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Riemannian fast-marching on cartesian grids

using Voronoi’s first reduction of quadratic forms

Jean-Marie Mirebeau∗

October 3, 2018

Abstract

We address the numerical computation of distance maps with respect to Riemannian met-
rics of strong anisotropy. For that purpose we solve generalized eikonal equations, discretized
using adaptive upwind finite differences on a Cartesian grid, in a single pass over the domain
using a variant of the fast marching algorithm. The key ingredient of our PDE numerical
scheme is Voronoi’s first reduction, a tool from discrete geometry which characterizes the
interaction of a quadratic form with an additive lattice. This technique, never used in this
context, which is simple and cheap to implement, allows us to efficiently handle Riemannian
metrics of eigenvalue ratio 102 and more.

Two variants of the introduced scheme are also presented, adapted to sub-Riemannian
and to Rander metrics, which can be regarded as degenerate Riemannian metrics and as
Riemannian metrics perturbed with a drift term respectively. We establish the convergence
of the proposed scheme and of its variants, with convergence rates. Numerical experiments
illustrate the effectiveness of our approach in various contexts, in dimension up to five,
including an original sub-Riemannian model related to the penalization of path torsion.

Keywords: Riemannian metric, Sub-Riemannian metric, Rander metric, Eikonal equation,
Viscosity solution, Fast Marching Method, Voronoi Reduction.

1 Introduction

In this paper, we develop a new and efficient numerical method for the computation of distance
maps with respect to anisotropic Riemannian metrics, sub-Riemannian metrics and Rander
metrics. For that purpose we discretize generalized eikonal equations, also called static first
order Hamilton Jacobi Bellman (HJB) Partial Differential Equations (PDEs), on a cartesian
grid. The novelty of approach lies on a special representation of the Hamiltonian, via upwind
finite finite differences on an adaptive stencil, which is designed using Voronoi’s first reduction
of quadratic forms [52] - a tool from discrete geometry mostly known for its applications in
the study sphere packings and in number theory. For this reason, the method is referred to as
Fast-Marching using Voronoi’s First Reduction (FM-VR1).

Before entering the details of the addressed PDEs and of their discretisations, let us mention
some of the potential applications. The standard eikonal equation reads ‖du‖ = f , with suitable
boundary conditions, where du denotes the differential of a function u defined on a domain of Rd.
This PDE characterizes distance maps with respect an isotropic metric, defined locally as f -times
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the euclidean metric, see [54] for a study and an overview of its numerous applications. Once the
distance map is computed, globally optimal minimal paths (geodesics) w.r.t. the metric can be
extracted by gradient descent, with numerous applications in e.g. image processing [44] or motion
planning. This paper is devoted to the numerical solution of generalized eikonal equations,
characterizing distance maps with respect to anisotropic metrics, of the three following types.

• A Riemannian metric on a domain of Rd is described by a field M of positive definite
tensors, and gives rise to the generalized eikonal equation ‖du‖M−1 = 1. Numerical meth-
ods for Riemannian distance computation have applications in geometry processing [49],
optics [28], statistics with the Fisher-Rao distance, ... In image processing and segmenta-
tion, anisotropic Riemannian metrics are often used to favor paths aligned with tubular
structures of interest [29, 7, 15].

• A sub-Riemannian metric can be regarded as a degenerate Riemannian metric, which
tensors have some infinite eigenvalues [38]. As a result, motion is only possible along a
subspace of the tangent space, depending on the current position. This property is referred
to as non-holonomy, and models for instance a robotic system with fewer controls than
degrees of freedom. A fundamental instance is the Reeds-Shepp car model, posed on the
configuration space R2×S1, which can move forward and backward, rotate, but not trans-
late sideways, see [51, 23] for a numerical study with applications to image segmentation
and motion planning. A variant, presented in this paper §3.2, is related to the penalization
of path torsion.

• A Rander metric is defined locally as the sum of a Riemannian metric M and of a suffi-
ciently small co-vector field η̂, see [46] and §1.3. These metrics are non-symmetric, thus
define asymmetric distances, and give rise to the inhomogeneous generalization of eikonal
equation ‖du − η̂‖M−1 = 1. The travel-time of a boat subject to a drift due to water
currents can be measured by integrating a Rander metric, see §3, and its optimization is
called Zermelo’s problem [2, 12]. In image segmentation, the Chan-Vese energy of a region
can be reformulated as the length of its contour measured w.r.t a Rander metric, see [14].

Our numerical approach has its limitations: it cannot address more general anisotropic metrics,
such as those arising in seismic imaging [48], and it cannot handle domains discretized using
triangulations or unstructured point sets as in [30]. Indeed, the algorithmic tools that we leverage
[52] limit the scope of our method to eikonal equations whose hamiltonian has a quadratic
structure, and to domains discretized using a cartesian grid. As often, efficiency is at the cost of
specialization. In order to better describe the advantages and the specificities of our approach,
let us formally state the addressed problem and review the existing methods.

This paper is devoted to the construction and analysis of a numerical scheme for computing
the arrival times u : Ω→ R of a front starting from the boundary of a domain Ω, and propagating
at unit speed w.r.t. a given metric F : TΩ ∼= Ω× Rd → [0,∞] of one of the above three classes.
Several classes of methods can be distinguished in the literature for such purposes.

• Eulerian schemes, such as the one presented in this paper, rely on a characterization of
the arrival times as the unique viscosity solution [19] to the eikonal PDE, which reads

∀p ∈ Ω, Hp(du(p)) = 1/2, ∀p ∈ ∂Ω, u(p) = 0, (1)

where H denotes the Hamiltonian associated with the metric, i.e. the Legendre-Fenchel
transform of the Lagrangian 1

2F
2. Finite differences are typically used for discretization[63,

50, 5], although discontinuous Galerkin methods have recently been considered [32].
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• Semi-Lagrangian schemes, rely on a self-consistency property of the arrival times referred
to as Bellman’s optimality principle: for any point and neighborhood p ∈ V (p) ⊆ Ω, one
has

u(p) = min
q∈∂V (p)

(
u(q) + dF (q,p)

)
, (2)

where dF denotes the path-length distance associated with the metric F . In the semi-
Lagrangian paradigm, a discrete counterpart of (2) is implemented numerically, by con-
structing polygonal stencils V (p) with their vertices among the discretization points, in-
terpolating the unknown u on the facets of ∂V (p), and locally approximating the distance
by the metric dF (q,p) ≈ Fp(p− q). A natural choice for V (p) is the union of the trian-
gles containing the vertex p in a given mesh of the domain Ω [9]. Following the discovery
[30, 64] that a generalized acuteness property obeyed by the facets of V (p) enables solving
the discretized system in an efficient, single pass manner, see below, a number of more
complex designs have been proposed [10, 57, 29, 1]. Constructions based on algorithmic
geometry, introduced by the author in [34, 35, 36], allow satisfy the acuteness property for
strongly anisotropic metrics while limiting the size and the cardinality of the stencils.

• Heat related methods solve a diffusion equation on a short time interval [21], or an elliptic
equation with a small parameter [47], and exploit the relationship between the geodesic
distance and the short time asymptotics of the heat kernel [62]. This approach is limited
to Riemannian metrics, either isotropic or anisotropic [67]. Its efficiency is tied to the
numerical cost of solving sparse linear systems discretizing a laplacian, which is often
favorable over alternative methods, especially in dimension d = 2, thanks to the existence
of highly optimized linear algebra libraries. The method requires some parameter tuning,
since it involves two small scales (in time and space), and looses accuracy or degenerates
to a graph distance if their relative magnitude is incorrectly set [21].

• Path based techniques compute minimal geodesics directly, rather than front arrival times.
Ray-tracing techniques solve Hamilton’s Ordinary Differential Equations (ODE) of motion
from a point p of interest, adjusting the initial velocity direction until the desired target
is reached [13]. Path bending methods progressively deform a path joining two endpoints
of interest, so as to obey Hamilton’s ODEs [48]. Path based methods can be very accu-
rate, by using high order ODE integration schemes, and do not suffer from the curse of
dimensionality, since computational domain needs not be discretized. However, they lack
robustness, have difficulty handling obstacles, and one usually cannot guarantee that the
path found is globally the shortest one.

Among the first two classes of methods, Eulerian and semi-Lagrangian discretization schemes,
a further distinction must be made depending on the numerical solver of the resulting coupled,
non-linear system of equations resulting from the discretization of (1) or (2).

• Causal, single pass methods, such as the one proposed in this paper1, rely on the fast
marching method, a variant of Dijkstra’s algorithm. This approach is computationally
efficient, with complexity O(λN lnN) where N is the number of discretization points, and
λ the average number of neighbors of each discretization point in the numerical scheme.
However, it is only applicable if the discretization obeys a property referred to as causality,
see Definition 2.1. Among Eulerian schemes, this property holds for the natural discretiza-
tion of the isotropic eikonal equation [56], but could not be extended to anisotropic metrics

1Except for the numerical scheme devoted to Rander metrics
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until the FM-VR1 presented here. In the case of semi-Lagrangian schemes, causality is
related to a geometrical property of the stencil [30], see above.

Alternatively, Dijkstra’s method can also be used directly to compute shortest paths on a
network with sufficiently fine connectivity within the domain [39, 60], with edge-lengths
defined according to the metric. The resulting an approximation of the front arrival times
typically lacks accuracy, but adequate heuristics may improve it [11].

• Iterative methods apply Gauss-Siedel updates to the numerical solution, of the system of
equations discretizing the problem of interest, until it meets a convergence criterion. The
ordering of the discretization points in the Gauss-Siedel iterations may vary: fast sweeping
methods alternate sweeps along the 2d directions of the grid [68], whereas a priority queue
is considered in [9]. The reported complexity of these methods is O(N1+1/d), where N
is the discrete domain cardinality and d is the domain dimension. However the hidden
constant depends on the problem instance, and may increase substantially if the metric is
strongly anisotropic or if the minimal paths change direction often (due to obstacles or to
non-uniformities in the metric) [7, 34]. Yet another approach is to introduce a time variable
and solve ∂tu+Hu−1/2 = 0, with suitable boundary conditions, which asymptotic steady
state obeys the static equation (1), see [42, 32] and references therein.

Recapitulating, the FM-VR1 scheme introduced in this paper is the first numerical solver
of eikonal equations that is simultaneously (i) Eulerian, (ii) solvable in a single pass2, and
(iii) compatible with several classes of anisotropic metrics. For these reasons it is simple to
implement, fast to solve numerically independently of the problem instance, and has a wide
application scope and generalization potential, see e.g. [37] for a variant devoted to the global
optimization of path energies involving curvature.

Contributions. We describe numerical schemes devoted to the computation of Riemannian,
sub-Riemannian, and Rander distances, by solving the corresponding generalized eikonal equa-
tions. We prove convergence rates, based on the doubling of variables technique, see chapter
10 of [24] or [58], which applies rather directly in the Riemannian case but requires non-trivial
adaptations in the sub-Riemannian and Rander cases. Numerical experiments illustrate the
efficiency of our numerical schemes, in dimension 2 ≤ d ≤ 5, and their potential applications in
image segmentation and motion planning.

Outline. The rest of this introduction is devoted to general notations, to the description
of Voronoi’s first reduction which is a key ingredient of our discretization, and to elements
of optimal control. The impatient reader may however jump to §1.1, §1.2 and §1.3, where
the numerical schemes are described and the convergence results stated, in the Riemannian,
sub-Riemannian and Rander cases respectively. Convergence proofs are provided in §2, and in
Appendices A and B respectively. Numerical experiments are presented in §3.

General notations. The ambient space dimension is fixed and denoted by d. The Euclidean
space and the Cartesian grid are respectively denoted

E := Rd, L := Zd.

Let Ω ⊆ E be a domain, assumed throughout the paper to be bounded; additional geometrical
assumptions are required in some results. For any grid scale h > 0 we let

Ωh := Ω ∩ hL, ∂Ωh := (E \ Ω) ∩ hL. (3)

2Except the variant devoted to Rander metrics.
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Geometric points are denoted p ∈ Ω, vectors ṗ ∈ E, and co-vectors p̂ ∈ E∗. The symbol
γ is reserved for paths within Ω and has the special convention that γ̇(t) := d

dtγ(t) denotes
time derivation. We denote by ‖ṗ‖ the euclidean norm, by (ṗ · q̇) the scalar product, and by
〈p̂, q̇〉 the duality bracket, where ṗ, q̇ ∈ E are vectors and p̂ ∈ E∗ is a co-vector. Denote by
GL(E) ⊆ L(E,E) the group of invertible linear transformations, and by GL(L) ⊆ GL(E) the
subgroup of those which leave the cartesian grid L invariant - equivalently their matrix has
integer coefficients and determinant ±1. Denote by S(E) ⊆ L(E,E∗) the space of symmetric
linear maps, by S+(E) the subset of semi-definite ones, and by S++(E) the positive definite
ones. We adopt the notations

‖ṗ‖M :=
√
〈M ṗ, ṗ〉, p̂⊗ p̂ ∈ S+(E),

for the norm of ṗ ∈ E induced by M ∈ S++(E), and for the self outer product of p̂ ∈ E∗.
The dual vector space E∗ and the dual lattice3 L∗ can be naturally identified with their primal
counterparts: E∗ ∼= E and L∗ ∼= L using the Euclidean structure, but the distinction is kept for
clarity.

Voronoi’s first reduction of quadratic forms. This tool originates from the field of lattice
geometry, and is one of the key ingredients of our numerical scheme. It was introduced by
Voronoi [66] with the purpose of classifying the equivalence classes of positive quadratic forms,
i.e. elements of S++(E), under the action of the group GL(L), following a line of research dating
back to Lagrange [31]. The modern presentation of Voronoi’s theory [52] involves Ryskov’s
convex polyhedron P ⊆ S++(E), and for each D ∈ S++(E∗) a linear program L(D), defined as
follows:

P := {M ∈ S++(E); ∀ė ∈ L \ {0}, ‖ė‖M ≥ 1}, L(D) := inf
M∈P

Tr(MD). (4)

Introducing the duality bracket 〈〈M,D〉〉 := Tr(MD) between S(E) and S(E∗), and observing
that ‖ė‖2M = 〈〈M, ė⊗ ė〉〉, one can rephrase Voronoi’s optimization problem L(D) as follows

minimize 〈〈M,D〉〉 subject to 〈〈M, ė⊗ ė〉〉 ≥ 1 for all ė ∈ L \ {0}. (5)

The vertices (resp. edges) of a polyhedron are its 0-dimensional (resp. 1-dimensional) facets.

Theorem (Voronoi, see [52]). The linear problem L(D) is feasible, for any D ∈ S++(E∗), in
the sense that the set of minimizers is non-empty and compact. In addition, the convex polytope
P ⊆ S(E) has a finite number of equivalence classes of vertices under the action of GL(L).

The numerical method introduced in this paper, the FM-VR1, requires to solve one instance
of (5) for each point of the discretization grid, for reasons explained in the next paragraph.
Using a generic linear program solver for that purpose would be too slow to be practical, and we
must rely on ad-hoc techniques leveraging the invariances of the problem. Selling’s algorithm,
see [53, 18] and Appendix D, serves that purpose in dimension d ≤ 3, which is enough for our
numerical experiments. In dimension d > 3 one may solve (5) using a simplex-like method and
relying on the classification of the vertices of the convex polyhedron P, known in dimension
d ≤ 8 [17, 59], which classically are referred to as perfect quadratic forms and are studied for
their relation with the densest periodic sphere packings [52].

Rather than its value or minimizer, we use the Karush-Kuhn-Tucker relations associated
with the solution to the optimization problem (5) as the foundation our numerical scheme.

3Formally, L∗ = {p̂ ∈ E∗;∀ṗ ∈ L, 〈p̂, ṗ〉 ∈ Z}.

5



Figure 1: Ellipsoid {‖ṗ‖M ≤ 1}, and offsets appearing in the decomposition (6) of D := M−1,
for some M ∈ S++(Rd), in dimension d = 2 (left) or d = 3 (right).

These relations determine a decomposition of the input tensor D, see the next proposition,
involving directions with integer entries corresponding to the active constraints in (5). Figure
1 illustrates, in dimension two and three, the close relationship between the anisotropy of the
tensor D and the directions of its decomposition, which locally define the stencil points of our
adaptive discretization (17) of the eikonal PDE.

