowledge of the inertia matrix. The
proposed control schemes rely directly on measurements in the body
frame of some known inertial vectors. The extension to the case of
trajectory tracking remains an open problem. In [11] the adaptive
attitude tracking problem, with unknown inertia, has been addressed
using the measurement in the body frame of a single (non-constant)
inertial vector, assuming perfect angular velocity measurements. This
observer-based controller is mainly suitable for non-stationary flights
such as in satellite applications.

In [12], the attitude tracking problem using IMU measurements,
with unknown angular velocity bias and unknown inertia has been
addressed. Two control laws were presented; the first one considers
only the case of biased angular velocity measurements, and the
second one is an extension to the case of unknown inertia matrix.
The second controller which considers unknown inertia and gyro-
bias simultaneously, relies on the use of the attitude observer of [6]
which provides attitude estimates to be used in the tracking control
law. The overall certainty-equivalence-type adaptive control scheme
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that has been proposed (without proof) seems to rely on a conjectured
separation principle.

In the present work, we aim to solve the attitude tracking problem
in the case where 1) the rigid body inertia is unknown, 2) the
measured angular velocity is biased with an unknown constant bias,
and 3) the attitude is not directly available for measurement. To
handle the three above mentioned constraints simultaneously, we
derive an adaptive control scheme that relies only on biased angu-
lar velocity measurements and body-frame measurements of some
known inertial vectors. The control design relies on a transformation
that allows to linearly parameterize some terms in the system’s
vector field with respect to the unknown inertia matrix [3], [9], [13],
[14]. Our approach is different from the one proposed in [12], and
does not rely on the certainty-equivalence principle with separate
observer/controller design, but rather relies on a direct injection
of the measurements in the control law, and the stability of the
interconnection observer-controller is proven as a whole. Moreover,
the number of adaptations and the order of the proposed tracking
controller are lower than that of [12].

II. BACKGROUND

A. Preliminaries

The quaternion set Q is a four-dimensional vector space over the
reals, which forms a group with the quaternion multiplication denoted
by “�”, which is distributive, associative but not commutative. The
multiplication of two quaternions P = (p0, p) and Q = (q0, q) is
defined as

P �Q = (p0q0 − pT q , p0q + q0p+ p× q), (1)

and has the quaternion (1,0) as the identity element. Note that, for a
given quaternion Q = (q0, q), one has Q�Q−1 = Q−1�Q = (1,0),
where Q−1 = (q0,−q)

‖Q‖2 .
Note that in the case where Q = (q0, q) is a unit-quaternion, the
inverse is given by Q−1 = (q0,−q).
The unit quaternion Q = (q0, q), composed of a scalar component
q0 ∈ R and a vector component q ∈ R3, represents the orientation
of the inertial frame I with respect to the body-attached frame B,
and are subject to the constraint q2

0 + qT q = 1. The rotation matrix,
related to the unit-quaternion Q, that brings the inertial frame into the
body-attached frame, can be obtained through the Rodrigues formula
R = R(Q) with the mapping R : S3 → SO(3) is defined as

R(Q) = I3 + 2q0S(q) + 2S2(q)
= (q2

0 − qT q)I3 + 2qqT + 2q0S(q)
(2)

where I3 is the 3-by-3 identity matrix and S(x) is the skew-
symmetric matrix associated to the vector x ∈ R3 such that
S(x)V = x∧V for any vector V ∈ R3, where ∧ denotes the vector
cross product of R3. Note that R(Q) = R(−Q) for every Q ∈ Q
and R defines a two-sheet covering of SO(3) by Q, i.e., for every
R ∈ SO(3) there exist exactly two distinct quaternions satisfying
R(Q) = R. As a consequence every vector field f defined on Q so
that f(−Q) = −f(Q) for every Q ∈ Q defines a vector field f̃ on
SO(3).
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Throughout this paper, we will denote by (0, X) the quaternion
associated to the three-dimensional vector X . A vector xI expressed
in the inertial frame I can be expressed in the body frame B by
xB = RTxI or equivalently in terms of unit-quaternion as (0, xB) =
Q−1 � (0, xI)�Q, where Q is the unit-quaternion associated to R
by (2).

Let us define the following mapping vect : Rn×n → Rn
2

, such
that for a given matrix A ∈ Rn×n, we associate the vector vect(A) =
[v1, . . . , vn]T , where vi, i = 1, . . . , n, are the row vectors of the
matrix A.

