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Anisotropic fast-marching on cartesian grids

using Voronoi’s first reduction of quadratic forms

Jean-Marie Mirebeau∗

April 12, 2017

Abstract

We address the numerical computation of distance maps with respect to Riemannian
metrics of strong anisotropy. For that purpose we solve generalized eikonal equations, dis-
cretized using adaptive upwind finite differences on the cartesian grid, via a variant of the
fast marching algorithm. The key ingredient of our PDE numerical scheme is Voronoi’s first
reduction, a tool from discrete geometry which characterizes the interaction of a quadratic
form with an additive lattice.

Two variants of the introduced scheme are also presented, adapted to sub-Riemannian and
to Rander metrics respectively, which can be regarded as degenerate Riemannian metrics and
as Riemannian metrics perturbed with a drift term respectively. We establish the convergence
of the proposed scheme and of its variants, with convergence rates. Numerical experiments
illustrate the effectiveness of our approach in various contexts, in dimension up to five,
including an original sub-Riemannian model related to the penalization of path torsion.
The proposed numerical scheme shows good behavior with Riemannian metrics of condition
numbers of 10 and more, can be enhanced by the use of second order finite differences, and
is easier to implement, generalize, and up to 5 times faster than previous semi-Lagrangian
discretization [18].

Keywords: Riemannian metric, Sub-Riemannian metric, Rander metric, Eikonal equation,
Viscosity solution, Fast Marching Method, Voronoi Reduction.

1 Introduction

In this paper, we develop a new and efficient numerical method for the computation of distance
maps with respect to anisotropic Riemannian metrics, sub-Riemannian metrics and Rander
metrics. For that purpose we discretize generalized eikonal equations, also called static first
order Hamilton Jacobi Bellman (HJB) Partial Differential Equations (PDEs), on a cartesian
grid. Our approach relies on a special representation of the Hamiltonian, via upwind finite finite
differences on an adaptive stencil, which is designed using Voronoi’s first reduction of quadratic
forms [26] - a tool from discrete geometry mostly known for its application in the study sphere
packings and in number theory. For this reason, the method is referred to as Fast-Marching
using Voronoi’s First Reduction (FM-VR1).

Before entering the details of the addressed PDEs and of their discretisations, let us mention
some of the potential applications. The standard eikonal equation is ‖du‖ = f , where du
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denotes the differential of u, on a domain of Rd and with suitable boundary conditions. This
PDE characterizes distance maps with respect an isotropic metric, defined locally as f -times
the euclidean metric, see [28] for a study and an overview of its numerous applications. Minimal
paths w.r.t. the metric are called (minimal) geodesics, and have numerous applications in e.g.
image processing [22] or motion planning. In contrast, this paper is devoted to generalized
eikonal equations, characterizing distance maps with respect to anisotropic metrics, of the three
following types.

• A Riemannian metric on a domain of Rd is described by a field M of positive definite
tensors, and gives rise to the generalized eikonal equation ‖du‖M−1 = 1. The natural
metric on a surface or a manifold embedded in Rn is equivalent to a Riemannian metric
on the parametrization domain. In image processing, anisotropic Riemannian metrics are
often used to favor paths aligned with tubular structures of interest [4, 8] for segmentation.
Seismic and oil prospection studies often require to estimate the arrival times of waves
travelling through anisotropic, layered soil structures, which at large scales can be modeled
by anisotropic Riemannian metrics, see the discussion in [30].

• A sub-Riemannian metric can be regarded as a degenerate Riemannian metric, which ten-
sors have some infinite eigenvalues. Interestingly, path energies of the form

∫ T
0 α
√

1 + κ2,
depending on the path curvature κ, can be encoded into appropriate subRiemannian met-
rics on the product space Rd×Sd−1, see [25, 12] for a numerical study with applications to
image segmentation and motion planning. An alternative sub-Riemannian model is also
studied in this paper, posed on R3 × S2 and related to the penalization of path torsion,
instead of curvature, with potential applications in vessel segmentation in the spirit of [33].