Proposition 1.1. The Kuhn-Tucker optimality conditions for the linear optimization problem
L(D), D ∈ S++(E∗), imply that there exists (ρi, ėi)

d′
i=1 ∈ (R+ × L)d

′
, where d′ := d(d + 1)/2,

such that
D =

∑
1≤i≤d′

ρi ėi ⊗ ėi. (6)

Furthermore there exists C = C(d) such that for any 1 ≤ i ≤ d′

‖ėi‖ ≤ C Cond(D)d−1, where Cond(D) :=
√
‖D‖‖D−1‖. (7)

Proof. The first point (6) follows from the feasibility of the linear program L(D), and its for-
mulation (5). The number d(d + 1)/2 of contributions in this decomposition is the number of
independent entries in a d× d symmetric matrix.

For proving the second point, the Euclidean space E is identified with its dual, which gives
meaning to the trace Tr(M) and determinant det(M) of any M ∈ S++(E). Denote by (Mk)

K
k=1 a

representative of each equivalence class of vertices of P under the action of of GL(L), see Theorem
1.1. Let D ∈ S++(E∗) be arbitrary, and let M be the minimizer of L(D). Then M = ATMkA
for some 1 ≤ k ≤ K and some A ∈ GL(L). Thus det(M) ≥ minKk=1 det(Mk) =: c∆ > 0. On
the other hand, Tr(M)‖D−1‖−1 ≤ Tr(MD) ≤ Tr(IdD) ≤ d‖D‖, by sub-optimality of Id ∈ P,
hence Tr(M) ≤ dCond(D)2. For any 1 ≤ i ≤ d′ one has ‖ėi‖M = 1, since the corresponding
constraint of the linear problem L(D) is active, hence as announced

‖ėi‖2 ≤ ‖M−1‖‖ėi‖2M = ‖M−1‖ ≤ ‖M‖
d−1

det(M)
≤ Tr(M)d−1

c∆
≤ (dCond(D)2)d−1

c∆
.

The formula (6) is reminiscent of the decomposition D =
∑d

i=1 λiv̇i ⊗ v̇i of a symmetric
tensor in terms of its normalized eigenvectors v̇i and of the associated eigenvalues λi, 1 ≤ i ≤ d.
However the number of terms d′ 6= d differs in (6), and most importantly the vectors ėi ∈ L
have integer coefficients and can thus be used as offsets in a finite difference scheme on a grid,
in contrast with the eigenvectors v̇i ∈ Sd−1 which do not belong to the grid unless D is a
diagonal matrix. In addition to Eikonal equations, which are the object of the present paper,
the tensor decomposition (6) is used in [25] to design numerical schemes for two and three
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dimensional anisotropic diffusion. An equivalent but two dimensional only concept is applied
in [6] to Monge-Ampere equations, and in [8] to HJB PDEs of stochastic control. See [36] for
estimates related to (7) in the average case upon random rotations of the tensor D, in dimension
two.

Elements of optimal control. We refer to [3] for an overview of optimal control theory
and its PDE formulations, and only introduce here the notations and definitions required for
our purposes. Let C(E) be the collection of compact and convex subsets of E containing the
origin, equipped with the Hausdorff distance. Denote Lip(X,Y ) the class of Lipschitz maps,
with arbitrary Lipschitz constant, from a metric space X to a metric space Y .

Definition 1.2. A family of controls is an element B of B := C0(Ω,C(E)), which continuously
associates to each point p ∈ Ω a control set B(p). A path γ ∈ Lip([0, T ],Ω), where T ≥ 0, is
said B-controllable iff for almost every t ∈ [0, T ]

γ̇(t) ∈ B(γ(t)), where γ̇(t) :=
d

dt
γ(t). (8)

The minimal control time from p ∈ Ω to q ∈ Ω, is defined as

TB(p,q) := inf{T ≥ 0; ∃γ ∈ Lip([0, T ],Ω), B-controllable, γ(0) = p, γ(T ) = q}. (9)

The control sets corresponding to Riemannian, sub-Riemannian and Rander geometry are
respectively ellipsoids, degenerate ellipsoids (with empty interior), and ellipsoids centered off the
origin, see the illustrating figure. One easily shows that a minimal path from p to q exists as soon
as TB(p,q) < ∞, using Arzela-Ascoli’s compactness theorem and the fact that Ω is bounded.
See the appendices of [16, 23] for details, as well as related results such as the convergence of the
control times and of the minimal paths associated with a converging family of controls under
suitable assumptions. The above concepts can be rephrased in the framework of a local metric
defined on the tangent space F : Ω × E → [0,∞]: given controls B ∈ B, define for all p ∈ Ω,
ṗ ∈ E, and any path γ ∈ Lip([0, 1],Ω)

Fp(ṗ) := inf{λ > 0; ṗ/λ ∈ B(p)}, LengthF (γ) :=

∫ 1

0
Fγ(t)(γ̇(t))dt.

Note that these quantities can be infinite if the control sets have empty interior, such as in
the sub-Riemannian case, and can be asymmetric (Fp(ṗ) 6= Fp(−ṗ)) if the control sets are
not centered on the origin, as in the Rander case, see the illustrating figure and §1.2, §1.3.
Conversely, the metric F uniquely determines the control sets B(p) = {ṗ ∈ E; Fp(ṗ) ≤ 1},
and by time reparametrization the control time TB(p,q) from p to q ∈ Ω is shown equal to the
(quasi-)distance

dF (p,q) := inf{LengthF (γ); γ ∈ Lip([0, 1],Ω), γ(0) = p, γ(1) = q}. (10)

This paper is concerned with the exit time optimal control problem, which value function is
defined for all p ∈ Ω by

u(q) := inf
p∈∂Ω

TB(p,q)

(
= inf

p∈∂Ω
dF (p,q)

)
. (11)
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Figure: Examples of control sets for a (i) Riemannian, (ii) sub-Riemannian, and (iii) Rander
metric. (iv) An admissible path, with tangents shown in red, w.r.t to some controls. (Illustration
absent from journal version.)

The numerical computation of the function u is the main topic of this paper. Under suitable
assumptions [3], the function u is the unique viscosity solution to the following HJB PDE
involving the dual metric F∗ : Ω× E∗ → R+: for all p ∈ Ω

F∗p(du(p)) = 1, where F∗p(p̂) := sup
ṗ6=0

〈p̂, ṗ〉
Fp(ṗ)

, (12)

and u(p) = 0 for all p ∈ ∂Ω. The formulations (12, left) and (1, left) of the eikonal PDE are
equivalent, in view of the relation H = 1

2(F∗)2 between the Hamiltonian and the dual metric.
Once u is known, the shortest path from ∂Ω to p ∈ Ω can be extracted by solving backwards in
time the Ordinary Differential Equation (ODE)

γ̇(t) := V (γ(t)), where V (p) := dF∗p(du(p)), (13)

with final condition γ(T ) = p where T = u(p), see e.g. appendix C in [23]. In (13, right) the
dual metric F∗p(p̂) is differentiated w.r.t. the variable p̂. Note that dF∗p(p̂) ∈ (E∗)∗ ∼= E. For
robust numerical geodesic backtracking it is essential to use an upwind estimation of the vector
field V (p), see Appendix E.

1.1 Riemannian metrics

A Riemannian metric on the bounded domain Ω ⊆ E, is described via a field of symmetric
positive definite tensors M ∈ C0(Ω,S++(E)). The metric function F : Ω × E → R+ has the
expression

Fp(ṗ) := ‖ṗ‖M(p). (14)

Our objective is to compute the Riemannian distance u : Ω→ R to the boundary of Ω, see (11),
which is known to be the unique viscosity solution [20] to the Riemannian eikonal equation: for
all p ∈ Ω

‖du(p)‖D(p) = 1 where D(p) :=M(p)−1,

and u(p) = 0 for all p ∈ ∂Ω. Indeed, the dual to the Riemannian metric (14) reads F∗p(p̂) =

‖p̂‖D(p). For each p ∈ Ω, let (ρi(p), ėi(p))d
′
i=1 ∈ (R+ × L)d

′
be weights and offsets such that

D(p) =
∑

1≤i≤d′
ρi(p) ėi(p)⊗ ėi(p). (15)

8



In this paper, we advocate the use of Voronoi’s first reduction of quadratic forms for obtaining
the decomposition (15), see Proposition 1.2. Our convergence results however only require to
control the maximal stencil radius

r∗ := max{‖ ėi(p)‖; p ∈ Ω, 1 ≤ i ≤ d′}. (16)

If Proposition 1.2 is used for the stencil construction, then r∗ is by (7) bounded in terms of the
maximal condition number of the metric, and the number of terms in (15) is d′ = d(d + 1)/2.
For the sake of readability, we omit in the rest of the paper to write the dependence of the offset
ėi = ėi(p) on the point p ∈ Ω. In the following, by max{0, a, b}2 we mean (max{0, a, b})2.

Theorem 1.3. Let M∈ C0(Ω,S++(E)) be a Riemannian metric, and for all p ∈ Ω let D(p) :=
M(p)−1 and (ρi(p), ėi(p))d

′
i=1 be as in (15). Then for any h > 0 there exists a unique solution

Uh : hL→ R to the following discrete problem: for all p ∈ Ωh

h−2
∑

1≤i≤d′
ρi(p) max{0, Uh(p)− Uh(p + hėi), Uh(p)− Uh(p− hėi)}2 = 1 (17)

and Uh(p) = 0 for all p ∈ ∂Ωh. The solution Uh can be computed via the fast-marching algorithm
with complexity O(d′Nh lnNh), where Nh = #(Ωh). If in addition the domain Ω satisfies an
exterior cone condition, and if M∈ Lip(Ω, S++(E)), then for some constant C = C(M,Ω) one
has for all h > 0

max
p∈Ωh

|Uh(p)− u(p)| ≤ C
√
r∗h. (18)

The estimate (18) outlines the importance of the stencil radius r∗, since it determines the
effective scale r∗h of the discretization and thus the accuracy of the numerical method. The con-
struction of Proposition 1.2 is shown in [36] to minimize r∗, in dimension d = 2. A convergence
rate similar to (18) is obtained in [58] for the Ordered Upwind Method [57], a semi-Lagrangian
solver of anisotropic eikonal equations. Note that the dependency of the constant C = C(Ω,M)
in (18) with respect to the metricM is not explicited in Theorem 1.4. This point is analyzed in
detail in the next sub-section, where we consider a family of increasingly anisotropic Riemannian
metrics converging to a degenerate sub-Riemannian model.

Remark 1.4. The numerical scheme (17) relies on upwind finite differences, which are first
order consistent with the absolute value of a directional derivative: for any U ∈ C2(Ω), p ∈ Ω,
ė ∈ E, and any sufficiently small h > 0

max {0, U(p)− U(p− hė), U(p)− U(p + hė)} /h = max{0, 〈dU(p), ė〉, −〈dU(p), ė〉}+O(h),

= |〈dU(p), ė〉|+O(h).

The presence of “0” in the max, which may seem superfluous in view of the consistency analysis,
is required for the monotony and causality of the numerical scheme, see Definition 2.1. In the
related literature [50, 56], the above left upwind finite difference is often written in the following
equivalent form: max{δ−e U(p), δ+

e U(p)} where denoting a± := max{0,±a} one has

δ−e U(p) :=
(U(p)− U(p− hė)

h

)
+
, δ+

e U(p) :=
(U(p + hė)− U(p)

h

)
−
.
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1.2 Sub-Riemannian metrics

We introduce a numerical approach to the computation of sub-Riemannian distances and geodesics,
based on solving as described in §1.1 the eikonal equations associated to a sequence of increas-
ingly anisotropic approximate Riemannian metrics. This approach is related to [51], which
however uses a different scheme for the Riemannian problems, and does not establish a conver-
gence rate. More precisely our results apply to the slightly more general class of pre-Riemannian
models.

Definition 1.5. A pre-Riemannian model on Ω is a finite family of vector fields ω̇1, · · · , ω̇n ∈
Lip(Ω,E). The control sets B ∈ Lip(Ω,C(E)), and the semi-definite tensor field D ∈ Lip(Ω, S+(E∗)),
for this model are defined for all p ∈ Ω by

B(p) := {
∑

1≤i≤n
αiω̇i(p); α ∈ Rn,

∑
1≤i≤n

α2
i ≤ 1}, D(p) :=

∑
1≤i≤n

ω̇i(p)⊗ ω̇i(p).

A sub-Riemannian model [38] of step k ≥ 1 is a pre-Riemannian model with the additional
properties that the vector fields (ω̇i)1≤i≤n are smooth and that, together with their iterated
commutators up to depth k, they span the tangent space E at each point p ∈ Ω. The minimal
control time TB(p,q) for a sub-Riemannian model is called the Carnot-Theodory distance, and

by Chow’s theorem it obeys TB(p,q) ≤ C‖p − q‖
1
k , as q → p ∈ Ω. The distance u to ∂Ω is

the unique viscosity solution to the sub-Riemannian eikonal equation: ‖du(p)‖D(p) = 1 for all
p ∈ Ω, and u = 0 on ∂Ω.

For better or worse, we do not use any techniques or results from sub-Riemannian geometry
in this paper, but stick instead to the simpler pre-Riemannian concept. We do however make a
further assumption.

Assumption 1.6. We fix a pre-Riemannian model (ω̇i)
n
i=1, and assume that the exit time value

function u, defined in (11), is bounded on Ω. We further assume that the domain admits outward
normals ṅ(p) with Lipschitz regularity on ∂Ω, and that for each p ∈ ∂Ω there exists 1 ≤ i ≤ n
such that ṅ(p) · ω̇i(p) 6= 0.

The finiteness of u on Ω is a global controllability assumption, and it is obviously required if
one intends to prove convergence rates of discrete approximations of u. The second assumption
is related to short time local controllability at the boundary [3]. Together, these assumptions
imply the Lipschitz regularity of u, see §A.1.

Definition 1.7. A completion of a pre-Riemannian model (ω̇i)
n
i=1 is a second finite family of

vector fields ω̇∗1, . . . , ω̇
∗
n∗ ∈ Lip(Ω,E), such that ω̇1(p), · · · , ωn(p), ω̇∗1(p), · · · , ω̇∗n∗(p) spans E for

each p ∈ Ω.

For each 0 < ε ≤ 1 the augmented pre-Riemannian model (ω1, · · · , ωn, εω∗1, · · · , εω∗n∗) is
equivalent (i.e. has the same control sets) to the Riemannian model of metric Mε := D−1

ε ,
where pointwise on Ω

Dε = D + ε2D∗, with D∗ :=
∑

1≤i≤n∗
ω̇∗i ⊗ ω̇∗i . (19)

In order to solve numerically the pre-Riemannian exit time problem, our strategy is to apply the
scheme of Theorem 1.4 to the positive definite (but strongly anisotropic) Riemannian metricMε,
for small ε > 0. Convergence towards the pre-Riemannian exit times u : Ω → R is established
in the next theorem, when the relaxation parameter ε and grid scale h tend to 0 suitably.

10



Theorem 1.8. Consider a pre-Riemannian model ω̇1, · · · , ω̇n ∈ Lip(Ω,E) obeying Assumption
1.7, and a completion ω̇∗1, · · · , ω̇∗n. For each 0 < ε ≤ 1 let uε denote the distance to ∂Ω for the
Riemannian metric Mε, and let Uh,ε be the discrete solution of (17) with scale h > 0. Then

max
Ω
|u− uε| ≤ Cε, max

Ωh
|uε − Uh,ε| ≤ C ′

√
rεh, (20)

where rε denotes the maximal stencil radius for Mε, see (16), and where C,C ′ only depend on
Ω, (ω̇i)

n
i=1, and (ω̇∗i )

n∗
i=1. In particular Uh,ε → u uniformly as ε→ 0 and h rε → 0.

By construction the condition number of the tensors Mε is O(ε−1), hence rε ≤ Cε−(d−1) if
Proposition 1.2 is used for the stencil construction. The convergence rate maxΩh |Uh,ε − u| ≤
Ch

1
d+1 is thus ensured by choosing ε = h

1
d+1 .

1.3 Rander geometry

Rander metrics are asymmetric metrics4, defined as the sum of a symmetric Riemannian part
and of an anti-symmetric linear part [46]. A Rander metric is thus described by a tensor field
M∈ C0(Ω, S++(E)), and a co-vector field η̂ ∈ C0(Ω,E∗), subject to a compatibility condition:

Fp(ṗ) := ‖ṗ‖M(p) + 〈η̂(p), ṗ〉, where ‖η̂(p)‖M(p)−1 < 1. (21)

The smallness constraint (21, right) ensures the positivity of the asymmetric norm Fp(·). The
distance induced by a Rander metric is oriented: dF (p,q) 6= dF (q,p) in general.