B. Equations of motion

In this work, we consider a rigid body whose rotational dynamics
are governed by

ΣR :

{
Q̇ = 1

2
Q� (0, ω),

Ibω̇ = τ − S(ω)Ibω,
(3)

where ω is the angular velocity of the rigid body expressed in the
body-attached frame B, τ is the external torque applied to the system
expressed in B and Ib ∈ R3×3 is a symmetric positive definite
constant inertia matrix (assumed to be unknown) of the rigid body
with respect to B of the form

Ib =

 I11 I12 I13

I12 I22 I23

I13 I23 I33

 .
III. MAIN RESULTS

A. Problem statement

Let us define the desired attitude trajectory in terms of the rotation
matrix Rd(t) governed by the following dynamics,

Ṙd = RdS(ωd),

with ωd(t) being the desired angular velocity vector.
An equivalent desired unit-quaternion Qd(t) is defined as Rd(t) =
R(Qd(t)). Its dynamics are governed by

Q̇d =
1

2
Qd � (0, ωd). (4)

The following assumptions are used throughout the paper:
Assumption A1. The rigid body is equipped with sensors that

provide measurements (in the body-attached frame) of con-
stant and known inertial vectors ri ∈ R3, i = 1, . . . , n ≥ 2.
At least two vectors, among the n inertial vectors, are non-
collinear. The vector measurements in the body-attached
frame are denoted by bi ∈ R3, i = 1, . . . , n. The vectors
ri and bi are related by bi = RT ri.

Assumption A2. The attitude (Q or R) is unknown (i.e., unavail-
able for feedback).

Assumption A3. The measured angular velocity is assumed to be
biased, so that the relation between the actual and measured
velocities is given by

ω = ωm + δ,

where δ is the unknown constant bias, ω and ωm are the
actual and the measured velocity vectors respectively.

Assumption A4. The inertia matrix Ib is assumed to be unknown.
Assumption A5. The desired angular velocity vector ωd and its

first to sixth derivatives are bounded.
Our objective is to design a control input τ guaranteeing Almost

Global Asymptotic Convergence (AGAC) of the body attitude and
angular velocity to their desired values, under the above assumptions.

This means that there exists an equilibrium point Eq (in the appro-
priate state space) such that, for almost every initial condition (with
respect to the Lebesgue measure in the state space), the corresponding
trajectory of the closed loop system converges to Eq.

B. Linearly parameterized model for the control

Let us consider Assumptions A3 and A4 and define the following
parameters

θ1 = δ ∈ R3,

θ2 = S(δ)Ibδ ∈ R3,

θ3 = (I11, I22, I33, I23, I13, I12)T ∈ R6,

θ4 = vect(S(δ)Ib − S(Ibδ)) ∈ R9,

ΘT = [ θT2 θT3 θT4 ] ∈ R18.

Using the second equation of (3), we can write the following

Ib(ω̇− ω̇d) = −(S(ωm)F1(ωm)+F1(ω̇d))θ3−F2(ωm)θ4−θ2 +τ,
(5)

where F1(ω) is defined as

F1(ω) =

 ω1 0 0 0 ω3 ω2

0 ω2 0 ω3 0 ω1

0 0 ω3 ω2 ω1 0


and F2(ω) as

F2(ω) =

 ω1 ω2 ω3 0 0 0 0 0 0
0 0 0 ω1 ω2 ω3 0 0 0
0 0 0 0 0 0 ω1 ω2 ω3

 .
The model given by Equation (5) can be written in a linear parame-
terizations form as

Ib(ω̇ − ω̇d) = −G(ωm, ω̇d)Θ + τ, (6)

with

G(ωm, ω̇d) = [ I3 S(ωm)F1(ωm) + F1(ω̇d) F2(ωm) ] ∈ R3×18

We also assume that ωd verifies the following additional assump-
tion.

Assumption A6. We assume that

lim sup
t→∞

|det Jδ(ωd, ω̇d)| > 0, (7)

where the 15× 15 matrix-valued function Jδ(ωd, ω̇d) is given by

Jδ(ωd, ω̇d) =


d
dt

[
Hδ(ωd, ω̇d)

]
...

d5

dt5

[
Hδ(ωd, ω̇d)

]
 .

where Hδ(ωd, ω̇d) is a 3 × 15 matrix-valued function of the time t
given by

Hδ(ωd, ω̇d) = [ S(ωd − δ)F1(ωd − δ) + F1(ω̇d) F2(ωd − δ) ].

Assumption A6 is tailored to insure the following convergence
result.

Lemma 1. Let δ ∈ R3 and ωd : [0,∞)→ R3 satisfying Assumption
A6. Assume that there exists a measurable function Ψ : [0,∞)→ R15

such that limt→∞ Jδ(ωd, ω̇d)Ψ(t) = 0. Then lim inft→∞Ψ(t) = 0.

Proof: Assumption A6 implies that lim inft→∞ ‖J−1
δ ‖ is finite

and since Ψ = J−1
δ (JδΨ) one immediately deduces the conclusion.

Remark 1. Assumption A6 can be seen as a persistence of excitation
condition for the biased desired angular velocity ωd−δ together with
its first six time derivatives.
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C. Control design

Define n vectors bdi and n vectors b̂i corresponding to the desired
and estimated vectors such that bdi = RTd ri and b̂i = R̂T ri, for
i = 1, . . . , n.