• A Rander metric is defined locally as the sum of a Riemannian metric M and of a suffi-
ciently small co-vector field η̂, see [23] and §1.3. These metrics are non-symmetric, thus
define asymmetric distances, and give rise to the inhomogeneous generalization of eikonal
equation ‖du− η̂‖M−1 = 1. The motion of a boat subject to a drift due to water currents,
often called Zermelo’s problem, can be encoded in a Rander metric, see §5. These metrics
are also used in chapter 6 of [7] to translate region based energies, common in image seg-
mentation tasks, into geodesic energies of the region contour. Finally, degenerate Rander
metrics can encode the Euler/Mumford elastica path energy

∫ T
0 α(1 + κ2), where κ is the

path curvature, see [6].

The objective of this paper is to design numerical schemes for computing the arrival times
u : Ω → R of a front starting from the boundary of a domain Ω, and propagating at unit
speed w.r.t. a given metric F : TΩ ∼= Ω × Rd → [0,∞]. In order to describe the specificity of
our discretization, we briefly summarize the two classical characterizations (more mathematical
background is provided after the outline). These characterisations are the eikonal PDE, and
Bellman’s optimality principle, which respectively read: for all p ∈ Ω

Hp(du(p)) = 1/2, u(p) = min
q∈∂V (p)

u(q) + dF (q,p), (1)

whereH denotes the Hamiltonian associated to the metric, i.e. the Legendre-Fenchel transform of
the Lagrangian L := 1

2F
2, where V (p) ⊆ Ω is an arbitrary (usually chosen small) neighborhood

of p, and where dF is the path-length distance associated to the metric F .
The Hamiltonian approach consists in discretizing (1, left), using monotone and if possible

upwind finite differences see Definition 2.1, which enable the computation of the discrete solution
in a single pass. Such a discretization is proposed in this paper for Hamiltonians associated to
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Riemannian and Rander metrics, generalizing results known for isotropic metrics [24]. On the
other hand, the semi-Lagrangian approach consists in discretizing (1, right) by constructing suit-
able discrete neighborhoods V (p), and locally approximating the distance: dF (q,p) ≈ Fp(p−q).
The computation of the discrete solution is possible in a single pass provided each polytope V (p),
p ∈ Ω, obeys a generalized acuteness property expressed in terms of the local metric Fp(·), see
[35]. Adaptive semi-Lagrangian schemes obeying this property were introduced by the author in
[17, 18], including Fast-Marching using Lattice Basis Reduction (FM-LBR) which is the natural
counterpart of the method proposed in this paper in the semi-Lagrangian setting. The main
improvements brought by the FM-VR1 are the following.

• (Accuracy with second order differences) The FM-VR1 can be modified to use second
order finite differences, see Remark 1.5, in contrast with most semi-Lagrangian methods,
in the spirit of the Higher Accuracy Fast Marching Method (HAFMM) [28]. With a proper
initialization, second order convergence rates are indeed observed, see Appendix B, both
with Riemannian and Rander metrics. When first order finite differences are used, the
accuracy of the FM-VR1 is close to the state of the art FM-LBR, see §B for benchmarks
including comparisons with [1, 5].

• (Implementation complexity and generalization potential) Semi-Lagrangian causal dis-
cretizations of the eikonal equation require to construct local polytopes V (p) enclosing
each discretization point p ∈ Ω, and obeying a generalized acuteness geometric constraint
depending on the local metric. Despite an extensive research effort [30, 1, 18, 17, 32, 15],
the task is hard and only few satisfying recipes are known for anisotropic metrics. High
dimensions make matters worse: for instance the 5D subRiemannian model (47) below is
addressed in [12] with the FM-LBR, using 5 dimensional polytopes each having 20 vertices,
126 edges, 324 faces, 360 three dimensional facets, and 144 four dimensional facets. In
contrast, the FM-VR1 numerical scheme remains simple in arbitrary dimension, and can
easily be generalized by introducing e.g. asymmetric terms in the Hamiltonian [12].