Proposition 1.9. The distance u to ∂Ω, see (11), is the unique the viscosity solution to the
inhomogeneous static first order HJB PDE

‖du(p)− η̂(p)‖D(p) = 1, where D(p) =M(p)−1, (22)

for all p ∈ Ω, and u = 0 on ∂Ω.

Proof. It is known that u obeys the eikonal PDE F∗p(du(p)) = 1, where F∗ is the dual metric,
see (12). Now for any p̂ ∈ E∗ observe the sequence of equivalences:

F∗p(p̂) = 1 ⇔ ∃ṗ ∈ E \ {0}, p̂ = dFp(ṗ)

⇔ ∃ṗ ∈ E \ {0}, p̂ =M(p)ṗ/‖ṗ‖M(p) + η̂(p)

⇔ ‖p̂− η̂(p)‖D(p) = 1.

The first equivalence follows from convex duality Fp(ṗ) = sup{〈p̂, ṗ〉; F∗p(p̂) = 1} and the
enveloppe theorem, and the second one from the explicit expression (21) of F .

Theorem 1.10. Let (M, η̂) be a Rander metric, and for all p ∈ Ω let D(p) := M(p)−1 and
(ρi(p), ėi(p))d

′
i=1 be as in (15). Then for any h > 0 there exists a unique solution to Uh : hL→ R

to the following discrete problem: for all p ∈ Ωh∑
λi(p) max{0, Uh(p)− Uh(p + hėi) + h〈η̂(p), ėi〉, Uh(p)− Uh(p− hėi)− h〈η̂(p), ėi〉}2 = h2,

(23)
and Uh(p) = 0 for all p ∈ ∂Ωh. If in addition Ω obeys an exterior cone condition, and M and
η have Lipschitz regularity, then for some C = C(Ω,M, η̂) one has for all h > 0

max
p∈Ωh

|Uh(p)− u(p)| ≤ C
√
r∗h.

4A metric lacking the symmetry property, i.e. Fp(ṗ) 6= Fp(−ṗ) for some point p ∈ Ω and vector ṗ ∈ E, is
usually referred to as a quasi-metric. The quasi- prefix is however dropped in this paper, for consistency with the
Riemannian and sub-Riemannian cases.
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The discretized PDE (23) cannot be solved using the Fast-Marching algorithm, contrary to
the Riemannian case (17) and sub-Riemannian case, because the expression (23) may depend on
non-causal, negative finite differences U(p)−U(p + ė) < 0 when 〈η̂(p), ė〉 > 0, in contradiction
with Definition 2.1. For moderate anisotropies, good results are nevertheless obtained using
Adaptive Gauss Siedel Iteration (AGSI), see [9] and §3. Alternatively, in dimension d = 2,
Rander distances can be computed via the single pass semi-Lagrangian method [35].

2 Convergence in the Riemannian case

This section is devoted to the proof of Theorem 1.4, which contains two parts: a claim of well-
posedness for the system of equations discretizing the Riemannian eikonal PDE, and an error
analysis as the grid scale is refined. For that purpose, two general and classical results are stated
in §2.1, and later specialized in §2.2 to the model of interest.

2.1 Two general results

We formally introduce the concepts of monotone and causal finite difference schemes, and present
(reformulations of) two classical results. Theorem 2.2 states that monotone schemes possess a
unique solution, in the spirit of [61, 56, 41] and under adequate assumptions, which can be
efficiently computed under the additional assumption of causality. Theorem 2.3 introduces
a strategy for the numerical analysis, referred to as the doubling of variables argument and
adapted from [24].

Definition 2.1. A (finite differences) scheme on a finite set X is a continuous map F : X ×
R× RX → R. The scheme is said:

• Monotone, iff F is non-decreasing w.r.t. the second and (each of the) third variables.

• Causal, iff F only depends on the positive part of the third variable.

To the scheme is associated a function RX → RX still (abusively) denoted by F, and defined by

(FU)(x) := F(x, U(x), (U(x)− U(y))y∈X),

for all x ∈ X, U ∈ RX . A discrete map U ∈ RX is called a sub- (resp. strict sub-, resp. super-,
resp. strict super-) solution of the scheme F iff FU ≤ 0 (resp. FU < 0, resp. FU ≥ 0, resp.
FU > 0) pointwise on X.

When the scheme F is obvious from context, we simply speak of a sub- and super-solution.

Theorem 2.2 (Solving monotone schemes). Let F be a monotone scheme on a finite set X s.t.

(i) There exists a sub-solution U− and a super-solution U+ to the scheme F.

(ii) Any super-solution to F is the limit of a sequence of strict super-solutions.

Then there exists a unique solution U ∈ RX to FU = 0, and it satisfies U− ≤ U ≤ U+. If in
addition the scheme is causal, then this solution can be obtained via the Dynamic-Programming
algorithm, also called Dijkstra or Fast-Marching, with complexity O(M lnN) where

N = #(X), M = #({(x, y) ∈ X ×X; FU(x) depends on U(y)}). (24)
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Proof. We provide for completeness the proof of existence and uniqueness, see [41] and [4] for
closely related arguments in the discrete and continuous settings respectively. In contrast we
refer to [61, 56] for the description of the fast marching algorithm.

Proof of uniqueness, via the comparison principle. Let U+ be a strict super-solution, and U−

a sub-solution. Let p ∈ X be such that U−(p)− U+(p) is maximal, so that U−(p)− U−(q) ≥
U+(p) − U+(q) for any q ∈ X. Assuming for contradiction that U−(p) ≥ U+(p) we obtain
0 ≥ FU−(p) ≥ FU+(p) > 0 by monotony of the scheme and definition of a sub- and strict
super-solution. This is a contradiction, hence U− ≤ U+. Next using assumption (ii) we obtain
that U− ≤ U+ still holds for any sub-solution U− and any (possibly non-strict) super solution
U+. The uniqueness of the solution to FU = 0 follows.

Proof of existence, by Perron’s method. We prove that U : X → R, defined by U(p) :=
sup{Ũ(p); Ũ sub-solution} for all p ∈ X, is a solution to the scheme F. By the previous
argument one has Ũ ≤ U+ for any sub-solution Ũ , and up to considering the sub-solution
max{Ũ , U−} we may as well assume Ũ ≥ U−. Thus U− ≤ Ũ ≤ U+ and therefore U− ≤ U ≤ U+

by taking the pointwise supremum. Consider an arbitrary p ∈ X, and let Ũ be a sub-solution
such that U(p) = Ũ(p), which exists by continuity of F and a compactness argument. By
construction U ≥ Ũ , hence FU(p) ≤ FŨ(p) ≤ 0 by monotony of the scheme, hence U is a
sub-solution by arbitraryness of p ∈ X. Furthermore, assume for contradiction that there exists
p0 ∈ X such that FU(p0) < 0, and define Uε(p0) := U(p0) + ε and Uε(p) := U(p) for all
p ∈ X \ {p0}. Then Uε is a sub-solution for any sufficiently small ε > 0, by monotony and
continuity of the scheme F, thus U(p0) ≥ Uε(p0) by construction which is a contradiction.
Finally we obtain FU = 0 identically on X, as announced.

The following result is a general strategy for proving convergence rates for discretizations of
first order HJB PDEs, adapted from [24]. For completeness, the proof is presented in §C. The
cartesian grid hL could be replaced with an arbitrary h-net of E, in other words a discrete set
such that union of all balls of radius h centered at the points of this set covers E.

Theorem 2.3 (Doubling of variables argument). Let u : E → R be supported on a bounded
domain Ω and CuLip-Lipschitz, and let Uh : hL → R be supported on Ωh := Ω ∩ hL. Given
λ ∈ [1/2, 1[ and δ > 0, define

Mλ,δ := sup
(p,q)∈hL×E

λUh(p)− u(q)− 1

2δ
‖p− q‖2, M̃λ,δ := sup

(p,q)∈hL×E
λu(q)− Uh(p)− 1

2δ
‖p− q‖2,

and denote by (p,q), (p̃, q̃) ∈ (hL)×E the point pairs where the maxima are respectively attained.
Then ‖p − q‖ ≤ 4CuLipδ. Assume furthermore that for some CUbd, C ′Ubd and cUbd ≥ 4CLipδ the
following holds:

(i) None of the two maximal pairs (p,q) and (q̃, q̃) belongs to Ωh × Ω.

(ii) |Uh(p)| ≤ CUbdd∂Ω(p) + C ′Ubdh, for all p ∈ Ωh such that d∂Ω(p) ≤ cbd.

Then one has with C0 = 4CuLip max{CuLip, C
U
bd}

max
p∈Ωh

|u(p)− Uh(p)| ≤ 2

(
C0δ + C ′Ubdh+ (1− λ) max

Ω
|u|
)
. (25)

When applying Theorem 2.3, to one of our specific models, Property (i) follows directly
from the consistency of the discretization, while Property (ii) requires to establish a discrete
counterpart of short-time local controllability at the boundary. In the Riemannian case, Property
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(i) is established in Lemma 2.7, and Property (ii) in Proposition 2.10. Some adaptations of these
arguments are required to establish property (ii) in the sub-Riemannian case, see Proposition
A.7, and property (i) in the Rander case, see Lemma B.3.

Explicit expressions of the constants CuLip, CUbd, cUbd, are provided in terms of the model pa-

rametersM,Ω. The constant C ′Ubd, also given explicitly, depends linearly on the stencil maximal
radius: C ′Ubd = C ′′Ubd r∗, and property (i) is shown to hold provided

λ ≤ 1− C1δ − C2r∗
h

δ
,

where C1, C2 are again explicit constants depending only on M,Ω. Choosing λ equal to this
upper bound, and defining δ =

√
r∗h, one gets the error estimate

max
p∈Ωh

|u(p)− Uh(p)| ≤ 2C ′′Ubd r∗h+ 2(C0 + (C1 + C2)‖u‖∞)
√
r∗h. (26)

as announced in Theorems 1.4, 1.9 and 1.11 for Riemannian, sub-Riemannian, and Rander
metrics respectively.

2.2 Application to the Riemannian case

We establish Theorem 1.4, on the discretization of Riemannian exit time problems, by special-
izing the general results of §2.1. For that purpose we consider a discretization scheme Fh, on
the finite domain Ωh, see (3), of the following form: for any U : Ωh → R and any p ∈ Ωh

(FhU(p))2 := h−2
∑

1≤i ≤d′
ρi(p) max{0, U(p)− U(p + ėi), U(p)− U(p− ėi)}2, (27)

where U is extended by zero on hL \ Ωh. The next proposition implies, by Theorem 2.2, the
existence and uniqueness of a solution to the equation FhU − 1 ≡ 0, and the applicability of the
Fast-Marching algorithm to compute it, as announced in Theorem 1.4.

Recall that r∗ is the maximal stencil radius, as defined in (16). The square root of the largest
eigenvalue among all tensors of a tensor field M∈ C0(Ω,S++(E)) is denoted by

λ∗(M) := max
p∈Ω, ‖ṗ‖=1

‖ṗ‖M(p). (28)

Proposition 2.4. Let M ∈ C0(Ω, S++(E)) be a Riemannian metric, and for all p ∈ Ω let
D(p) := M(p)−1 and (ρi(p), ėi(p))d

′
i=1 be as in (15). Then the scheme Fh defined by (27) is

monotone and causal. In addition:

(i) The null map U = 0 satisfies FhU ≡ 0, hence is a sub-solution to the scheme Fh − 1.

(ii) Let R > 0 be such that Ω is contained in the ball of radius R − hr∗ and centered at the
origin, and let U(p) := R− ‖p‖, for all p ∈ Ωh. Then for all λ ≥ 0, and all p ∈ Ωh

FhU(p) ≥ ‖p/‖p‖‖D(p),

where p/‖p‖ can be replaced with an arbitrary unit vector in the case p = 0. As a result,
λU is a super-solution to the scheme Fh − 1 for any λ ≥ λ∗(M).

(iii) If U is a super-solution to Fh − 1, then (1 + ε)U is a strict super-solution for any ε > 0.
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Proof. The monotony and causality of the scheme Fh immediately follow from its expression
(27). Point (i) is trivial, and point (iii) follows from the homogeneity property Fh(λU) = λFhU .
In the rest of this proof, the point p ∈ Ω is regarded both as a vector in E and as a co-vector
in E∗, thanks to the euclidean structure of E. For point (ii), we obtain by convexity of the
euclidean norm, for any p, ė ∈ E.

U(p)− U(p + ė) = ‖p + ė‖ − ‖p‖ ≥ 〈p/‖p‖, ė〉,

where p/‖p‖ can be replaced with any unit vector if p = 0. Hence for all p ∈ Ωh, as announced,

(FhU(p))2 ≥ 1

‖p‖2
∑

1≤i≤d′
ρi(p)〈p, ėi〉2 =

‖p‖2D(p)

‖p‖2
.

Finally Fh(λU)(p) ≥ 1 if λ ≥ λ∗(M) by the 1-homogeneity of F, and the observation that the
least eigenvalue of D(p) is inverse of the largest eigenvalue of M(p).

In the rest of this section, we establish the properties required to apply the doubling of
variables argument, Theorem 2.3, to prove the second part of Theorem 1.4. The following
proposition immediately implies that the exit time value function, denoted hereafter by u, is
CuLip-Lipschitz, with CuLip := λ∗(M).

Proposition 2.5. Let Ω ⊆ E be an arbitrary bounded domain, equipped with a metric F :
Ω × E → R such that Fp(ṗ) ≤ C0‖ṗ‖ for any p ∈ Ω, ṗ ∈ E. Then the distance u from ∂Ω is
C0-Lipschitz.

Proof. Let p,q ∈ Ω, and let us prove that u(q) ≤ u(p) + C0‖p − q‖. Let γ : [0, 1] → E be the
parametrization of the line segment [p,q] at constant speed. If this segment intersects ∂Ω, then
denoting T ∈ [0, 1] the largest time such that γ(T ) ∈ ∂Ω one has u(q) ≤ LengthF (γ|[T,1]) ≤
C0‖p − q‖ as announced. Otherwise, denoting by γ̃ a minimal path from ∂Ω to p one has by
path concatenation u(q) ≤ lengthF (γ̃) + lengthF (γ) ≤ u(p) + C0‖p− q‖ as announced.

The rest of this section is split into two parts, devoted to proving assumptions (i) and (ii) of
Theorem 2.3, the doubling of variables argument; in the context of the Riemannian discretization
scheme, thus by (26) concluding the proof of Theorem 1.4. For that purpose, we adopt the
notations and other assumptions of Theorems 1.4 and 2.3, and we denote by Uh the solution to
the scheme Fh − 1. In particular λ ∈ [1/2, 1[ and δ > 0 are parameters from Theorem 2.3, and

(p,q), (p̃, q̃) ∈ E× hL are points pairs where the maxima Mλ,δ, M̃λ,δ are attained.

Establishing assumption (i) of Theorem 2.3. Our first lemma is a direct application of
the definition of sub- and super-solutions of HJB PDEs and monotone discretization schemes.

Lemma 2.6. Let w := (p− q)/δ, and let U(p) := 〈w,p〉+ 1
2δ‖p− p‖2 for all p ∈ hL. Then

FhU(p) ≤ λ, ‖w‖D(q) ≥ 1. (29)

Let w̃ := (p̃− q̃)/δ, and let Ũ(p) := 〈w̃,p〉 − 1
2δ‖p− p̃‖2 for all p ∈ hL. Then

FhŨ(p̃) ≥ 1, ‖w̃‖D(q̃) ≤ λ. (30)

Here and below we regard w and w̃ as co-vectors, using the euclidean structure of E.
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Proof. Note that the scheme Fh is here (slightly abusively) applied to the functions U , Ũ , which
are non-zero over hL \ Ωh. We focus on the proof of (29), the case of (30) being similar. By
definition of Mλ,δ, the function

p ∈ hL 7→ λUh(p)− u(q)− 1

2δ
‖p− q‖2 = λUh(p)− U(p)−K

attains its maximum at p, where K = u(q) − 1
2〈w,p + q〉 is independent of the variable p.

Hence for all p ∈ hL

λUh(p)− U(p)−K ≥ λUh(p)− U(p)−K, equivalently Uh(p)− Uh(p) ≥ U(p)/λ− U(p)/λ.