According to the model given by (6), we propose the following
adaptive control law

τ = G(ωm, ω̇d − ˙̂
θ1)Θ̂ + zγ − αω̄, (8)

with ω̄ = ωm + θ̂1 − ωd and

zγ =

n∑
i=1

γiS(bdi )bi; zρ =

n∑
i=1

ρiS(b̂i)bi,

where α > 0, γi > 0 and ρi > 0 are constant scalar gains.
The attitude estimator is given by

˙̂
Q =

1

2
Q̂� (0, ω̂), (9)

with ω̂ = ωm + θ̂1 − zρ.
The adaptation scheme is given by

˙̂
θ1 = Γ1Proj(−(zγ + zρ), θ̂1, θm),
˙̂
Θ = Γ2Proj(−G(ωm, ω̇d − ˙̂

θ1)T ω̄, Θ̂,Θm),
(10)

with ||θ̂1(0)|| ≤ θm and ||Θ̂(0)|| ≤ Θm. The matrices Γ1 and Γ2 are
real symmetric positive definite. The positive parameters θm and Θm

are the upper bounds of θ1 and Θ, i.e., ||θ1|| ≤ θm, ||Θ|| ≤ Θm. The
projection operator Proj is defined on Rn × Rn × R+ as follows:

Proj(x, ŷ, y0) = x− η1η2

4(ε2 + 2εy0)n+1y2
0

ŷ, (11)

with

η1 =

{
(ŷT ŷ − y2

0)n+1 if ŷT ŷ > y2
0 ,

0 otherwise,
η2 = 0.5ŷTx+

√
(0.5ŷTx)2 + µ2,

where ε and µ are arbitrary real positive constants and n is an
arbitrary positive integer. Let ȳ be a constant vector in By0 = {y ∈
Rn | ||y|| ≤ y0}, ŷ(0) ∈ By0 and ỹ = ȳ− ŷ. Consider the adaptation
algorithm ˙̂y = Proj(x, ŷ, y0), then the following properties hold [15]
for every t ≥ 0:
P1) ||ŷ(t)|| ≤ y0 + ε,
P2) −ỹ(t)TProj(−x, ŷ(t), y0) ≤ xT ỹ(t).
P3) Proj(x, ŷ, y0) ∈ Cn.
It is worth pointing out that the choice of this smooth projection
algorithm is motivated by some technical reasons in the proof of
our theorem that will be provided later. In fact, we will require the
parameters estimates to be at least six times differentiable, and hence
the integer n involved in the projection mechanism has to satisfy
n ≥ 6.

D. Convergence analysis

Let us define the estimation error R̄ = RR̂T and the tracking error
R̃ = RRTd of the attitude that correspond to the unit quaternion errors
Q̄ = Q� Q̂−1 ≡ (q̄0, q̄) and Q̃ = Q�Q−1

d ≡ (q̃0, q̃) respectively.
The estimation error dynamics are given by

˙̄Q =

[
˙̄q0
˙̄q

]
=

[
− 1

2
q̄T R̂(ω − ω̂)

1
2
(q̄0I + S(q̄))R̂(ω − ω̂)

]
, (12)

with ω − ω̂ = zρ + θ̃1.
The tracking error dynamics are given by

˙̃Q =

[
˙̃q0
˙̃q

]
=

[
− 1

2
q̃TRd(ω − ωd)

1
2
(q̃0I + S(q̃))Rd(ω − ωd)

]
, (13)

where ω − ωd = ω̄ + θ̃1, with θ̃1 = θ1 − θ̂1.
Before stating our main results, we recall the following useful

lemma given in [16] that will be used throughout the paper.

Lemma 2. Assume that there are n vectors bi, i = 1, . . . , n measured
in the body attached frame, corresponding to n known inertial vectors
ri, i = 1, . . . , n. Assume that the constant parameters γi and ρi are
strictly positive and at least two vectors among the ri vectors are
non-collinear. Then, the following properties hold

1) The vectors zγ and zρ satisfy

zγ ≡
n∑
i=1

γiS(bdi )bi = −2RTd (q̃0I − S(q̃))Wγ q̃, (14)

zρ ≡
n∑
i=1

ρiS(b̂i)bi = −2R̂T (q̄0I − S(q̄))Wρq̄, (15)

where the matrices Wγ = −
∑n
i=1 γiS(ri)

2 and Wρ =
−
∑n
i=1 ρiS(ri)

2 are real symmetric and positive definite. If
the gains γi, ρi, i = 1, . . . , n, are such that Wγ and Wρ have
two by two distinct eigenvalues, the following holds true.

2) zγ = 0 is equivalent to (q̃0 = 0, q̃ = vγ) or (q̃0 = ±1, q̃ = 0),
where vγ is a unit eigenvector of Wγ .

3) zρ = 0 is equivalent to (q̄0 = 0, q̄ = vρ) or (q̄0 = ±1, q̄ = 0),
where vρ is a unit eigenvector of Wρ.