• (CPU time in high dimension) In semi-Lagrangian discretizations of the eikonal equation,
each elementary update of the solver requires to enumerate the facets (of all dimensions)
of a complex polytope, which number grows exponentially with the dimension, see above.
When using fast marching methods, performance can be improved by considering only the
facets containing the last accepted point, at the expense of code simplicity. Nevertheless,
these updates remain much more costly than those of the FM-VR1 in high dimensions,
which amount to solve a single quadratic equation. For the 5D sub-Riemannian models
described in [12] and §5, a CPU time reduction by a factor 5 was observed using the FM-
VR1. This advantage however disappears in two dimensions, where the computation time
of the fast marching method is dominated by the cost of maintaining a priority queue,
rather than the geometric computations, see §B.

Contributions. We describe numerical schemes devoted to the computation of Riemannian,
sub-Riemannian, and Rander distances, by solving the corresponding generalized eikonal equa-
tions. We prove convergence rates, based on the doubling of variables technique, see chapter
[13] 10 of [31], which applies rather directly in the Riemannian case but requires non-trivial
adaptations in the sub-Riemannian and Rander cases. In the Riemannian and sub-Riemannian
cases, our scheme can be numerically solved via a generalized Fast Marching Method (FMM),
with time complexity O(d2N lnN) where d is the domain dimension and N is the number of
discretization points. Adaptive Gauss-Siedel iteration [5] is used in the case of Rander metrics.
Numerical experiments illustrate the efficiency of our numerical schemes, and their potential
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applications in image segmentation and motion planning. Second order convergence rates are
obtained, in the L1 norm, when using second order finite differences.

Outline. The rest of this introduction is devoted to general notations, to the description of
Voronoi’s first reduction, and of elements of optimal control. The impatient reader may however
jump to §1.1, §1.2 and §1.3, where the numerical schemes are described and the convergence
results stated, in the Riemannian, sub-Riemannian and Rander cases respectively. Convergence
proofs are provided in §2, §3 and §4 respectively. Numerical experiments are presented in §5.

General notations. Let d denote the ambient space dimension, where 2 ≤ d ≤ 5 in the
intended applications §5. The euclidean space and the cartesian grid are respectively denoted

E := Rd, L := Zd.

Let Ω ⊆ E be a domain, assumed throughout the paper to be bounded; additional geometrical
assumptions are required in some results. For any grid scale h > 0 denote

Ωh := Ω ∩ hL ∂Ωh := (E \ Ω) ∩ hL.

Points are denoted p ∈ Ω, vectors ṗ ∈ E, and co-vectors p̂ ∈ E∗. A special convention applies
to the symbol γ, which is reserved for paths within Ω and for which γ̇(t) := d

dtγ(t) denotes time
derivation. We denote by ‖ṗ‖ the euclidean norm, by (ṗ · q̇) the scalar product and by 〈p̂, q̇〉 the
duality bracket of vectors ṗ, q̇ ∈ E, p̂ ∈ E∗. Denote by GL(E) ⊆ L(E,E) the group of invertible
linear transformations, and by GL(L) ⊆ GL(E) the subgroup of those which leave the cartesian
grid L invariant - i.e. their matrix has integer coefficients and unit determinant. Denote by
S(E) ⊆ L(E,E∗) the space of symmetric linear maps, by S+(E) the subset of semi-definite ones,
and by S++(E) the positive definite ones. We adopt the notations

‖ṗ‖M :=
√
〈M ṗ, ṗ〉, p̂⊗ p̂ ∈ S+(E),

for the norm of ṗ ∈ E induced by M ∈ S++(E), and for the self outer product of p̂ ∈ E∗.

Voronoi’s first reduction of quadratic forms. Following strategies dating back to La-
grange [16], Voronoi’s intention was to classify the equivalence classes of positive quadratic
forms, i.e. elements of S++(E), under the action of the group GL(L), by attaching to them
objects invariant under this action. Voronoi’s first construction [26] consists of a convex set
P ⊆ S++(E), and for each D ∈ S++(E∗) of a linear programming problem L(D):

P := {M ∈ S++(E); ∀ė ∈ L \ {0}, ‖ė‖M ≥ 1}, L(D) := inf
M∈P

Tr(MD).