By monotony of the scheme Fh, see Definition 2.1, we obtain Fh(U/λ)(p) ≤ FhUh(q) = 1, hence
(29, left) by the homogeneity of Fh. Likewise, defining u(q) := 〈w,q〉− 1

2δ‖q−q‖2 for all q ∈ E,
the function

q ∈ E 7→ λUh(p)− u(q)− 1

2δ
‖p− q‖2 = u(q)− u(q)−K ′

attains its minimum at q, where K ′ is the adequate constant. Since u is a (super-)solution to
the PDE (1), this implies 1 ≤ ‖du(q)‖D(q) = ‖w‖D(q), which concludes the proof.

The following lemma assumes for contradiction that (p,q) ∈ Ωh × Ω and obtains estimates
contradicting Lemma 2.6 established above, provided λ is above a certain bound, which is
assumed in the following. Therefore, arguing by contradiction, one must have (p,q) /∈ Ωh × Ω,
and likewise (p̃, q̃) /∈ Ωh×Ω by a similar argument, which establishes assumption (i) of Theorem
2.3. Let CDLip be a constant such that for all p,q ∈ Ω and all p̂ ∈ E∗

|‖p̂‖D(p) − ‖p̂‖D(q)| ≤ CDLip‖p− q‖‖p̂‖. (31)

Such a constant exists by the Lipschitz regularity of the metric M, assumed in Theorem 1.4.

Lemma 2.7. Assume that (p,q) ∈ Ωh × Ω and define w and U as in Lemma 2.6. Then∣∣FhU(p)− ‖w‖D(p)

∣∣ ≤ C1r∗
h

δ
,

∣∣‖w‖D(q) − ‖w‖D(p)

∣∣ ≤ C2δ, (32)

with C1 := λ∗(D)
√
d and C2 := (4CuLip)2CDLip. This contradicts (29) unless λ ≥ 1−C1r∗h/δ−C2δ.

The same estimates and conclusion hold for w̃ and Ũ if (p̃, q̃) ∈ Ωh × Ω.

Proof. We focus on the case of (p,q), the second case of (p̃, q̃) being similar, and begin with
the proof of (32, left) which contains the key technical points. By definition of the quadratic
function U , one has

max{0, U(p)− U(p + hėi), U(p)− U(p− hėi)} = h|〈w, ėi〉|+
h2

δ
‖ėi‖2, (33)

for any 1 ≤ i ≤ d′, where (ρi(p), ėi)
d′
i=1 are the weights and offsets of the discretization scheme

at p, see (15). Denote by w, e ∈ Rd′ the vectors of components, respectively, wi := |〈w, ėi〉|, and

ei := ‖ėi‖2, for all 1 ≤ i ≤ d′. Introduce also the semi-norm ‖z‖p :=
√∑d′

i=1 ρi(p)z2
i on Rd′ .

Then by (33) and the consistency relation (6) one has

FhU(p) = ‖w +
h

δ
e‖p, ‖w‖D(p) = ‖w‖p,
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and therefore
∣∣FhU(p)− ‖w‖D(p)

∣∣ ≤ h
δ ‖e‖p by the triangular inequality. Finally observe that

‖e‖2p =
∑

1≤i≤d′
ρi(p)

(
‖ėi‖2

)2 ≤ ∑
1≤i≤d′

ρi(p)‖ėi‖2 max
1≤i≤d′

‖ėi‖2 = Tr(D(p))r2
∗,

where Tr denotes the trace of a matrix. The announced result (32, left) then follows from
Tr(D(p)) ≤ d(λ∗(p))2.

The second estimate (32, right) follows from the Lipschitz regularity of the metric (31),
together with the upper bound ‖p − q‖ ≤ 4CuLipδ established in Theorem 2.3, which implies
‖w‖ ≤ 4CuLip. Combining these estimates with Lemma 2.6 yields

λ+ C1r∗h/δ ≥ ‖w‖D(p) ≥ 1− C2δ,

which implies the announced lower bound for λ. The same estimates can be derived in the
second case, and with Lemma 2.6 they imply 1 − C1r∗h/δ ≤ ‖w̃‖D(p̃) ≤ λ + C2δ which yields
the same lower bound for λ.

Establishing assumption (ii) of Theorem 2.3. The reste of this section is devoted to
proving, in Proposition 2.10, an estimate on the growth of the discrete solution Uh close to ∂Ω,
thus implying assumption (ii) of Theorem 2.3. A natural strategy would be to prove a global
Lipschitz type estimate for the discrete solution Uh, as in e.g. [9, 34], but unfortunately the
assumptions of Theorem 1.4 are too weak for that purpose, and actually we cannot exclude
a staggered grid effect (never observed in practice) far from ∂Ω. Instead, the idea underlying
our proof is to construct from any point in p0 ∈ Ωh sufficiently close to ∂Ω, a short chain of
neighbors p1, · · · ,pn ending in ∂Ωh and connected by offsets of the numerical scheme pi+1 =
pi + hėi(pi) which associated weights ρi(pi) are positively bounded below. This chain is the
discrete counterpart of a short time local control to the to boundary [3].

Our first step is to provide a precise definition to the exterior cone condition assumed in the
statement of Theorem 1.4.

Definition 2.8 (Exterior cone condition). The domain Ω ⊆ E obeys an exterior cone condition
iff there exists constants CΩ and cΩ > 0 such that for all h ≤ cΩ,

∀p ∈ ∂Ω, ∃q ∈ B(p, CΩh), such that B(q, h) ⊆ E \ Ω,

where B(q, h) denotes the open ball of center q and radius h.

The next technical lemma compares the euclidean norm with its first order Taylor expansion.

Lemma 2.9. For any p, ė ∈ E with p 6= 0, one has ‖p + ė‖ ≤ ‖p‖+ (p · ė)/‖p‖+ ‖ė‖2/(2‖p‖).

Proof. Multiplying both sides by ‖p‖ and rearranging terms the statement is found equivalent
to ‖p‖‖p + ė‖ ≤ 1

2(‖p‖2 + ‖p + ė‖2), equivalently to 0 ≤ (‖p‖−‖p + ė‖)2 which holds true.

In the following proposition, we let Cond(D) := max{Cond(D(p)); p ∈ Ω}, where the con-
dition number of a symmetric matrix is defined in (7).

Proposition 2.10. Let p ∈ Ωh, and let q ∈ E be such that ‖p − q‖ ≥ C0r∗h, with C0 :=
Cond(D)

√
d′. Then there exists 1 ≤ i ≤ d′ and a sign s ∈ {−1, 1} such that

Uh(p) ≤ Uh(p + hsėi) + hC1‖ėi‖, and ‖p + hsėi − q‖ ≤ ‖p− q‖ − hc2‖ėi‖, (34)

with C1 := λ∗(M)
√
d′, c2 := 1/(2 Cond(D)

√
d′). This implies assumption (ii) of Theorem 2.3,

with the constants CUbd = C1/c2, C ′Ubd := CUbdCΩC0r∗, and cbd = +∞.
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Proof. Denote by (λ∗)
2 and (λ∗)2 the smallest and largest eigenvalue of D(p) respectively. Let

n := (q− p)/‖q− p‖, regarded as a co-vector thanks to the euclidean structure of E. Then

λ2
∗ ≤ ‖n‖2D(p) =

∑
1≤i≤d′

ρi(p)〈n, ėi〉2. (35)

Fix 1 ≤ i ≤ d′ such that ρi(p)〈n, ėi〉2 ≥ λ2
∗/d
′. Denote ρ2 := ρi(p), and ė := sėi where s is the

sign of 〈n, ėi〉. One has, using that ρ2ė⊗ ė � D(p) � (λ∗)2 Id for the second inquality

ρ〈n, ė〉 ≥ λ∗/
√
d′ ρ‖ė‖ ≤ λ∗ (36)

By definition of the discretization scheme (27) one has h−2ρ2 max{0, Uh(p) − Uh(p + ė)}2 ≤
(FhUh(p))2 = 1, hence using (36, left) we obtain (34, left):

U(p)− U(p + ė) ≤ h

ρ
≤ h‖ė‖

√
d′

λ∗
. (37)

By (36) and Cond(D) ≥ λ∗/λ∗ one has 〈n, ė〉 ≥ ‖ė‖/(Cond(D)
√
d′). Denote r := (p−q)/h and

observe that ‖r‖ ≥ C0r∗ ≥ Cond(D)
√
d′‖ė‖, by assumption and by definition of the max stencil

radius r∗, see (16). Using Lemma 2.9 we obtain (34, right):

‖r + ė‖ ≤ ‖r‖ − 〈n, ė〉+
‖ė‖2

2‖r‖
≤ ‖r‖ − ‖ė‖

Cond(D)
√
d′

+
‖ė‖
2C0

‖ė‖
r∗
≤ ‖r‖ − ‖ė‖

2 Cond(D)
√
d′
.

Finally, we conclude the proof of assumption (ii). Let p0 ∈ Ωh. Let q∗ ∈ ∂Ω be the closest
point to p0, and let q ∈ B(q∗, CΩC0r∗h) be such that B(q, C0r∗h) ⊆ E \ Ω. By the above
argument, there exists a finite sequence of points p1, · · · ,pk−1 ∈ Ωh, pk ∈ ∂Ωh, such that
U(pi) ≤ U(pi+1) + C1δi and ‖pi+1 − q‖ ≤ ‖pi − q‖ − c2δi, denoting δi := ‖pi+1 − pi‖, for all
0 ≤ i < k. Since U(pk) = 0 we obtain U(p0) ≤ C1(δ0 + · · ·+ δk−1), and since ‖pk − q‖ ≥ 0 we
obtain c2(δ0 + · · ·+ δk−1) ≤ ‖p0 − q‖ ≤ ‖p0 − q∗‖+ CΩC0r∗h. Hence finally, as announced

U(p0) ≤ (C1/c2)(d∂Ω(p0) + CΩC0r∗h).

3 Numerical results

We illustrate the numerical methods introduced in this paper with a series of numerical ex-
periments, involving Riemannian, sub-Riemannian and Rander metrics, in §3.1, §3.2 and §3.3
respectively. Open source numerical codes for the Riemannian and sub-Riemannian models5 are
available on the author’s webpage6.

3.1 Riemannian examples

We validate our algorithm on several two and three dimensional Riemannian test cases, which
are split into two groups. The problems of the first group - related to differential geometry and
seismic imaging - feature smooth Riemannian metrics with pronounced yet bounded anisotropy,
and accuracy is the main concern. The problems of the second group - related to tubular
structure segmentation in medical image data - feature discontinuous Riemannian metrics and
extreme anisotropies, so that robustness is the main concern.

5Numerical codes for Rander metrics, which are more experimental, are available on demand.
6https://github.com/Mirebeau
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Smooth Riemannian metrics. The first test, two dimensional and introduced in [65], is
the computation of the distance from the origin on a parametric surface w.r.t. the Riemannian
metric induced by the Euclidean metric on R3. The surface is described by the height map

z(x, y) := (3/4) sin(3πx) sin(3πy),

hence the Riemannian metric is M(x, y) = Id +∇z(x, y)∇z(x, y)T, which maximum condition
number (7) is ≈ 5.1. The parametrization domain is the unit square [−0.5, 0.5]2, rotated7 by
the angle π/6.

The second test, two dimensional and introduced in [57], is inspired by seismic imaging
applications. Note that, admittedly, some authors have claimed that this application requires
more complex types of Finslerian anisotropies [48]. The Riemannian metric tensor M(x, y) has
eigenvector (1, (π/2) cos(4πx)) with eigenvalue 0.8−2. The second eigenvalue is 0.2−2, hence the
condition number is 4. The parametrization domain is [−0.5, 0.5]2, and the distance is computed
from the origin.

The third test, introduced here for the first time, extends the seismic imaging inspired
second test to three dimensions. The Riemannian metric tensor M(x, y, z) has eigenvector
(cos(3π(x + y)), sin(3π(2x − y)), 0.5), with eigenvalue 0.2−2. The two other eigenvalues are
equal to 0.8−2, hence the condition number is 4. The domain is [−0.5, 0.5]3 and the distance is
computed from the origin (0, 0, 0).

The level sets of the distance maps associated to these three tests, computed numerically
using the FM-VR1, and a number of the corresponding minimal geodesics, are presented in
Figure 2. The accuracy and computation time in the two dimensional test cases are compared
in §3.4 with several alternative numerical methods.

Discontinuous Riemannian metrics with extreme anisotropy. Anisotropic fast march-
ing methods have shown their relevance for image segmentation methods based on minimal
paths [7, 15]. In these applications, the metric often varies quickly, if not discontinuously, both
in orientation and aspect ratio. For instance, the Riemannian metric is often designed to favor
paths which remain close and tangent to a collection of thin tubular structures in the image.

We present two numerical experiments inspired by these applications, in two and three
dimensions, which first appeared in [7] and [34] respectively. The Riemannian metric is Euclidean
(identity matrix) except in the neighborhood of a curve Γ embedded in the domain, where the
metric is extremely anisotropic, with eigenvalues (1, 1/1002) or (1, 1, 1/502) in the two and three
dimensional experiments respectively, and the tangent vector to the curve Γ is an eigenvector
for the small eigenvalue. See [34] for a complete description. The level sets of the distance maps
associated to these two test cases, computed numerically using the FM-VR1, and some of the
corresponding minimal geodesics, are illustrated on Figure 3.

In these extreme test cases, the FM-VR1 behaves particularly well in terms of CPU time and
accuracy, comparably to the FM-LBR which similarly uses an adaptive discretization strategy.
In contrast, iterative numerical methods such as the AGSI [9], and fast marching methods based
on less sophisticated stencil constructions such as [1], have be shown to fail on these types of
benchmarks [7, 34].

7Without this rotation, the riemannian metric anisotropy is mostly aligned with the coordinate axes, which
makes the problem significantly easier numerically, see the numerical experiments in [34].
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Figure 2: Numerics, illustrating §3.1, for the three test cases involving smooth anisotropic
Riemannian metrics. Top: level lines of the numerically computed distance map from the
domain center. Bottom: backtracked minimal geodesics, from the domain center to various
endpoints. Left: geodesic distance on a parametric surface, 2832 grid, 0.1s CPU time. Center:
test inspired by seismic data analysis, 1932 grid, 0.04s CPU time. Right: likewise in 3D, on a
1013 grid, CPU time 5.02s. All CPU times measured on a 2.7Ghz laptop using a single thread.

Figure 3: Numerics, illustrating §3.1, for test cases involving discontinuous and extremely
anisotropic Riemannian metrics, in dimension d ∈ {2, 3}, inspired by applications to tubular
structure segmentation in medical data [7]. (i,iii) Level lines of the numerically computed dis-
tance from the image center. (ii,iv) Backtracked minimal geodesics, from the image center to
various endpoints. Because of the chosen metric, these paths are concatenations of straight
lines (euclidean geodesics), and of portions adjacent to a given spiraling curve Γ (along which
paths are favored by the metric anisotropy). Left: 201 × 201 grid, 0.03s CPU time. Right
201× 201× 272 grid, 25s CPU time.
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3.2 Sub-Riemannian models

We consider several sub-Riemannian models, posed on the configuration space M := Rd × Sd−1

of positions and orientations. Such configurations are denoted p = (x,n) ∈M, and their tangent
vectors ṗ = (ẋ, ṅ) ∈ TpM. For the simplicity of the exposition we regard n as a genuine unit
vector in Rd, so that 〈n, ṅ〉 = 0, although our numerical implementation relies on an angular
parametrisation of the sphere Sd−1.

We choose to describe the sub-Riemannian models of interest via an approximating family
of Riemannian metrics (Mε)ε>0, where ε is a relaxation parameter. The orthogonal projection
of a vector ẋ ∈ Rd, onto the hyperplane orthogonal to a given unit vector n ∈ Sd−1, is denoted

Pn(ẋ) := ẋ− 〈n, ẋ〉n.