The closed loop attitude error dynamics are given by

˙̃Q =

[
˙̃q0
˙̃q

]
=

[
− 1

2
q̃TRd(ω̄ + θ̃1)

1
2
(q̃0I + S(q̃))Rd(ω̄ + θ̃1)

]
, (16)

˙̄Q =

[
˙̄q0
˙̄q

]
=

[
q̄0q̄

TWρq̄ − 1
2
q̄T R̂θ̃1

−(I − q̄q̄T )Wρq̄ + 1
2
(q̄0I + S(q̄))R̂θ̃1

]
,

(17)
Ib ˙̄ω = −αω̄ + zγ −G(ωm, ω̇d − ˙̂

θ1)Θ̃, (18)

˙̃
θ1 = −Γ1Proj(−(zγ + zρ), θ̂1, θm), (19)

˙̃Θ = −Γ2Proj(−G(ωm, ω̇d − ˙̂
θ1)T ω̄, Θ̂,Θm) . (20)

where θ̃1 = θ1 − θ̂1 and Θ̃ = Θ− Θ̂.
Note that these dynamics are non-autonomous. Define X =

(Q̃, Q̄, ω̄, θ̃1, Θ̃) in the state space X := S3 × S3 ×R3 ×R3 ×R18.
Note that X has dimension 30. The above dynamics can be written
as

Ẋ = f(X,Rd(t), ωd(t), ω̇d(t)), (21)

where f is a time-varying vector field defined on X . Now, one can
state our main result in the following theorem:

Theorem 1. Consider the rigid body dynamics (3) with the adaptive
control scheme (8)-(10), resulting in the closed loop attitude error
dynamics given by (16)-(20). Then under Assumptions A1-A5 and
the gains γi, ρi, i = 1, . . . , n, are chosen such that Wγ and Wρ

have two by two distinct eigenvalues, all the signals of the closed
loop-system are bounded and

i) limt→∞(θ̃1(t), ω(t)− ωd(t)) = (0, 0), limt→∞(q̃0(t), q̃(t)) =
((±1, 0) or (0, vγ)) and limt→∞(q̄0(t), q̄(t)) =
((±1, 0) or (0, vρ)) where vγ and vρ are, respectively,
the unit eigenvectors of Wγ and Wρ.

ii) The undesired equilibria characterized by q̄0 = 0 and/or q̃0 = 0
are unstable.

iii) If, in addition Assumption A6 is satisfied, then limt→∞ Θ̃(t) =
0.

iv) Moreover, if the gain matrices Wγ and Wρ satisfy the following
condition

4λmin(M)−TrM −αTrI−1
b > 0, for M ∈ {Wγ ,Wρ}, (22)
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then, for almost any initial condition X0 ∈ X , the corre-
sponding trajectory of (21) converges to a point of Ω̃1 =
{((±1, 0), (±1, 0), 0, 0, 0)}.

Proof. Let us consider the following Lyapunov function candidate

V = 2q̃TWγ q̃ + 2q̄TWρq̄ + 1
2
ω̄T Ibω̄

+ 1
2
θ̃T1 Γ−1

1 θ̃1 + 1
2
Θ̃TΓ−1

2 Θ̃
. (23)

The time derivative of (23), in view of (16), (17), (18) and Property
P2) of the projection operator, is given by

V̇ ≤ −αω̄T ω̄ − zTρ zρ. (24)

According to (24), V is non-increasing along trajectories of the
dynamical system, implying that ω̄, q̄, q̃, θ̃1 and Θ̃ are bounded
and V converges to a non negative limit. One checks easily that V̈
is bounded for every trajectory of the system, implying that V̇ is
uniformly continuous, hence that V̇ → 0. On the other hand, the
time derivative of zρ and zγ are given by

żρ = −S(ω − θ̃1)zρ +

(
n∑
i=1

ρiS(b̂i)S(bi)

)
(zρ + θ̃1),

żγ = −S(ωd)zγ +

(
n∑
i=1

ρiS(bdi )S(bi)

)
(ω − ωd),

which are clearly bounded. Since, for any given trajectory of the
closed loop system, V̈ is bounded, one deduces that ω̄ → 0 and
zρ → 0 as time tends to infinity. Using Lemma 2, one sees that
(q̄0I − S(q̄))Wρq̄ → 0 as time tends to infinity, which implies that
either (q̄0, q̄) → (±1, 0) or (q̄0, q̄) → (0, vρ) where vρ is a unit
eigenvector of Wρ. Since ¨̄q0 and ¨̄q are bounded, and in view of
the previous results, it is clear that ˙̄q0 → 0 and ˙̄q → 0. Hence, in
view of (17) one can conclude that θ̃1 → 0 then t tends to infinity.
Using (19), and the fact that zρ → 0 and żγ is bounded, it can be
concluded that ˙̃

θ1 → 0 and therefore zγ → 0. Using Lemma 2,
one concludes that either (q̃0, q̃) → (±1, 0) or (q̃0, q̃) → (0, vγ) as
t tends to infinity, where vγ is a unit eigenvector of Wγ . We just
proved item (i) of the Theorem.