Introducing the duality bracket 〈〈M,D〉〉 := Tr(MD) between S(E) and S(E∗), and observing
that ‖ė‖2M = 〈〈M, ė⊗ ė〉〉, one can rephrase Voronoi’s optimization problem L(D) as follows

minimize 〈〈M,D〉〉 subject to 〈〈M, ė⊗ ė〉〉 ≥ 1 for all ė ∈ L \ {0}. (2)

Theorem (Voronoi, see [26]). The set P ⊆ S(E) is a convex polytope, with a finite number of
equivalence classes of vertices under the action of GL(L). The linear problem L(D) is feasible,
in the sense that the set of minimizers is non-empty and compact, for any D ∈ S++(E∗).

The vertices of the polytope P are called perfect quadratic forms, and are related to the dens-
est periodic sphere packings. They are known in dimension d ≤ 6, together with the connectivity
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Figure 1: Ellipsoid {‖ṗ‖M ≤ 1}, and offsets appearing in the decomposition (3) of D := M−1, for
some M ∈ S++(R3) of eigenvalues 1, 102, 102 (needle-like) and 1, 1, 102 (plate-like) respectively.

of the facets of P see [9], which allows in principle to implement the simplex algorithm for ef-
ficiently solving (2), despite the infinite number of linear constraints. In dimension d ∈ {2, 3},
which is sufficient for the applications considered in this paper §5, the simplex algorithm takes a
particularly simple form, because the polytope P only has a single equivalence class of vertices
under GL(L), and it is referred to as Selling’s algorithm [27, 10].

Proposition 1.1. The Kuhn-Tucker optimality conditions for the linear optimization problem
L(D), D ∈ S++(E∗), can be written as follows: there exists (ρi, ėi)

d′
i=1 ∈ (R+ × L)d

′
, where

d′ := d(d+ 1)/2, such that

D =
∑

1≤i≤d′
ρi ėi ⊗ ėi. (3)

Furthermore there exists C = C(d) such that for any 1 ≤ i ≤ d′

‖ėi‖ ≤ C Cond(D)d−1, where Cond(D) :=
√
‖D‖‖D−1‖. (4)

Proof. The first point (3) follows from the feasibility of the linear program L(D), and its for-
mulation (2) . The number d(d + 1)/2 of contributions in this decomposition is the number of
independent entries in a d× d symmetric matrix.

For proving the second point, the euclidean space E is identified with its dual, which gives
meaning to the trace Tr(M) and determinant det(M) of any M ∈ S++(E). Denote by (Mk)

K
k=1 a

representative of each equivalence class of vertices of P under the action of of GL(L), see Theorem
1. Let D ∈ S++(E∗) be arbitrary, and let M be the minimizer of L(D). Then M = ATMkA
for some 1 ≤ k ≤ K and some A ∈ GL(L). Thus det(M) ≥ minKk=1 det(Mk) =: c∆ > 0. On
the other hand, Tr(M)‖D−1‖−1 ≤ Tr(MD) ≤ Tr(IdD) ≤ d‖D‖, by sub-optimality of Id ∈ P,
hence Tr(M) ≤ dCond(D)2. For any 1 ≤ i ≤ d′ one has ‖ėi‖M = 1, since the corresponding
constraint of the linear problem L(D) is active, hence as announced

‖ėi‖2 ≤ ‖M−1‖‖ėi‖2M = ‖M−1‖ ≤ ‖M‖
d−1

det(M)
≤ Tr(M)d−1

c∆
≤ (dCond(D)2)d−1

c∆
.

The formula (3) is reminiscent of the decomposition D =
∑d

i=1 λiv̇i ⊗ v̇i in terms of the
normalized eigenvectors v̇i and associated eigenvalues λi, 1 ≤ i ≤ d, of the matrix D. The
number of terms d and d′ in the sum differ however, and most importantly the vectors ėi ∈ L
have integer coefficients and can thus be used as offsets in a finite difference scheme on a grid, see
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Theorem 1.3 below, in contrast with the eigenvectors v̇i ∈ Sd−1 in general. In dimension d ≤ 3,
the decomposition (3) associated with Voronoi’s first reduction can equivalently be obtained
using the concept of obtuse superbase of a lattice [10]. This approach is used in [14] to design
numerical schemes for anisotropic diffusion, and in [3] for Monge-Ampere equations. See [19] for
an analysis finer than (4) in the the special case d = 2, including average case estimates upon
random rotations of the tensor D.