The Reeds-Shepp model. This model, defined on R2 × S1, describes a car8, which state is
described by a position x ∈ R2, and an orientation n = (cos θ, sin θ) ∈ S1, see Figure 4. The
car can move forward and backward, rotate in either direction, but not move sideways. This
model also plays a central role in the study of the visual cortex organisation and function, in
which case it is referred to as the Petitot-Citti-Sarti model [43]. Recenty, data-driven variants
of the Reeds-Shepp model and of its higher dimensional counterparts have been considered for
tubular structure segmentation in medical image data [5, 23]. The Riemannian relaxations of
this model’s metric read, for each ε > 0,

‖ṗ‖2Mε(p) := S(p)−2
(
〈n, ẋ〉2 + ε−2‖Pn(ẋ)‖2 + ξ2‖ṅ‖2

)
(38)

where S : M →]0,∞[ is a point dependent speed function, with physical units [length]/[time],
and ξ is a parameter which has the dimension [length] of a radius of curvature. Parameters S and
ξ may be constant or variable over the domain, possibly dictated by the considered application
in a data-driven manner [5, 23].

The Reeds-Shepp model is related to curvature penalization for the following reason: consider
a smooth path x : [0, T ]→ Rd, with non-vanishing speed. Then there exists a unique n : [0, T ]→
Sd−1, up to a global change of sign, such that the lifted path t ∈ [0, T ] 7→ γ(t) = (x(t),n(t))
has finite length with respect to the sub-Riemannian metric M0. Indeed, one must set n(t) :=
±ẋ(t)/‖ẋ(t)‖, so that Pn(t)(ẋ(t)) = 0 for all t ∈ [0, T ]. Then, denoting by κ(t) := ‖ṅ(t)‖/‖ẋ(t)‖
the curvature of the path x, one obtains∫ T

0
‖γ̇(t)‖M0(t) dt =

∫ T

0

√
1 + ξ2κ(t)2

‖ẋ(t)‖ dt

S(γ(t))
.

Note that (contrary to what this discussion may suggest) the physical projections of geodesic
paths for the sub-Riemannian metric M0 are only piecewise smooth typically, because they
feature cusps, see Figures 4, 6, and the discussion in [23].

Some experiments involving two and three dimensional physical paths are presented in Fig-
ures 4, 5 and 6. Let us emphasize that we are here solving strongly anisotropic PDEs on three
and five dimensional domains respectively. The control sets for the Reeds-Shepp model posed
on R2 × S1 are illustrated on page ??. For the model posed on R3 × S2, the sphere S2 is
parametrized using the Euler angles (θ, ϕ) 7→ (cos θ, sin θ cosϕ, sin θ sinϕ), from the flat domain
[0, π]× [0, 2π] equipped with the adequate Riemannian metric and boundary conditions.

8The Reeds-Shepp model more faithfully describes a a wheelchair actually, whereas an actual car is better
described by the combination of a wheelchair and of a trailer.
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Figure 4: Numerics for the Reeds-Shepp sub-Riemannian model, illustrating §3.2. (i) Explana-
tion of the model: the parameter space is three dimensional, and the sub-Riemannian structure
forces the car ground speed ẋ(t) to remain aligned with the direction n(t) = (cos θ(t), sin θ(t))
defined by the third coordinate. In the next sub-figures, only the planar projection x(t) of the
minimal paths γ(t) = (x(t),n(t)) ∈ R2 × S1 is shown. (ii) Projections of minimal paths in
[−0.5, 0.5]2 × S1, from (0, 0, 0) to various endpoints with imposed orientation θ = π/4, with
model parameters ε = 0.1, ξ = 0.3. (iii) Comparison of the numerically backtracked paths
(solid) with those obtained using an high order ODE shooting method based on the Hamilton
equations of geodesics (40) (dashed blue). (iv) Some minimal paths (black) for the Reeds-Shepp
model in the presence of obstacles (grayed). Domain [0, 1]2 × S1 discretized on a 902 × 60 grid,
CPU time 0.36s. Model parameters ε = 0.1, and ξ = 0.4. Some orientations, arbitrary, are
imposed at the geodesics endpoints.

The numerical results are similar to those obtained in [23] using the semi-lagrangian FM-
LBR, but computation times are substantially smaller for the 5D test case, see the discussion in
§3.1, by a factor 5 typically for the five dimensional test cases. Figure 4 illustrates the spatial
projections in R2 of the minimal geodesics associated with the classical Reeds-Shepp model
posed on R2 × S1, with and without obstacles, and in the latter case a comparison with high
accuracy solutions obtained with an ODE shooting method.

A variant related to torsion penalization. We introduce a new sub-Riemannian model,
which relaxed metric is defined for all p = (x,n) ∈M and ṗ = (ẋ, ṅ) ∈ TpM by

‖ṗ‖2M̃ε(p)
:= S(p)−2

(
〈n, ẋ〉2 + ε−2‖Pn(ẋ)‖2 + ξ2‖ṅ‖2

)
, (39)

where again S : M →]0,∞[ is the speed function, and ξ has the dimension of a length. The
model (39) favors paths which are possibly non-smooth but are embedded in smooth surfaces, a
property that is relevant for certain tasks in medical data segmentation [60]. Indeed the physical
velocity ẋ is constrained by the cost of ε−2〈n, ẋ〉2 to remain (approximatedly if ε > 0) in the
plane orthogonal to the vector n, which variation is itself controlled by the cost of ‖ṅ‖2. Note
also that the most natural way to lift a physical curve x : [0, T ]→ R3 into γ = (x,n) : [0, T ]→
R3 × S2 obeying the orthogonality constraint 〈x(t),n(t)〉 = 0 for all t ∈ [0, T ], is to define
n(t) := (ẋ(t) × ẍ(t))/‖ẋ(t) × ẍ(t)‖. Then denoting by τ(t) := ‖ṅ(t)‖/‖ẋ(t)‖ the torsion of the
path x one obtains ∫ T

0
‖γ̇(t)‖M̃0(t)

dt =

∫ T

0

√
1 + ξ2τ(t)2

‖ẋ(t)‖ dt

S(γ(t))
.

Nevertheless our model is only related to torsion penalization, and not equivalent to it, because
there exists other lifts γ = (x,n) : [0, T ] → Rd × Sd−1 of the curve x : [0, T ] → Rd obeying
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Figure 5: Numerics, illustrating §3.2, for sub-riemannian models posed on R3 × S2. Test case
inspired by 3D tubular structure segmentation. (i) Contour plot of the speed function, which
is high in the neighborhood of two curves of small curvature and small torsion respectively.
(ii, iii) Position x(t) and orientation n(t), respectively, of the sub-Riemannian geodesics γ(t) =
(x(t),n(t)) extracted with the Reeds-Shepp model (purple), and its torsion related variant (blue).
Distinct paths are selected, along the appropriate vessel centerline. Domain ([0, π] × [−1, 1] ×
[−1, 0.5])× P2 discretized using a (40× 20× 16)× (5× 20) grid, ε = 0.2. CPU time 6.6 s.

the required orthogonality constraint, and which energy could be smaller than the torsion based
one.

On the experiment presented Figure 5, the speed function S : R3×S2 →]0,∞[ only depends
on the physical position x, and is small away from two curves Γ1,Γ2 of interest

S(x,n) := max{s, exp

(
−dist(x,Γ1 ∪ Γ2)2

2σ2

)
},

where s = 1/6 and σ = 0.15. The curves Γ1,Γ2 are parametrized by t ∈ [0, π] as follows

γ1(t) := (t, sin(t)2 cos(4t), 0), γ2(t) := (t, sin(t)3 cos(2t), sin(t)3 sin(2t)).

Hence Γ1 has large curvature but no torsion, whereas Γ2 has small curvature but some torsion.
Using our anisotropic fast marching method, we compute the shortest path between the common
endpoints x0,x1 ∈ R3 of these curves, among all possible tangent directions n0,n1 ∈ S2 at these
endpoints. Figure 5 shows the level lines of the cost function S, and the minimal geodesics
corresponding to the two models (38) and (39), numerically computed using the FM-VR1. As
could be expected, the torsion related model selects a path along Γ1, whereas the Reeds-Shepp
model selects a path along Γ2.

Validation of the approach. We present on Figure 6 two empirical validations of our nu-
merical approach to computing globally optimal geodesics for the five dimensional Reeds-Shepp
model and its torsion related variant. We first show that the sub-Riemannian constraint, of
collinearity Pn(ẋ) and orthogonality 〈n, ẋ〉 are approximately satisfied, despite their relaxation
in (38) and (39), with ε = 0.1. We then compare the obtained minimal paths with solutions of
the Hamilton equations of geodesics

dp

dt
= −∂H

∂p̂
,

dp̂

dt
=
∂H
∂p

, where H(p, p̂) :=
1

2
〈p̂,D0(p)p̂〉. (40)

Here D0 denotes the inverse tensor to the sub-Riemannian metric (38) or (39), which is well
defined when ε = 0, in contrast to M0 itself. This ODE is solved using a fourth order Runge-
Kutta method, and the initial conditions are adjusted using a Newton method to meet the
desired endpoints.
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Figure 6: Validation of the FM-VR1 numerical method applied to the sub-Riemannian Reeds-
Shepp models (i, ii), and its torsion related variant (iii, iv), posed on R3×S2. Parameters ε = 0.1,
ξ = 0.5, constant cost function S. (i, iii) The angular component n(t) of the minimal paths
γ(t) = (x(t),n(t)) ∈ R3 × S2, illustrated with arrows, satisfies (approximately, as expected) the
sub-Riemannian constraint (i) n(t) × ẋ(t) = 0 or (iii) 〈n(t), ẋ(t)〉 = 0. (ii, iv) Comparison of
the backtracked geodesics (black) with the results of an ODE shooting method (blue) based on
Hamilton’s equations of geodesics.

3.3 Rander models

We consider some instances of Zermelo’s navigation problem, which models a boat navigating
on a body of water [12, 2]. The (motor) boat is capable of a certain maximum speed, in any
direction, and inertia is not taken into account. However the boat is also subject to a drift due
to current or wind, which in our experiments is variable over the domain (and constant in time).
The goal is to move from one given point to another in minimal time.

Formally, let us denote by Ω ⊆ Rd the domain, denote by η̇ : Ω→ Rd the drift, and assume
that the maximum speed is 1 (in the Euclidean norm). The boat starts from anywhere on ∂Ω,
and all points of Ω are regarded as potential target points. The objective is thus to find for each
p ∈ Ω the minimal time T = u(p) ≥ 0 for which there exists a path γ : [0, T ] → Ω such that
γ(0) ∈ ∂Ω, γ(T ) = p, and

‖γ̇(t)− η̇(γ(t))‖ ≤ 1 a.e. t ∈ [0, T ].

We assume that ‖η̇(x)‖ < 1 for all x ∈ Rd, otherwise the system would not be locally controllable
(the drift speed being larger than the maximum boat speed). Following [2] we reformulate this
problem as a shortest path problem with respect to a Rander metric, of parameters (D−1, η̂)
specified in the next proposition, see also (22).

Proposition 3.1. The value function for this problem obeys ‖du(p) − η̂(p)‖D(p) = 1 on Ω in
the sense of viscosity solutions, and u = 0 on ∂Ω, where

D(p) := (1− ‖η̇(p)‖2)(1− η̇(p)⊗ η̇(p)), η̂(p) =
−η̇(p)

1− ‖η̇(p)‖2
.

Proof. The value function differential p̂ = du(p), where defined, obeys the equivalent constraints

sup
v̇∈B
〈p̂, v̇ + η̇〉 ≤ 1⇔ ‖p̂‖+ 〈p̂, η̇〉 ≤ 1⇔ ‖p̂‖2 ≤ (1− 〈p̂, η̇〉)2 ⇔ ‖p̂− η̂‖2D ≤ 1,

where B denotes the euclidean unit ball. The dependency of η̇, η̂,D to the base point p was
omitted for readability. The leftmost identity follows from Bellman’s optimality principle. The
first equivalence is trivial, the second equivalence follows from the impossibility of ‖p̂‖ = 〈p̂, η̇〉−1
(since ‖η̇‖ < 1), and the third equivalence results from direct computations using e.g. that
Dη̂ = −(1− ‖η̇‖2)η̇.
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Figure 7: Numerics, Illustrating §3.3, of two instances of Zermelo’s navigation problem in di-
mension two and three. Level lines of the distance map from the domain center (minimal travel
time), and minimal geodesics to various endpoints, computed with the variant of the FM-VR1
adapted to Rander metrics. (i, ii) Grid size 201× 201, CPU time 0.14s. (iii, iv) Grid size 1013,
CPU time 7.8s.

FM-VR1
1st order 2nd order FM-LBR FM-8 FE MAOUM

Embedded surface distance test, 293× 293 grid
CPU time 0.10∗ 0.12∗ 0.20 0.21 1.44 1.31
L∞ error 5.8 0.22∗ 5.52 12.5 9.45 8.56
L1 error 1.6 0.066 1.46 3.42 2.51 2.52

Seismic inspired test, 193× 193 grid
CPU time 0.042∗ 0.048∗ 0.076 0.079 0.77 0.36
L∞ error 4.5 0.15∗ 2.90 3.03 3.67 7.66
L1 error 1.5 0.056 1.03 1.30 1.40 2.3

Figure 8: Comparison of the CPU time and accuracy of the proposed FM-VR1 with several
alternatives in two Riemannian test cases, see §3.1 and §3.4. All errors multiplied by 100 for
readability. Asterix ∗, see Remark 3.2.

We present a two dimensional experiment on Ω =]0, 1[2, first introduced in [57], and a three
dimensional generalization in Ω =]0, 1[3. The drift has the explicit expression

η̇(x) := α sin(4πx1) sin(4πx2)
x

‖x‖
.
(

resp. η̇(x) := α sin(4πx1) sin(4πx2) sin(4πx3)
x

‖x‖
.
)

Recall that our numerical scheme (23) for eikonal equations of Rander type lacks the causality
property, see Definition 2.1. The fast marching method is therefore not applicable, and we use
instead Adaptive Gauss Siedel Iterations, in the spirit of [9]. Figure 7 illustrates the level lines
of the distance map u, and some of the corresponding minimal geodesics, in the two and three
dimensional test cases. The computation time and the L∞ and L1 errors obtained with the
two dimensional problem are presented in §3.4, and compared with several alternative semi-
lagrangian methods [9, 1, 35].

3.4 Comparison with alternative methods

We compare the accuracy and computation time of the FM-VR1 with several alternative methods
proposed in the literature for solving anisotropic eikonal equations [61, 55, 1, 9, 34, 35]. As
discussed in the introduction, these numerical methods can be divided into two groups: causal
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RD-VR1
1st order 2nd order FM-ASR FM-8 FE MAOUM

Zermelo navigation problem, 285× 285 grid
CPU time 1.03(0.48∗) 1.39(0.81∗) 0.29 0.16 1.08 0.69
L∞ error 0.84 0.23 0.64 0.64 1.05 2.8
L1 error 0.44 0.0095 0.13 0.11 0.41 0.17

Figure 9: Comparison of the CPU times and accuracy of the proposed RD-VR1 method with
several alternatives in a test case involving a Rander metric, see §3.3 and §3.4. All errors
multiplied by 100 for readability. When testing second order accuracy, the seed point (0, 0) was
replaced with a precomputed solution on the centered disk of radius 5 pixels. Asterix ∗ first
time using the AGSI as decribed in [9], second time with a variant which limits the front width
to 10 pixels. See also remark 3.2.
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Figure 10: Numerical error as a function of gridsize for the two dimensional test cases. Second
order convergence is achieved in the L1 norm, and in the L∞ norm except for the Zermelo’s
navigation problem. See remark 3.2 for the experiment setup.

First order

Surface Seismic Zermelo
n L1 L∞ L1 L∞ L1 L∞

51 7.73 24.9 5.54 15.4 2.21 4.63
101 4.65 15.6 2.87 8.42 1.20 2.42
201 2.40 8.28 1.46 4.35 0.62 1.21
401 1.15 4.23 0.692 2.11 0.303 0.575

σ 1.06 0.97 1.08 1.04 1.05 1.08

Second order

Surface Seismic Zermelo
n L1 L∞ L1 L∞ L1 L∞

51 6.60 17.9 2.28 14.3 0.474 0.953
101 0.946 2.98 0.373 1.22 0.0887 0.657
201 0.149 0.527 0.050 0.142 0.0214 0.319
401 0.034 0.124 0.012 0.034 0.0044 0.162

σ 2.12 2.09 2.10 2.07 2.28 0.98

Figure 11: Numerical error observed with the proposed schemes, for the three test cases, for
several grid sizes n × n. Last line: exponent such that err(n) ≈ n−σ, obtained using n ∈
{201, 401}. All errors multiplied by 100 for readability.