Now, let us prove item (ii). From earlier proven facts, it is clear
that limt→∞ Θ̃(t) = Θl with ||Θl|| ≤ 2Θm + ε. The undesired
equilibria characterized by q̄0 = 0 and/or q̃0 = 0 are given by X1 =
(vγ , vρ, 0, 0,Θl), X2 = (vγ , 0, 0, 0,Θl) and X3 = (0, vρ, 0, 0,Θl).
Let us show that X1 = (q̃ = vγ , q̄ = vρ), ω̄ = 0, θ̃1 = 0, Θ̃ = Θl) is
unstable. The proof of instability of X2 and X3 follow similar steps
and hence omitted here.
The proof consists in showing that there exists X∗1 =
((q̃∗0 , q̃

∗), (q̄∗0 , q̄
∗), ω̄∗, θ̃∗1 , Θ̃

∗) ∈ X arbitrarily close to X1 such that
V (q̃∗, q̄∗, ω̄∗, θ̃∗1 , Θ̃

∗) < V (vγ , vρ, 0, 0,Θl). This, with the fact that
V is non-increasing on X proves the instability of X1.
Let us apply small rotations on the unit-quaternion (0, vγ) and
(0, vρ); that is(

q̃∗0
q̃∗

)
=

(
0
vγ

)
�
(
η̃0

η̃

)
=

(
−η̃T vγ

η̃0vγ + S(vγ)η̃

)
. (25)(

q̄∗0
q̄∗

)
=

(
0
vρ

)
�
(
η̄0

η̄

)
=

(
−η̄T vρ

η̄0vρ + S(vρ)η̄

)
. (26)

Letting ∆V = V (q̃∗, q̄∗, ω̄∗, θ̃∗1 , Θ̃
∗) − V (vγ , vρ, 0, 0,Θl), one

gets

∆V = + 1
2
ω̄∗T Ibω̄

∗ + 1
2
θ̃∗T1 Γ−1

1 θ̃∗1 + 1
2
Θ̃∗TΓ−1

2 Θ̃∗

− 1
2
Θ̃T
l Γ−1

2 Θ̃l + 2(η̃2
0 − 1)λγ + 2(S(η̃)vγ)TWγ(S(η̃)vγ)

+ 2(η̄2
0 − 1)λρ + 2(S(η̄)vρ)

TWρ(S(η̄)vρ).
(27)

where we used the fact that Wγvγ = λγvγ and Wρvρ = λρvρ since
vγ and vρ are the unit eigenvectors associated, respectively, to λγ
and λρ.

Let us pick η̃ = ε̃vγ and η̄ = ε̄vρ, with |ε̃| and |ε̄| arbitrarily small.
The unit-quaternion (η̃0, η̃) = (1− ε̃2, ε̃vγ), corresponds to a rotation
about vγ by an angle θε̃ = 2 arcsin ε̃. Similarly, The unit-quaternion
(η̄0, η̄) = (1 − ε̄2, ε̄vρ), corresponds to a rotation about vρ by an
angle θε̄ = 2 arcsin ε̄.

With this choice, (27) leads to

∆V = + 1
2
ω̄∗T Ibω̄

∗ + 1
2
θ̃∗T1 Γ−1

1 θ̃∗1 + 1
2
Θ̃∗TΓ−1

2 Θ̃∗

− 1
2
Θ̃T
l Γ−1

2 Θ̃l + 2(η̃2
0 − 1)λγ + 2(η̄2

0 − 1)λρ.
(28)

It follows that ∆V < 0 as long as

ε̃2 = 1− η̃2
0 >

1
4λγ

(ω̄∗T Ibω̄
∗ + θ̃∗T1 Γ−1

1 θ̃∗1 + Θ̃∗TΓ−1
2 Θ̃∗ − Θ̃T

l Γ−1
2 Θ̃l),

(29)

or

ε̄2 = 1− η̄2
0 >

1
4λρ

(ω̄∗T Ibω̄
∗ + θ̃∗T1 Γ−1

1 θ̃∗1 + Θ̃∗TΓ−1
2 Θ̃∗ − Θ̃T

l Γ−1
2 Θ̃l),

(30)

Consequently, there exist ω̄∗, θ̃∗1 , ε̃ and ε̄ arbitrarily small in
magnitude, and Θ̃∗ arbitrarily close to Θl, such that X∗1 is arbitrarily
close to X1 and ∆V < 0. Since the Lyapunov function V is shown
to be non-increasing, it is clear that X1 is unstable.
Now, under the additional assumption A6, we prove item (iii). Notice
that Θ̃TΓ−1

2 Θ̃ admits a limit as t tends to infinity and therefore, to
prove the lemma it is enough to prove that lim inft→∞ ‖Θ̃(t)‖ = 0.
Notice also that the projection algorithm is smooth and all the
parametric estimation errors are bounded as well as their first to
sixth time derivatives. Since ω̄ → 0 and ¨̄ω is bounded, it is clear
that ˙̄ω → 0, which in view of (18) and the fact that zγ → 0 implies
that G(ωm, ω̇d − ˙̂

θ1)Θ̃ tends to zero at t goes to infinity. Defining

Gd := G(ωd − θ1, ω̇d) = [ I3 Hδ(ωd, ω̇d) ], (31)

one can easily show that

G(ωm, ω̇d − ˙̂
θ1)−Gd → 0,

as t tends to infinity, since (ω−ωd)→ 0 and ˙̂
θ1 → 0. Consequently,

GdΘ̃ → 0 as t goes to infinity. Since d2

dt2
(GdΘ̃) is bounded, one

deduces that d
dt

(GdΘ̃) is uniformly continuous, and hence tends to
zero as t tends to infinity. Using Property P3), and the boundedness
of all signals involved in the closed-loop system, one can easily show
that ˙̃Θ tends to zero. The latter fact combined with the convergence
to zero of d

dt
(GdΘ̃) yield that dGd

dt
Θ̃ tends to zero as t tends to

infinity. One can also show that GdΘ̃ is sufficiently differentiable,
thanks to property P3) of the projection algorithm. Therefore, by an
easy induction argument, it can be concluded that, for 0 ≤ k ≤ 5,

lim
t→∞

d(k)Gd
dtk

Θ̃ = 0.