26



Figure 12: (I,II,III) Numerical error using the second order scheme for the three tests, with
resolution n = 273, 273 and 375 respectively. The numerical error is O(h2), except on the
pixels displayed white where it is typically O(h). These are located close to the boundary in the
Riemannian cases, as well as along the cut locus and in other regions in the Rander case, which
uses a non-causal scheme. (IV) Computational domain [−0.5, 0.5]2. For the tests involving
second order finite differences, the exact solution is provided within the black disk of radius
0.05, so as to mitigate the numerical error related to the point source singularity, and the gray
region of width 0.05 is excluded from the computation of the L∞ error.

discretizations, solved via the single pass fast marching algorithm, and non-causal discretizations,
solved via iterative methods. These groups are analogous, in the context of distance computation
on graphs, to Dijkstra’s algorithm and Bellman-Ford’s algorithm respectively, in which case the
counterpart of causality is the positivity of the edge weights, see §1 .

The test cases, taken from [55], are two dimensional and involve smooth metrics of Rieman-
nian and Rander type with pronounced anisotropy. The good performance of the introduced
discretization is confirmed, in terms of accuracy and CPU time, although it does not outperform
e.g. the previous adaptive semi-Lagrangian schemes [34, 35] of the author.

Before proceeding, we would like to attract the attention of the reader to other qualities
of the FM-VR1 scheme introduced in this paper, which are not put into light by this specific
benchmark. Indeed, our discretization reliably handles much more extreme anisotropies than
those considered here, see §3.1, to the point that we can approximate sub-Riemannian metrics
§3.2. This is made possible by its full adaptivity, local and anisotropic. In addition, the Eule-
rian nature of the FM-VR1 makes its particularly simple to implement and cheap numerically,
especially as dimension increases, in comparison with semi-Lagrangian methods which require
to handle the complex combinatorics of the polyhedral neighborhood of each point, see (2). The
numerical cost reduction is particularly evident in the five dimensional sub-Riemannian exper-
iments, see §3.2, which run approximately five times faster9 using the FM-VR1 than with the
semi-Lagrangian implementation described in [23].

This benchmarks presented here extend previous works of the author published in [35, 34].

Causal discretizations.

• Fast Marching using Voronoi’s first reduction (FM-VR1), introduced in this paper.

• Fast-Marching using Lattice Basis Reduction (FM-LBR), and Fast-Marching using Adap-
tive Stencil Refinement (FM-ASR), introduced by the author in [34] and [35]. Like the
FM-VR1, these are a single pass methods, which require a cartesian grid, and achieve
their efficiency by the use of adaptive stencils built using techniques from lattice geometry.
In contrast with the FM-VR1, these are semi-Lagrangian discretizations. The FM-LBR

9Two dimensional instances do not show similar CPU time reduction, because numerical cost is in that case
dominated by the handling of a priority queue, rather than by geometrical computations.
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applies to two and three dimensional Riemannian metrics, while the FM-ASR applies to
two dimensional Finslerian metrics.

• The Monotone Acceptance Ordered Upwind method (MAOUM) [1] is a single pass semi-
Lagrangian method using adaptive stencils. It differs from the FM-LBR and FM-ASR by
its less sophisticated stencil construction, which produces large isotropic stencils, often at
the expense of accuracy and complexity.

• Fast-Marching using 8-point stencils (FM-8) is the original semi-Lagrangian scheme [61]
instantiated with non-adaptive stencils consisting of the 8 closest grid neighbors, see [29]
for a three dimensional extension. This method is non-consistent for Riemannian metrics
which condition number exceeds 1 +

√
2, because its stencils lack the acuteness property

[55]. Hence convergence towards the continuous problem solution fails as the grid is refined
in problem instances considered here. Nevertheless, the FM-8 is fast and its accuracy is
surprisingly competitive at low grid sizes.

Non causal discretizations. We use Adaptive Gauss Siedel Iterations (AGSI10) to solve the
following discretizations of the eikonal equation, which lack the causality property. We also
report some computation times obtained by limiting the front width to 5 pixels.

• Rander Distances using Voronoi’s First Reduction (RD-VR1), introduced in this paper.

• The Finite Element discretization (FE) of [9], a semi-Lagrangian discretization using non-
adaptive stencils extracted from a triangulation of the domain, here by half-squares.

Remark 3.2 (Experiment setup, possible sources of bias). All CPU times obtained using a
single thread. CPU times are empirical data, only indicative of general performance. CPU
times for the FM-VR1 and RD-VR1 obtained on a 2.7GHz core i7 laptop, whereas CPU times
for the other methods were copied from previous works [34, 35] and obtained using a 2.4 GHz
core 2 duo laptop. Numerical errors are with respect to a solution computed with the proposed
algorithms on a fine grid of resolution 2001 × 2001, and then bilinearly interpolated. In the
experiments involving the second order scheme, the boundary data is provided on a small disk
of radius 0.05 rather than a single point source, and a boundary layer of width 0.05 is excluded
from the L∞ error computation, as illustrated on Figure 12 (iv).

Discussion of accuracy. The numerical scheme introduced in this paper, the FM-VR1, be-
longs to the category of monotone discretizations of PDEs, also referred to as degenerate elliptic
[41]. This property ensures excellent stability and robustness properties, by the discrete com-
parison principle see Theorem 2.2, but limits the accuracy that can be achieved: monotone finite
difference schemes are at most first order consistent for first order equations (such as the eikonal
equation here considered), and at most second order for second order equations, see Theorem
4 in [41]. In this paragraph, we discuss some techniques aiming at improving the accuracy of
eikonal equation solvers, that have been proposed in the literature.

First, let us point out that the observed numerical error is O(h) in typical instances, see
Figures 10 and 11, despite the established rate of convergence being only O(

√
h), see Theorem

1.4. In order to further reduce the numerical error, one possibility that we consider here is to

10Note that in [34, 35] the acronym AGSI refers to discretization FE of [9]. This denomination is not proper,
since it ties the PDE discretization with the numerical solver used for the discrete system of equations.
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introduce second order accurate approximations of the directional derivatives of the solution, in
the spirit of the Higher Accuracy Fast Marching Method (HAFMM) introduced in [54]:

〈du(p), ė〉 =
1

h
(u(p + hė)− u(p))− 1

2h
(u(p)− 2u(p + hė) + u(p + 2hė)) +O(h2). (41)

This expression replaces the first order finite differences used in the FM-VR1 (17), in some
occurrences only and with enough caution and failsafe policies. Indeed, it breaks the monotony
of the scheme. In order to preserve the convergence guarantees, the numerical method should
fall back to the original first order upwind difference (u(p + hė)− u(p))/h whenever the second
order corrective term exceeds the expected O(h) magnitude11. This ensures that the solution
U∗h to the modified scheme obeys the original monotone scheme Fh defined in (17) up to an
O(h) error: FhU∗h = 1+O(h). From this point, recalling the 2-homogeneity of Fh and using the
discrete comparison principle, we obtain the global estimate U∗h = Uh +O(h) which implies the
convergence of U∗h . The improved convergence rate of U∗h , in comparison with the original scheme
solution Uh, is only (often) observed numerically, and is not established by the analysis. We
refer to [26] for a detailed analysis of related techniques in the (more complex) context of second
order PDEs, in particular of the Monge-Ampere equation, using the concepts of filtered-scheme
and of quasi-monotone discretization.

The solutions to eikonal equations typically have non-smooth singularities, which require a
special treatment if second order convergence is to be achieved.

• The cut locus is the collection of points p ∈ Ω reached by more than one minimal geodesic.
The solution u is non-differentiable on this set, denoted by C and which is typically a union
of (d−1)-dimensional manifolds. Fortunately, because the minimal paths for the addressed
problem do not cross C (geodesics loose optimality when they do so), the numerical error
associated with this singularity does not excessively pollute the rest of the numerical
solution.

An O(h) numerical error is in principle be expected at discretization points which stencil
goes accross the non-differentiability set C of the solution. This is observed in the Rander
test case, but surprisingly not in the Riemannian test cases where an O(h2) only error is
observed, see Figures 10 and 12. This empirical good surprise can be attributed to to the
limited diffusivity of the chosen discretization, see the discussion in [56].

• Point source singularities. In the considered test cases, as in many applications, the null
boundary condition u(p∗) = 0 is imposed at an isolated seed point, rather than on a full
domain’s boundary as in our theoretical results §1. This produces a non-differentiable
singularity with dominant term q 7→ ‖p∗ − q‖M(p∗) at the source point p∗. Similar
effects are encountered at the corners of obstacles [45]. Factoring techniques, additive or
multiplicative, incorporate corrective terms in the numerical scheme based on the analytic
expression of the singularity [33]. Another approach, used in our experiments on second
order accuracy, is to pre-compute the solution u on a finer grid in a small neighborhood
of the singularity.

• Outflow boundary solutions. In the considered test cases, as in many applications, out-
flow boundary conditions are imposed on part of the domain’s boundary, rather than null
Dirichlet conditions as in our theoretical results §1. As a result, some of the problem’s

11The implementation details of the fast marching method suggest additional restrictions, discussed in [54], such
as requiring upwinding u(p+2ė) ≤ u(p), and limiting the use of second order finite differences to a recomputation
stage executed when a point of the front propagation is accepted and its value is frozen.
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minimal paths are the (non-smooth) concatenation of usual geodesics and of parts of the do-
main’s boundary. A similar issue occurs with non-constant Dirichlet boundary conditions
unless they are K-Lipschitz with respect to the metric [9], with K < 1. This phenomenon
limits the smoothness of the problem solution, and raises numerical difficulties.

In our experiments using the second order scheme, we exclude a small band along ∂Ω from
the L∞ error computation, where this phenomenon causes the error to be O(h) instead of
O(h2). This is sufficient in the Riemannian test cases, but not in the Rander case where
the non-causality of the scheme causes the error to diffuse more inside the domain, see
Figure 12.

Finally, let us mention multi-stencil schemes [27] and other variants [22] of the fast marching
method, which improve accuracy by the use of stencils wider than strictly necessary, featuring
in particular the diagonal directions of the discretization grid.

4 Conclusion

In this paper, we introduced a new discretization of anisotropic eikonal equations on Cartesian
grids. The discretization makes use of adaptive stencils built using a tool from discrete geometry:
Voronoi’s first reduction of quadratic forms.

A convergence proof is provided, with convergence rates, in the setting of Riemannian met-
rics, but also of sub-Riemannian and of asymmetric Rander metrics. Numerical experiments
show that the method is particularly suitable for problems involving strong anisotropy, such as
Riemannian tensor condition numbers of ≈ 10 and more, and scales well up to dimension d = 5.

Future directions of research include designing causal discretizations for non-symmetric
Hamiltonians, addressing point sets more general than cartesian grids, either unstructured or
obtained by gluing several grid patches of different scales, and developing applications to motion
planning and image segmentation.

Acknowledgement. The author thanks Da-Chen12, Jorg Portegies13 and Erik Bekkers14, for
careful testing, bug-fixing, and feed-back on the numerical codes.
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[40] Phong Q. Nguyen and Damien Stehlé. Low-dimensional lattice basis reduction revisited.
In Ducan Buell, editor, ANTS, pages 338–357. Springer, 2004.

[41] A M Oberman. Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equa-
tions: Hamilton-Jacobi Equations and Free Boundary Problems. SIAM Journal on Numer-
ical Analysis, 44(2):879–895, January 2006.

[42] Stanley Osher. A level set formulation for the solution of the Dirichlet problem for
Hamilton–Jacobi equations. SIAM Journal on Mathematical Analysis, 24(5):1145–1152,
1993.

[43] Jean Petitot. The neurogeometry of pinwheels as a sub-Riemannian contact structure.
Journal of Physiology-Paris, 97(2-3):265–309, March 2003.
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A Convergence in the sub-Riemannian case

This section is devoted to the proof of Theorem 1.9, namely the numerical analysis of the
FM-VR1 scheme introduced in this paper in the sub-Riemannian (or pre-Riemannian) setting.
The estimates of u − uε and uε − Uh,ε, respectively related to the model relaxation and to its
discretization, are presented separately in §A.1 and §A.2. The arguments used to prove the
Lipschitz regularity of the solution u to the continuous problem, and to control the growth close
to ∂Ω of the solution Uh,ε to the relaxed and discretized problem, differ substantially from those
used in the Riemannian case.

Before turning to these proofs, we recall two basic results on the regularity of the orthogonal
projection onto a set, assumed respectively to be convex or to have a smooth boundary. Let
dB(p) := minq∈B ‖p− q‖ denote the distance to a non-empty closed set B ⊆ E, and let PB(p)
denote the minimizer q ∈ B for dB(p), when it is unique. The Haussdorff distance between two
closed subsets of E is denoted H(·, ·).

Proposition A.1. Let p,p′ ∈ E, and let B,B′ ⊆ E be non-empty closed and convex. Then

‖PB(p)− PB(p′)‖ ≤ ‖p− p′‖, ‖PB(p)− PB′(p)‖ ≤
√
H(B,B′)

√
dB(p) + dB′(p). (42)

Proof. The uniqueness and Lipschitz regularity of the projection onto a convex set (42, left),
are extremely classical hence their proof is omitted. Proof of (42, right). Let q := PB(p) and
q′ := PB′(p). We first assume that p 6= q, and regard q − p as a co-vector by Riez duality.
Observe that B is contained in the half space H := {r ∈ E; 〈q− p, r− q〉 ≥ 0}, hence

H(B,B′) ≥ dB(q′) ≥ dH(q′) = max
{

0,

〈
q− p

‖q− p‖
,q− q′

〉}
≥ 〈q− p,q− q′〉/dB(p).

Thus dB(p)H(B,B′) ≥ 〈q − p,q − q′〉, and this inequality also holds without the assumption
q 6= p. Summing this identity with the similar one obtained exchanging the roles of (B,B′) and
(q,q′) we obtain (dB(p) + dB′(p))H(B,B′) ≥ 〈(q− p) + (p− q′),q− q′〉 = ‖q− q′‖2 which is
the announced result.

Here and below, slightly abusively, we regard normal vectors to ∂Ω as co-vectors.

Proposition A.2. Assume that the domain boundary ∂Ω admits outward normals n(q), q ∈ ∂Ω,
which have 1/RΩ-Lipschitz regularity w.r.t. q. Then P∂Ω(p) is uniquely defined for all p ∈ E
such that d∂Ω(p) < RΩ. Furthermore d∂Ω(p + ė), for p, ė ∈ E, is either zero or obeys

d∂Ω(p + ė) ≤ d∂Ω(p) + 〈n(p), ė〉+
‖ė‖2

2RΩ
, where n(p) := n(PB(p)).

Proof. The Lipschitz assumption on the normals implies, for any q ∈ ∂Ω, the inclusions B(q−
RΩn(q), RΩ) ⊆ Ω and B(q +RΩn(q), RΩ) ⊆ E \ Ω. Fix p ∈ E, and let q ∈ ∂Ω be an arbitrary
closest point to p. The first inclusion implies the announced uniqueness when d∂Ω(p) < RΩ,
and the second inclusion, together with Lemma 2.9 applied to ‖(q +RΩn(q)− p)− ė‖, implies
the distance estimate.

A.1 Estimating uε − u

In this subsection we bound, in the uniform norm, the difference between the value function u of
the pre-Riemannian problem, and the one uε associated to the Riemannian approximation (19),
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for any 0 < ε ≤ 1. Assumption 1.7, on global controllability and short time local controllability
at the boundary, is central in the proof. Related arguments can be found in [3], but the proof
is provided for completeness and because in the process we establish estimates used in §A.2.
We use the notations and assumptions of Theorem 1.9. Let us introduce the control sets of the
Riemannian relaxation

Bε(p) := {ṗ ∈ E; ‖ṗ‖Mε(p) ≤ 1}

for each 0 < ε ≤ 1, p ∈ Ω, with the convention that B0 denotes the pre-Riemannian control sets
of Definition 1.6. Note the inclusion Bε(p) ⊆ Bε′(p) for any 0 ≤ ε ≤ ε′ ≤ 1, which implies the
pointwise inequalities TBε(p,q) ≥ TBε′ (p,q) for the control times, and uε(p) ≥ uε′(p) for the

exit times, for any p,q ∈ Ω.
Our first lemma establishes the Lipschitz regularity of the control sets Bε(p) and of the

tensors Dε(p) with respect to the position p ∈ Ω and the relaxation parameter ε ∈ [0, 1]. The
control sets regularity allows to apply Gronwall’s Lemma in the proof of Proposition A.4, whereas
the tensors regularity is used in §A.2 for establishing Assumption (i) of the doubling of variables
argument Theorem 2.3. Denote by Aε(p) the matrix of columns ω̇1, · · · , ω̇n, εω̇∗1, · · · , εω̇∗n∗ , for
all 0 ≤ ε ≤ 1, p ∈ Ω. Since the these vector fields are Lipschitz and bounded, the matrix field
Aε obeys for some constant CDLip the following Lipschitz regularity property: for all p,q ∈ Ω
and all ε, ε′ ∈ [0, 1]

max{‖Aε(p)−Aε′(q)‖, ‖AT
ε (p)−AT

ε′(q)‖} ≤ CDLip(‖p− q‖+ |ε− ε′|). (43)

Recall that the operator norm of an m × n matrix A is defined by ‖A‖ := sup{‖Aṙ‖; ṙ ∈
Rn, ‖ṙ‖ ≤ 1}. One easily checks that ‖A‖ = ‖AT‖ for any matrix A, hence the l.h.s. of (43)
could be slightly simplified, but we prefer to emphasize the fact that both the regularity of the
matrix field Aε and of its transpose are used.

Lemma A.3. One has the Lipschitz regularity: for all p,q ∈ Ω, ε, ε′ ∈ [0, 1], and all r̂ ∈ E∗

H(Bε(p),Bε′(q)) ≤ CDLip(‖q− p‖+ |ε− ε′|) (44)∣∣‖r̂‖Dε(p) − ‖r̂‖Dε′ (q)

∣∣ ≤ CDLip(‖q− p‖+ |ε− ε′|)‖r̂‖. (45)

Proof. For any maps ϕ,ψ from an arbitrary spaceX to E, one hasH(ϕ(X), ψ(X)) ≤ supx∈X ‖ϕ(x)−
ψ(x)‖. Observing that Bε(p) = (Aε(p))(B), where B is the unit ball of Rn+n∗ , we obtain

H(Bε(p),Bε′(q)) ≤ sup
x∈B
‖Aε(p)x−Aε′(q)x‖ = ‖Aε(p)−Aε′(q)‖ ≤ CDLip(‖q− p‖+ |ε− ε′|).

which is (44). Observing that Dε(p) = Aε(p)Aε(p)T, see Definition 1.6, we obtain (45), since∣∣‖r̂‖Dε(p) − ‖r̂‖Dε′ (q)

∣∣ =
∣∣‖AT

ε (p)r̂‖ − ‖AT
ε′(q)r̂‖

∣∣ ≤ ‖AT
ε (p)−AT

ε′(q)‖‖r̂‖.

Proposition A.4. Let 0 ≤ ε0 ≤ 1, let γ0 : [0, T0] → Ω be a Bε0-admissible path, see Definition
1.3, and let p0 := γ0(0). Let 0 ≤ ε1 ≤ 1, and let γ1 : [0, T1]→ Ω be a solution to the ODE

γ̇1(t) := PBε1 (γ1(t))(γ̇0(t)),

with initial condition γ1(0) = p1 ∈ Ω, where the final time T1 is either T0 or the time where γ1

reaches ∂Ω. Then γ1 is B1-admissible, and for any 0 ≤ t ≤ T1 one has

|γ0(t)− γ1(t)| ≤ (|p0 − p1|+ |ε0 − ε1|) exp(CBLipt)− |ε0 − ε1|.
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Proof. The orthgonal projection PB(p), of a given p ∈ E , depends continuously (in fact with
(1/2)-Holder regularity) on the closed and convex set B, see Proposition A.1. The right hand
side of (A.4) therefore depends continuously on γ1(t), hence this ODE admits solutions by
Peano’s existence theorem. Note that the Picard-Lindelof/Cauchy-Lipschitz uniqueness theorem
does not apply since it requires Lipschitz regularity of the r.h.s., but the lack of uniqueness is
fortunately not an issue in this proof.

The Bε1-admissibility of γ1 holds by construction, and since γ̇0(t) ∈ Bε0(γ0(t)) one has

|γ̇0(t)− γ̇1(t)| ≤ H(Bε0(γ0(t)),Bε1(γ1(t))) ≤ CBLip(|ε0 − ε1|+ |γ0(t)− γ1(t)|),

for any 0 ≤ t ≤ T1. The announced estimate then follows from Gronwall’s lemma.

The following lemma makes use of the transversality property in Assumption 1.7 to upper
bound the exit time function uε close to the domain boundary ∂Ω. This property is equivalent
to: ‖n(p)‖2D(p) =

∑n
i=1〈n(p), ω̇i(p)〉2 6= 0 for all p ∈ ∂Ω, where n(p) denotes the outward

normal to ∂Ω. Hence denoting n(p) := n(P∂Ω(p)) for p close enough to ∂Ω, as in Proposition
A.2, there exists by continuity positive constants cD, cΩ such that

‖n(p)‖D(p) ≥ cD, for all p ∈ Ω such that d∂Ω(p) ≤ cΩ. (46)

In the next lemma and proposition we construct paths from an arbitrary point p ∈ Ω to ∂Ω,
whereas the original problem (9) is to find a path from ∂Ω to p. This change of orientation is
only used for notational simplicity, and is valid since the paths can be reverse parametrized, and
since the control sets are symmetric: Bε(p) = {−ṗ; ṗ ∈ Bε(p)}, for all p ∈ Ω, ε ∈ [0, 1].

Lemma A.5. For all p ∈ Ω such that d∂Ω(p) ≤ cΩ, one has u(p) ≤ d∂Ω(p)/cD.

Proof. Let DΩ := {q ∈ Ω; d∂Ω(q) ≤ cΩ}. Define a vector field v̇ : DΩ→ E by

v̇(q) :=
D(q)n(q)

‖n(q)‖D(q)
= A0(q)

AT
0 (q)n(q)

‖AT
0 (q)n(q)‖

,

for all q ∈ DΩ, and note that v̇(q) ∈ B(q). Consider the solution to the ODE γ̇(t) := v̇(γ(t)),
with initial condition γ(0) = p ∈ DΩ, stopping at the time T ∈ [0,∞] when γ leaves DΩ. By
construction, γ is a Bε-admissible path, and for all 0 ≤ t ≤ T one has by Proposition A.2

d

dt
d∂Ω(γ(t)) = −〈n(γ(t)), v̇(γ(t))〉 = −‖n(γ(t))‖D(γ(t)) ≤ −cD.

Therefore T ≤ d∂Ω/cD and γ(T ) ∈ ∂Ω, hence u(p) ≤ T and the announced result follows.

The following proposition establishes the Lipschitz regularity of uε(p) with respect to both
ε ∈ [0, 1] and p ∈ Ω. Regularity w.r.t. ε proves (20, left) in Theorem 1.9, which was the aim of
this section. Regularity w.r.t. p is used in the next subsection to apply the doubling of variables
techniques.

Proposition A.6. One has the Lipschitz regularity property

|uε0(p0)− uε1(p1)| ≤ CuLip(‖p0 − p1‖+ |ε0 − ε1|). (47)

for all p0,p1 ∈ Ω and all ε0, ε1 ∈ [0, 1], where CuLip := exp(CBLip‖u‖∞)/cD.
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Proof. Assume w.l.o.g. that uε0(p0) ≤ uε1(p1). Let γ0 : [0, T0]→ Ω be an optimal Bε0-admissible
path from p0 to ∂Ω, where T0 := uε0(p0). Let γ1 : [0, T1] → Ω be as in Proposition A.4. If
γ1(T1) ∈ ∂Ω, then u1(p1) ≤ T1 ≤ T0 and the result follows.

Otherwise by Proposition A.4 we get d∂Ω(γ1(T0)) ≤ ‖γ1(T0)− γ0(T0)‖ ≤ C(|ε0− ε1|+ ‖p0−
p1‖) with C := exp(CLipT0). Therefore

uε1(p1) ≤ T0 + d∂Ω(γ1(T0))/cD ≤ uε0(p0) + CuLip(‖p0 − p1‖+ |ε0 − ε1|)

as announced, using Lemma A.5 and recalling that uε1 ≤ u0 = u on Ω, and assuming that
d∂Ω(γ1(T0)) ≤ cΩ. Thus (47) holds for all (p0, ε0), (p1, ε1) ∈ Ω × [0, 1] obeying ‖p0 − p1‖ +
|ε0 − ε1| ≤ cΩ/C. By defining uε(p) = 0 for all p ∈ E \ Ω, ε ∈ [0, 1], the result extends to
all (p0, ε0), (p1, ε1) ∈ E × [0, 1] subject to the same closeness constraint, which finally can be
removed since Lipschitz regularity on a convex set is a local property.

A.2 Estimating Uh,ε − uε

In this subsection we complete the proof of Theorem 1.9 by estimating the difference |Uh,ε−uε|
on Ωh, for any h > 0, ε ∈]0, 1], using the doubling of variables technique Theorem 2.3. We use
the notations and assumptions of Theorems 1.9 and 2.3, except of course assumptions (i) and
(ii) of the latter which we intend to prove.

The first assumption of Theorem 2.3 is the Lipschitz regularity of the value function uε, which
is established in Proposition A.6 above, with a constant CuLip independent of ε. Note that, in
contrast, naively adapting the Riemannian argument of Proposition 2.5 yields the Lipschitz
constant λ(Mε) ≈ ε−1 exploding as ε→ 0, and thus unsuitable for proving Theorem 1.9.

The next step is to establish assumption (i) of Theorem 2.3. Lemma 2.6 from the Riemannian
case applies without modification to uε and Uh,ε since it does not involve quantitative properties
of the Riemannian metric field Mε. Lemma 2.7 from the Riemannian case also applies, with
constants independent of ε ∈]0, 1]. Indeed the dual tensors have the expression Dε = D+ ε2D∗,
see (19), and therefore their max norm (28) is bounded λ∗(Dε) ≤ λ∗(D1) independently of
ε ∈ [0, 1]. The last ingredient used to prove assumption (i) in the Riemannian case is the
Lipschitz regularity of the dual norms (31), which is established in (45) for the pre-Riemannian
model with a constant CDLip independent of ε ∈ [0, 1].

The following proposition establishes assumption (ii) of Theorem 2.3, a discrete counterpart
of short time local controllability at the boundary, by adapting the arguments developed in the
Riemannian case, see Proposition 2.10. Note the use Assumption 1.7, which is required due to
the lack of uniform definiteness of the the tensors Dε, 0 < ε ≤ 1. The weights and offsets used
in the decomposition (15) of Dε(p) are denoted (ρi,ε(p), ėi,ε(p))d

′
i=1, p ∈ Ω, 0 < ε ≤ 1.

Proposition A.7. Let p ∈ Ωh be such that d(p, ∂Ω) ≤ cΩ, and let ε ∈]0, 1]. Then there exists
1 ≤ i ≤ d′ and a sign s ∈ {−1, 1} such that either p + hsėi,ε /∈ Ωh or

Uh,ε(p) ≤ Uh,ε(p + hsėi,ε) + hC1‖ėi,ε‖, d(p + hsėi,ε, ∂Ω) ≤ d(p, ∂Ω)− hc2‖ėi,ε‖,

with C1 :=
√
d′/cD and c2 := cD/(2λ

∗(D1)
√
d′). This implies assumption (ii) of Theorem 2.3,

with the constants Cbd = C1/c2, C ′bd := Cbdrε, and cbd = cD.

Proof. Using Assumption 1.7 and (46), one obtains a counterpart for (35)

c2
D ≤ ‖n(p)‖2Dε(p) =

∑
1≤i≤d′

ρi,ε(p)〈n(p), ėi,ε〉2,

where n(p) := n(P∂Ω(p)). The proof is then similar to the one of Proposition 2.10, up to the
replacement of Lemma 2.9 with Proposition A.2.
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B Convergence in the Rander case

This section is devoted to proof of Theorem 1.11, namely the numerical analysis of the Rander
metric variant of our PDE discretization scheme, using its notations and assumptions. Con-
sider the scheme Fh on the discrete domain Ωh defined for any U : Ωh → R and p ∈ Ωh by
(FhU(p))2 :=

h−2
∑

1≤i≤d′
ρi(p) max{0, U(p)−U(p+hėi)+h〈η̂(p), ėi〉, U(p)−U(p−hėi)−h〈η̂(p), ėi〉}2. (48)

By convention, U is extended by 0 outside Ωh. Note that this scheme is non-causal as soon as
some of the terms h〈η̂(p), ėi〉 are non-zero, see Definition 2.1, in contrast with (27).

Proposition B.1. The scheme (48) is monotone. In addition:

(i) The null map U = 0 satisfies FhU(p) = ‖η̂(p)‖2D(p) < 1 for all p ∈ Ωh, hence it is a
sub-solution for Fh − 1.

(ii) Let R > 0 be such that Ω is contained in the ball of radius R−hr∗, and let U(p) := R−‖p‖,
for all p ∈ Ωh. Then for all λ ≥ 0, and all p ∈ Ωh,

Fh(λU)(p) ≥ ‖λp/‖p‖ − η̂(p)‖2D(p),

where p/‖p‖ can be replaced with an arbitrary unit vector in the case p = 0. Thus λU is
a super-solution for all sufficiently large λ.

(iii) Let U is a super-solution for Fh − 1, and let p1, · · · ,pN be the points of Ωh ordered in
such way that U(p1) ≤ · · · ≤ U(pN ). For each ε > 0 let Vε : Ωh → R be defined by
Vε(pi) = U(pi) + ε− ε1+i. Then Vε is a strict super-solution to Fh − 1 for all sufficiently
small ε.

Proof. Point (i) follows from the identity
∑

1≤i≤d′ ρi(p)〈η̂(p), ėi〉2 = ‖η̂(p)‖2D(p), and the small-

ness assumption (21, right) on the co-vector field η̂. Point (ii) is proved as in Proposition
2.4. Point (iii) is in contrast non-trivial. Let U be a super-solution for Fh − 1 and let
1 ≤ k ≤ N . Denote by mi(p) the i-th maximum of three terms appearing in (48), so that

FhU(p) =
∑d′

i=1 ρi(p)mi(p)2 for each p ∈ Ωh. Then one has the Taylor expansion

FhVε(pk)− FhU(pk) = 2
∑

1≤i≤d′
ρi(pk)mi(pk)(ε

1+ki − ε1+k) +O(ε2+2k∗), (49)

where ki is an integer depending on i ∈ {1, · · · , d′} and k, and chosen so that pki = pk, (resp.
pki = pk + hėi, resp. pki = pk − hėi) if the maximum defining mi(pk) is achieved for the first
(resp. second, resp. third) term. (If this point is outside Ωh, we let ki = 0. In case of a tie, the
point with smallest index is chosen.) We also denoted k∗ := min{ki; 1 ≤ i ≤ d′}.

We prove below that ki < k for some 1 ≤ i ≤ d′, which by (49) implies that FhVε(pk) >
FhU(pk) ≥ 1 for all sufficiently small ε > 0 as announced. Assume for contradiction that ki ≥ k
for all 1 ≤ i ≤ d′, hence that U(pki) ≥ U(pk) and therefore that mi(pk) ≤ |〈η̂(pk), ėi〉| for all
1 ≤ i ≤ d′. Then denoting p := pk one obtains

FhU(p) =
∑

1≤i≤d′
ρi(p)mi(p)2 ≤

∑
1≤i≤d′

ρi(p)〈η̂(p), ėi〉2 = ‖η̂(p)‖2D(p) < 1,

in contradiction with our assumption that U is a super-solution for Fh−1. The result follows.
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In the rest of this section, we establish the properties required to apply the doubling of vari-
ables argument Theorem 2.3, using its notations. The first ingredient is the Lipschitz regularity
of the exit time value function u. By construction the Rander metric (21) satisfies for all p ∈ Ω
and all ṗ ∈ E.

Fp(ṗ) = ‖ṗ‖M(p) + 〈η̂(p), ṗ〉 ≤ (λ∗(M) + ‖η̂‖∞)‖ṗ‖.

Hence u is CuLip-Lipschitz by Proposition 2.5, as desired, with constant CuLip := λ∗(M) + ‖η̂‖∞
where the max-norm λ∗(M) of a tensor field is defined in (28).