Setting Ψ(t) := (θ̃T3 , θ̃
T
4 )T , one has

GdΘ̃ = θ̃2 +Hδ(ωd, ω̇d)Ψ(t). (32)

Differentiating (32) and using the fact that ˙̃
θ2 → 0 and Ψ̇ → 0,

one concludes that d
dt
Hδ(ωd, ω̇d)Ψ→ 0 as t goes to infinity. Using

similar arguments, one can show that dk

dtk
Hδ(ωd, ω̇d)Ψ→ 0 as t goes

to infinity, for 1 ≤ k ≤ 5. Consequently, limt→∞ Jδ(ωd, ω̇d)Ψ(t) =
0, where Jδ(ωd, ω̇d) has been defined in Assumption A6. Accord-
ing to Lemma 1, it follows that limt→∞Ψ(t) = 0, and con-
sequently, in view of (32), limt→∞ θ̃2(t) = 0. This proves that
lim inft→∞ ‖Θ̃(t)‖ = 0.

Right now, We have proved that
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• The trajectories of (21) converge to the following subsets of
S3 × S3 × R3 × R3 × R18 given by

Ω̃1 = {((±1, 0), (±1, 0), 0, 0, 0)} ,
Ω̃2 = {((±1, 0), (0, vjρ), 0, 0, 0), j = 1, 2, 3} ,
Ω̃3 = {((0, viγ), (±1, 0), 0, 0, 0), i = 1, 2, 3} ,
Ω̃4 = {((0, viγ), (0, vjρ), 0, 0, 0), i = 1, 2, 3; j = 1, 2, 3} ,

with viγ and vjρ are unit eigenvectors of Wγ and Wρ respec-
tively for 1 ≤ i ≤ j ≤ 3.

• The equilibria of the subsets Ω̃2, Ω̃3 and Ω̃4 are unstable.
Now, we will show that from almost all initial conditions, the closed
loop trajectories will converge to Ω̃1 if condition (22) is satisfied,
which proves the last statement of the theorem.

Let Xeq be an element in some Ω̃i and write a trajectory as

x(·) = Xeq + Z(·)

where
Z = (Zq̃0 , Zq̃, Zq̄0 , Zq̄, Zω̄, Zθ̃1 , ZΘ̃)T .

First note that ω̄ = Zω̄ and we set zγ = Zγ and zρ = Zρ with

Zγ = −2RTd [λγZq̃0vγ − S(vγ)WγZq̃ + Zq̃0WγZq̃ − S(Zq̃)WγZq̃] ,

if Q̃ = (0, vγ), and

Zγ = −2RTd [WγZq̃ + (Zq̃0I3 − S(Zq̃))WγZq̃] ,

if Q̃ = (1, 0) and

Zρ =
−2R̂T [λρ(Zq̄0I3 − S(Zq̄))vρ − S(vρ)WρZq̄
+(Zq̄0I3 − S(Zq̄))WρZq̄ ],

if Q̄ = (0, vρ), and

Zρ = −2R̂T (WρZq̄ + (Zq̄0I3 − S(Zq̄))WρZq̄) ,

if Q̄ = (1, 0).

If Q̃eq = (0, vγ), the corresponding quaternion constraint yields

Z2
q̃0+ ‖ vγ + Zq̃ ‖2= 1, (33)

and then (
Z2
q̃0+ ‖ Zq̃ ‖2

)
+ 2vTγ Zq̃ = 0. (34)

Similarly, if Q̄eq = (0, vρ), one deduces from the corresponding
quaternion constraint that(

Z2
q̄0+ ‖ Zq̄ ‖2

)
+ 2vTρ Zq̄ = 0. (35)

If Q̃eq = (1, 0), the corresponding quaternion constraint yields(
Z2
q̃0+ ‖ Zq̃ ‖2

)
+ 2Zq̃0 = 0, (36)

and similarly, if Q̄eq = (1, 0), one deduces from the corresponding
quaternion constraint that(

Z2
q̄0+ ‖ Zq̄ ‖2

)
+ 2Zq̄0 = 0. (37)

We will actually prove that the points of the state space converging
to the undesired equilibrium points in Ω̃2, Ω̃3 and Ω̃4, form a set of
measure zero.

Consider, for instance, a point in Ω̃2, let say Xeq =
((1, 0), (0, vρ), 0, 0, 0) where vρ is a unit-length eigenvector of Wρ.
If x ∈ R3, we use x⊥ to denote the vector in the two-dimensional
plane v⊥ρ given by x⊥ = x−(vTρ x)vρ and W⊥ρ the restriction of Wρ

to v⊥ρ . Recall first that the dimension of the state space X is equal
to 30 and, by using the equations (35) and (36), one deduces that

Zq̃0 = −
‖ Zq̃ ‖2

1 +
√

1− ‖ Zq̃ ‖2
, vTρ Zq̄ = −

Z2
q̄0

+ ‖ Z⊥q̄ ‖2

1 +
√

1− (Z2
q̄0

+ ‖ Z⊥q̄ ‖2)
.

The reduced variable Zred is given by

Zred = (Zq̃ , Zq̄0 , Z
⊥
q̄ , Zω̄ , Zθ̃1

, ZΘ̃)T ,

belongs to a smooth manifoldMeq of dimension 30. Fix a neighborhood
N of the origin for the reduced variable so that the projection operators
are equal to the corresponding identity operators in N . Then, as long as
the corresponding trajectory lies in N it obeys to the following dynamics

Żred = A(t)Zred + F (t, Zred), (38)

where A(t) and F (t, Zred) are given in the appendix.
We decomposed the error dynamics in (38) into a linear part and a

super linear one, i.e, there exists a positive constant C0 such that F
verifies an estimate of the type

‖ F (t, Zred) ‖≤ C0 ‖ Zred ‖2, |divF (t, Zred)| ≤ C0 ‖ Zred ‖,
(39)

for every (t, Zred) ∈ R+×Meq . Note also that the time-varying matrix
A(·) does not depend on Zred and its trace is constant and equal to

TrA(t) ≡ 4λρ − TrWρ − αTrI−1
b := ξ. (40)

Since the matrix Wρ satisfies (22), the right-hand side ξ of (40) is strictly
positive. Assume now that the conclusion of the theorem does not hold
true and more particularly, that there exist a measurable subset set J of
X with positive measure such that all trajectories of (21) starting in J

converge to Xeq . Let J(t), the image of J at time t by the flow ψ(t, 0)

of the reduced dynamics. Since J(t) converges to {Xeq} as t tends to
infinity, one can assume, with no loss of generality, that J is chosen
close enough to Xeq so that J(t) lies in the neighborhood N for every
t ≥ 0 and therefore ψ(t, 0) is the flow associated with the time-varying
equation (38). Moreover, if m(J(t)) denotes the measure of J(t), then
m(J(t)) must tend to zero as t tends to infinity.

On the other hand, one has for t ≥ 0,

m(J(t)) =

∫
J(t)

dZt =

∫
J

|det(t, Z)|dZ,

where det(t, Z) denotes the determinant of Dψ(t, 0, Z), the differential
of ψ(t, 0, Z) with respect to the initial condition Z ∈ J . Recall that, for
every t ≥ 0, one has

∂d(t, Z)

∂t
= (TrA(t) + divF (t, ψ(t, 0, Z))) d(t, Z), d(0, Z) = 1.

By taking into account (39) and (40), one deduces that det(t, Z) ≥ eξt/2
for t large enough, hence m(J(t)) ≥ eξt/2m(J) which tends to infinity
as t tends to infinity. We reached a contradiction.

For the other equilibrium points of Ω̃2, Ω̃3 and Ω̃4, one proceeds
similarly to show that there does not exist a measurable subset J of
X with positive measure and such that trajectories of (21) starting in
J would converge to that equilibrium point. Therefore, for almost any
initial condition X0 ∈ X , the corresponding trajectory of (21) converges
to a point of Ω̃1.

The following proposition provides a useful result that will help
in the design of the parameters γi and ρi satisfying (22).

Proposition 1. Let r1 and r2 be two non-collinear 3-dimensional
vectors. Let r3 = r1 × r2 and θ ∈ (0, π) the angle between r1

and r2. Set Ri = ||ri|| > 0 for i = 1, 2 and R3 = R1R2 sin(θ).
If Wγ = −

∑3
i=1 γiS(ri)

2 defined in Lemma 2, then the following
hold true:

a) The eigenvalues of Wγ are equal to λ1 = R2
1γ1 +R2

2γ2, λ2 =
R2

3γ3 + λ1
2

(1 +
√

1−D) and λ3 = R2
3γ3 + λ1

2
(1−

√
1−D),

with D =
4R2

1R
2
2γ1γ2 sin2(θ)

λ2
1

.

b) Set η =
R2

2γ2
R2

1γ1
. Note that D = 4η sin2(θ)

(1+η)2
. Then, Condition (22)

is satisfied, if the parameters γi and α are chosen such that

η 6= 1, 4R2
3γ3 = λ1(1 + 3

√
1−D), λ1 >

2αTrI−1
b

1−
√

1−D
.

(41)
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Proof. First of all, notice that ||r3|| = R3 > 0 and 0 < D < 1 since
r1 and r2 are non-collinear and η 6= 1. Set e1 = [1 0 0]T , e2 =
[cos(θ) sin(θ) 0]T , e3 = [0 0 1]T and E = [e1 e2 e3] and Rr =
[ r1
R1

r2
R2

r3
R3

]. Then the matrix U = ER−1
r is clearly orthogonal.