Establishing assumption (i) of Theorem 2.3. We proceed similarly to the Riemannian
case §2.2, starting with an extension of Lemma 2.6 to Rander metrics. The proof, left to the
reader, is similar up to fact that the scheme FhU and the PDE operator ‖du − η̂‖D are not
homogeneous w.r.t. their respective argument U and u. The variables λ ∈ [1/2, 1[, δ > 0,
(p,q), (p̃, q̃) ∈ Ωh × Ω are from Theorem 2.3.

Lemma B.2. Let w := (p− q)/δ and let U(p) := 〈w,p〉+ 1
2δ‖p− p‖2, for all p ∈ Lh. Then

Fh(U/λ)(p) ≤ 1 ‖w − η̂(q)‖D(q) ≥ 1.

Let w̃ := (p̃− q̃)/δ and let Ũ(p) := 〈w̃,p〉 − 1
2δ‖p− p̃‖2, for all p ∈ Lh. Then

FhŨ(p̃) ≥ 1 ‖w̃/λ− η̂(q̃)‖D(q̃) ≤ 1.

Let CDLip be a Lipschitz regularity constants for the tensors D, in the sense of (31). Let also

C η̂Lip and cD,η̂ > 0 be such that for all p,q ∈ Ω

‖η̂(p)− η̂(q)‖ ≤ C η̂Lip‖p− q‖, ‖η̂(p)‖D(p) ≤ 1− cD,η̂.

Similarly to the Riemannian case, we argue by contradiction to establish assumption (i).
Indeed, a contraposition of the following lemma shows that, if parameter λ is below a given
bound, then (p,q) /∈ Ωh × Ω and (p̃, q̃) /∈ Ωh × Ω, which is assumption (i) of Theorem 2.3.

Lemma B.3. Assume that (p,q) ∈ Ωh × Ω and define w and U as in Lemma 2.6. Then∣∣∣Fh(U/λ)(p)− ‖w/λ− η̂(p)‖D(p)

∣∣∣ ≤ C0r∗
h

δ
,
∣∣‖w − η̂(q)‖D(q) − ‖w − η̂(p)‖D(p)

∣∣ ≤ C1δ,

(50)

with C0 := λ∗(D)
√
d and C1 := CDLip(4CuLip)(4CuLip+C η̂Lip)+λ∗(D)C η̂Lip. Assuming δ ≤ cD,η̂/(2C1)

this implies λ ≥ 1− 2
cD,η̂

(C0r∗
h
δ + C1δ). The same estimates and conclusion hold for (p̃, q̃).

Proof. We focus on the case of (p,q), the second case of (p̃, q̃) being similar, and we begin with
the proof of (50, left). By definition of the quadratic function U , one has for any 1 ≤ i ≤ d′

max{0, U(p)/λ− U(p + ėi)/λ+ h〈η̂(p), ėi〉, U(p)/λ− U(p− ėi)/λ− h〈η̂(p), ėi〉} (51)

= h|〈w/λ− η̂(p), ėi〉|+
h2

δ
‖ėi‖2.

From this point, the arguments developed in the Riemannian case apply without modification.
The second estimate (50, right) follows from∣∣‖w − η̂(q)‖D(q) − ‖w − η̂(p)‖D(p)

∣∣ ≤ CDLip‖p− q‖(‖w‖+ ‖η̂(q)‖) + λ∗(D)C η̂Lip‖p− q‖,
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combined with ‖p − q‖ ≤ 4CuLipδ, see Theorem 2.3, hence ‖w‖ ≤ 4CuLip. Combining the two
estimates (32) with Lemma B.2, and using the convexity of the norm, we obtain

1 + C0r∗
h

δ
≥ ‖w/λ− η̂(p)‖D(p) ≥ ‖w − η̂(p)‖D(p) +

1/λ− 1

‖w − η̂(p)‖D(p)
〈w,D(p)(w − η̂(p))〉

The scalar product in the above r.h.s. is bounded below as follows

2〈w,D(p)(w − η̂(p))〉 = ‖w − η̂(p)‖2D(p) + ‖w‖2D(p) − ‖η̂(p)‖2D(p)

≥ ‖w − η̂(p)‖2D(p) − (1− cD,η)2

Using ‖w− η̂(p)‖D(p) ≥ 1−C1δ, and assuming 2C1δ ≤ cD,η for the second inequality, we obtain

1 + C0r∗
h

δ
≥ (1− C1δ) + (1/λ− 1)

(
(1− C1δ)−

(1− cD,η)2

1− C1δ

)
≥ (1− C1δ) + (1− λ)

cD,η
2
.

We used the elementary inequalities 1/λ− 1 ≥ 1− λ and (1− c/2)− (1− c)2/(1− c/2) ≥ c/2.
This implies the announced lower bound for λ.

Establishing assumption (ii) of Theorem 2.3. The case of Rander metrics only requires
a minor adaptation of the Riemannian argument, presented Proposition 2.10.

Proposition B.4. Let p ∈ Ωh, and let q ∈ E be such that ‖p − q‖ ≥ C0r∗h, where C0 :=
µ(D)

√
d′. Then there exists 1 ≤ i ≤ d′ and a sign s ∈ {−1, 1} such that

Uh(p) ≤ Uh(p + hsėi) + hC1‖ėi‖, ‖p + hsėi − q‖ ≤ ‖p− q‖ − hc2‖ėi‖,

with C1 := λ∗(M)
√
d′ + ‖η̂‖∞, c2 := 1/(2µ(D)

√
d′). This implies assumption (ii) of Theorem

2.3, with the constants CUbd = C1/c2, C ′Ubd := CbdCΩC0r∗, and cUbd = +∞.

Proof. The arguments developed in the Riemannian case apply with the following adaptation of
(37): by definition of the discretization scheme (48) one has h−2ρ2 max{0, Uh(p)− Uh(p + ė)−
h〈η̂(p), ė〉}2 ≤ (FhUh(p))2 = 1, hence

U(p)− U(p + ė) ≤ h

ρ
+ h〈η̂(p), ė〉 ≤ h‖ė‖(

√
d′

λ∗
+ ‖η̂‖∞).

C Doubling of variables

We establish in this section the doubling of variables argument, presented in Theorem 2.3 and
adapted from [24]. Since the domain Ω is by assumption bounded, its closure Ω is compact, and
its sampling Ωh := Ω ∩ hL is finite. Since the functions u and Uh are supported on these sets,
and since u is CLip-Lipschitz hence continuous, the maxima Mλ,δ and M̃λ,δ are well defined and
attained, at some point pairs (p,q), (p̃, q̃) ∈ (hL)×E. Our first step is to establish the closeness
of p with q, and of p̃ with q̃, as announced in Theorem 2.3.

Lemma C.1. Under the assumptions of Theorem 2.3, one has max{‖p−q‖, ‖p̃−q̃‖} ≤ 4CLipδ.
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Proof. Using the optimality properties defining (p,q) and (p̃, q̃), see Theorem 2.3, and compar-
ing with the alternative point pairs (p,p) and (p̃, p̃) respectively, one obtains

λUh(p)− u(q)− 1

2δ
‖p− q‖2 = Mλ,δ ≥ λUh(p)− u(p),

λu(q̃)− Uh(p̃)− 1

2δ
‖p̃− q̃‖2 = M̃λ,δ ≥ λu(p̃)− Uh(p̃).

The next line is obtained by first rearranging the terms of these inequalities, eliminating in
particular the instances of Uh, and then using the Lipschitz regularity of u

1

2δ
‖p− q‖2 ≤ u(p)− u(q) ≤ CLip‖p− q‖, 1

2δ
‖p̃− q̃‖2 ≤ λ(u(q̃)− u(p̃)) ≤ λCLip‖q̃− p̃‖.

The announced result follows from these estimates and the upper bound 1/λ ≤ 2.

The rest of this section is devoted to the proof of (25), and begins with an estimate of u−Uh
in terms of the suprema Mλ,δ, M̃λ,δ and of the max norm ‖u‖∞ := supE |u|, which is well defined
by continuity of u and compactness of its support.

Lemma C.2. Under the assumptions of Theorem 2.3, one has

sup
p∈hL

|u(p)− Uh(p)| ≤ 2
(

max{Mλ,δ, M̃λ,δ}+ (1− λ)‖ u‖∞
)
.

Proof. By the optimality properties of (p,q) and (p̃, q̃) one obtains for any p ∈ Ωh, respectively,

Mλ,δ ≥ λUh(p)− u(p) ≥ λ(Uh(p)− u(p))− (1− λ)‖u‖∞.

M̃λ,δ ≥ λu(p)− Uh(p) ≥ (u(p)− Uh(p))− (1− λ)‖u‖∞.

The announced result follows from these one-sided estimates on u− Uh, and from 1/λ ≤ 2.

The next paragraph establishes some conditional estimates on Mλ,δ and M̃λ,δ, depending on
the location of the points p,q, p̃, q̃. If p̃ ∈ hL \ Ωh, then Uh(p̃) = 0 and we obtain

M̃λ,δ = λu(q̃)− 1

2δ
‖p̃− q̃‖2 ≤ λu(q̃) ≤ λCLipd∂Ω(q̃) ≤ CLip‖p̃− q̃‖ ≤ 4C2

Lipδ. (52)

We used successively the negativity of the quadratic term, the Lipschitz regularity of u and the
fact that it vanishes outside Ω, the fact that p̃ ∈ hL \ Ωh ⊆ E \ Ω, and the previously obtained
estimate on p̃− q̃. Likewise, if p ∈ hL \ Ωh then Mλ,δ ≤ −u(p) ≤ 4C2

Lipδ.
Next if q ∈ E \ Ω, then u(q) = 0 and we obtain similarly to (52)

Mλ,δ = λUh(p)− 1

2δ
‖p− q‖2 ≤ Uh(p) ≤ Cbdd∂Ω(p) + C ′bdh ≤ 4CLipCbdδ + C ′bdh.

We used the same arguments as in (52), except for the second inequality which is based on

assumption (ii) of Theorem 2.3. Likewise, if q̃ ∈ E \Ω then M̃λ,δ ≤ −Uh(p̃) ≤ Cbd(h+ 4CLipδ).
Following assumption (i) of Theorem 2.3, we assume that (p,q) /∈ Ωh×Ω, thus either p /∈ Ωh

or q /∈ Ω, which yields by the above arguments

Mλ,δ ≤ max{4C2
Lipδ, 4CLipCbdδ + C ′bdh}.

Likewise for M̃λ,δ using the assumption that (p̃, q̃) /∈ Ωh×Ω. The announced result (25) follows

from Lemma C.2 and the these bounds on Mλ,δ and M̃λ,δ.
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D Selling’s algorithm

This appendix is devoted to Selling’s algorithm [18], which allows in dimension d ≤ 3 to compute
Voronoi’s first reduction (5), and the related tensor decomposition (6) which is at the foundation
of our numerical scheme. This algorithm is used in all the numerical experiments presented in
this paper. For that purpose, we need to introduce a few concepts from lattice geometry. The
vertices (resp. edges) of a polyhedron are its 0-dimensional (resp. 1-dimensional) facets.

Definition D.1. A superbase of Zd is a (d + 1)-tuple b = (v0, · · · ,vd) ∈ (Zd)d+1 such that
|det(v1, · · · ,vd)| = 1 and v0 + · · ·+ vd = 0. One also defines Mb := 1

2

∑d
i=0 viv

T
i ∈ S++(E).

In dimension d ≤ 3, the vertices of Ryskov’s polyhedron P ⊆ S++(Rd), defined in (4), are the
matrices Mb, where b = (v0, · · · ,vd) is an arbitrary superbase of Zd. See [17, 59] for a similar
classification, in dimension d ≤ 8, of these vertices under the name of perfect forms. The vertices
joined to Mb by an edge of the polyhedron P are in dimension d = 2 (resp. d = 3) associated
with the superbases

b′ = (−vi,vj ,vi − vj)
(

resp. b′ = (−vi,vj ,vk + vi,vl + vi)
)
, (53)

where {i, j, k} (resp. {i, j, k, l}) is an arbitrary permutation of {0, · · · , d}. In addition one has

Tr(Mb′D) = Tr(MbD)− Cd〈vi, Dvj〉, (54)

where C2 = 2 and C3 = 1. Selling’s algorithm, given an input matrix D and a superbase
b = (v0, · · · ,vd), looks for indices 0 ≤ i < j ≤ d such that 〈vi, Dvj〉 > 0. If any exists, then the
superbase is replaced with (53) and the process is repeated. Otherwise the algorithm stops, and
yields what is called a D-obtuse superbase, i.e. 〈vi, Dvj〉 ≤ 0 for all i 6= j.

Clearly, this algorithm is equivalent to a walk on the graph defined by the vertices and the
edges of Ryskov’s polyhedron Md, in which the next vertex is a neighbor selected so as to
reduce the objective function M 7→ Tr(MD). Since Voronoi’s first reduction (5) is a well posed
linear program, the process eventually ends, similarly to the classical simplex algorithm. The
vertex Mb associated to the eventual D-obtuse superbase b = (v0, · · · ,vd) is optimal, and the
corresponding Karush-Kuhn-Tucker relations read

D = −
∑

0≤i<j≤d
〈vi, Dvj〉 eij ⊗ eij ,

where eij := v⊥k in dimension d = 2 and with {i, j, k} = {0, 1, 2}, and eij := vk×vl in dimension
d = 3 and with {i, j, k, l} = {0, 1, 2, 3}. See e.g. Lemma 4.4 in [37] for this matrix identity.

The numerical cost of Selling’s algorithm, in our applications which involve condition num-
bers . 100, is low enough to be neglected. For application involving (much) higher condition
numbers, it is natural to perform a preliminary basis reduction [40], with cost O(ln Cond(D)),
after what Selling’s algorithm terminates in a single step, see Proposition 1 in [25].

E Reconstruction of an upwind gradient, for geodesic extraction

Solving eikonal equations is, in many applications, only a means to extract minimal geodesics
for the corresponding optimal control problem. These paths are the integral lines of the intrinsic
gradient (defined w.r.t. the metric), of the eikonal PDE solution:

γ̇(t) := V (γ(t)), where V (p) := dF∗p(du(p)). (55)
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See the discussion §1, or Appendix C of [23] We describe in this appendix a robust estimator of
the vector field V , defined directly from the PDE scheme, and in terms of upwind quantities.

In the case of Riemannian metrics on has V (p) = D(p)du(p), as follows from the dual metric
expression F∗p(p̂) = ‖p̂‖D(p) and the eikonal equation. The following proposition, generalizing
a similar result in the isotropic case in [50], extracts this direction from the FM-VR1 scheme.

Proposition E.1. For each p ∈ Ωh one has the first order approximation

D(p)du(p) = h−1
∑

1≤i≤d′
εiρi(p) max{0, u(p)− u(p + hėi), u(p)− u(p− hėi)}ėi + o(h), (56)

where for each 1 ≤ i ≤ d′ one defines εi = 0 (resp. εi = −1, resp. εi = 1) if the i-th maximum
is 0 (resp. u(p)− u(p + hėi), resp. u(p)− u(p− hėi)).

Proof. We may assume that u is linear, u(p) = 〈η̂,p− p0〉, in which case (56) becomes by (15)

h−1
∑

1≤i≤d′
εiρi(p)|〈η̂, hėi〉|ėi =

∑
1≤i≤d′

ρi(p)〈η̂, ėi〉ėi = D(p)η̂ = D(p)du(p).

Rander metrics take the general form F(ṗ) = ‖ṗ‖M + 〈η̂, ṗ〉, omitting for readability the
dependency of F , M and η̂ on the base point p. Interestingly, algebraic structure of the dual
metric is similar: F∗(p̂) = ‖p̂‖M∗ + 〈p̂, η̇∗〉, where (M∗, η̇∗) is related to (M, η̂) by the relation:(

M η̂T

η̂ 1

)(
M∗ η̇∗

(η̇∗)T 1

)
= α2 Id, (57)

for some α = α(M, η̂). See also [35] for equivalent explicit formulas. As a result, the intrinsic
gradient (55, right) reads

V (p) =
M∗(p)du(p)

‖du(p)‖M∗(p)
+ η̇∗(p).

Finally, an estimation of the differential du(p) is deduced as in the Riemannian case from the
numerical scheme, inferred from the analoguous first order approximation: D(p)(du(p)−η̂(p)) =

h−1
∑

1≤i≤d′
εiρi(p) max{0, u(p)−u(p+hėi)+h〈η̂(p), ėi〉, u(p)−u(p−hėi)−h〈η̂(p), ėi〉}ėi +o(h).
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