Finally, set µi = R2
i γi for i = 1, 2, 3 and W = −

∑3
i=1 µiS(ei)

2.
It is immediate to see that W = UWγU

T , implying that W and Wγ

have the same eigenvalues. Moreover, a direct computation shows
that

W = (
∑3
i=1 µi)I −

∑3
i=1 µieie

T
i = µ3 + µ2 sin2(θ) −µ2 cos(θ) sin(θ) 0

−µ2 cos(θ) sin(θ) µ1 + µ3 + µ2 cos2(θ) 0
0 0 µ1 + µ2

 .
(42)

Straightforward calculations lead to the result of item (a). We next
define γ2 and γ3 according to the definition of η and the second part
of Eq.(41). This choice implies that λ3 < λ2 < λ1. Finally, the third
part of Eq.(41) imposes a choice on γ1 and yields that Condition (22)
is satisfied.

IV. SIMULATION RESULTS

In this section, we present simulation results showing the effective-
ness of the proposed adaptive attitude trajectory tracking controller.
We have considered for the simulations the inertia matrix Ib =
diag (0.0797, 0.0797, 0.1490), the gyro bias δ = [0.2, 0.1,−0.1]T

and the inertial vectors r1 = [0, 0, 1]T and r2 = [1, 1, 1]T /
√

3. The
simulation sampling time is 0.01sec. The control parameters have
been chosen as γ1 = γ2 = 2, ρ1 = ρ2 = 10 and α = 2. The
adaptation gains are Γ1 = 1 and Γ2 = 1. The parameters of the
projections are given by n = 6, ε = 0.1, µ = 0.1, θm = 0.3
and Θm = 0.3. The desired angular velocity vector ωd has been
chosen to satisfy the persistency excitation condition mentioned in
assumption A6. We performed two simulation tests Test1 and Test2
to show the performance of the proposed control scheme and confirm
the avoidance of the unwinding phenomenon. In the first simulation
test, we considered the following initial conditions: ω(0) = [0, 0, 0]T ,
Qd(0) = [0.8, 0, 0.6, 0]T , Q̂(0) = [−0.8, 0, 0.6, 0]T and Q(0) =
[1, 0, 0, 0]T . In the second simulation test, we considered the same
initial conditions except for Q, where we started the scalar part of
the unit quaternion from a negative value, i.e., Q(0) = [−1, 0, 0, 0]T .
Figure 1 shows the evolution of the four components of the unit-
quaternion tracking errors with respect to time for Test1 and Test2,
respectively. Figure 2 shows the evolution of the unit-quaternion
estimation error with respect to time for Test1 and Test2 respectively.
We can clearly see that the unwinding phenomenon is avoided since
both equilibria given by Ω̃1 are asymptotically stable. Figures 3
and 4 show the norm of the input signals and the angular velocity
tracking error respectively. Fig. 5 shows that the parameter error θ̃1

converges to zero relatively fast, while the rest of the parameter errors
Θ̃ converge to zero relatively slow. This is due to the fact that only
Θ̃ depends on the richness of the reference signal.

V. CONCLUSION

A new adaptive attitude tracking control scheme, relying on inertial
vector measurements, has been proposed for rigid body systems with
unknown inertia and unknown angular velocity bias. Global bound-
edness of the system state variables and almost global asymptotic
convergence of the body attitude and angular velocity to their desired
values are proven. The convergence of the adaptive parameters to
their true values is guaranteed under some kind of persistency of
excitation condition on the reference trajectories. Compared to [12],
the proposed control scheme involves fewer parameter adaptations
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Fig. 1: Unit-quaternion tracking error Q̃ for Test1 and Test2
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lower order dynamics and avoids the unwinding phenomenon. The
performance of the proposed controller is illustrated through some
simulation results.
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APPENDIX

The expressions of A(t) and F (t, Zred) are given by

A(t) =



0 0 0 1
2
Rd

1
2
Rd 0

0 λρ 0 0 − 1
2
vTρ R̂ 0

0 0 λρI2 −W⊥ρ 0 1
2
S(vρ)R̂ 0

−2I−1
b RTdWγ 0 0 −αI−1

b 0 −I−1
b Gd

−2Γ1R
T
dWγ −2λρΓ1R̂

T vρ 2Γ1R̂
TS(vρ)(λρI2 −W⊥ρ ) 0 0 0

0 0 0 Γ2G
T
d 0 0

 , (43)

F (t, Zred) =



1
2
[(Zq̃0Id3 + S(Zq̃))Rd(Zω̄ + Zθ̃)]

Zq̄0(2λρv
T
ρ Zq̄ + ZTq̄ WρZq̄)− 1

2
ZTq̄ R̂Zθ̃

λρv
T
ρ Zq̄Z

⊥
q̄ + 1

2
[(Zq̄0Id3 + S(Zq̄))R̂Zθ̃)]

⊥

−2I−1
b RTd (Zq̃0Id3 − S(Zq̃))WγZq̃ − I−1

b G(Zω̄ + Zθ̃,Γ1(Zγ + Zρ))ZΘ̃

−2Γ1R
T
d [Zq̃0Id3 − S(Zq̃))WγZq̃]− 2Γ1R̂

T [(Zq̄0I3 − S(Zq̄))WρZq̄]
Γ2G

T (Zω̄ + Zθ̃,Γ1(Zγ + Zρ))Zω̄

 . (44)
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