Elements of optimal control. We refer to [2] for an overview of optimal control theory
and its PDE formulations, and only introduce here the notations and definitions required for
our purposes. Let C(E) be the collection of compact and convex subsets of E containing the
origin, equipped with the Hausdorff distance. Denote Lip(X,Y ) the class of Lipschitz maps,
with arbitrary Lipschitz constant, from a metric space X to a metric space Y .

Definition 1.2. A family of controls is an element B of B := C0(Ω,C(E)), which continuously
associates to each point p ∈ Ω a control set B(p). A path γ ∈ Lip([0, T ],Ω), where T ≥ 0, is
said B-controllable iff for almost every t ∈ [0, T ]

γ̇(t) ∈ B(γ(t)), where γ̇(t) :=
d

dt
γ(t). (5)

The minimal control time from p ∈ Ω to q ∈ Ω, is defined as

TB(p,q) := inf{T ≥ 0; ∃γ ∈ Lip([0, T ],Ω), B-controllable, γ(0) = p, γ(T ) = q}. (6)

The control sets corresponding to Riemannian, sub-Riemannian and Rander geometry are
respectively ellipsoids, degenerate ellipsoids (with empty interior), and ellipsoids centered off
the origin, see Figure 2. One easily shows that a minimal path from p to q exists as soon as
TB(p,q) <∞, using Arzela-Ascoli’s compactness theorem and the fact that Ω is bounded. See
[6, 12] for details, as well as related arguments such as the convergence of the control times and
minimal paths associated to a converging family of controls under suitable assumptions. The
framework of a local metric defined on the tangent space F : Ω × E → [0,∞] is often more
convenient: given controls B ∈ B, define for all p ∈ Ω, ṗ ∈ E, and any path γ ∈ Lip([0, 1],Ω)

Fp(ṗ) := inf{λ > 0; ṗ/λ ∈ B(p)}, LengthF (γ) :=

∫ 1

0
Fγ(t)(γ̇(t))dt.

Note that these quantities can be infinite if the control sets have empty interior, as in the
sub-Riemannian case, or asymmetric if the control sets are not centered on the origin, as in
the Rander case, see Figure 2 and §1.2, 1.3. Conversely, the metric F uniquely determines
the control sets B(p) = {ṗ ∈ E;Fp(ṗ) ≤ 1}, and by time reparametrization the control time
TB(p,q) from p to q ∈ Ω is shown equal to the (pseudo-)distance

dF (p,q) := inf{LengthF (γ); γ ∈ Lip([0, 1],Ω), γ(0) = p, γ(1) = q}. (7)

This paper is concerned with the exit time optimal control problem, which value function is
defined for all p ∈ Ω by

u(q) := inf
p∈∂Ω

TB(p,q)

(
= inf

p∈∂Ω
dF (p,q)

)
. (8)
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Figure 2: From left to right. Examples of control sets for a (i) Riemannian, (ii) sub-Riemannian,
(iii) Rander metric. (iv) An admissible path, with tangents shown in red, w.r.t to some controls.

The numerical computation of the function u is the main topic of this paper. Under suitable
assumptions [2], the function u is the unique viscosity solution to the following HJB PDE
involving the dual metric F∗ : Ω× E∗ → R+: for all p ∈ Ω

F∗p(du(p)) = 1, where F∗p(p̂) := sup
ṗ6=0

〈p̂, ṗ〉
Fp(ṗ)

, (9)

and u(p) = 0 for all p ∈ ∂Ω. The formulations (9, left) and (1, left) of the eikonal PDE are
equivalent, since the Hamiltonian is H = 1

2(F∗)2. Once u is known, the shortest path from
∂Ω to p ∈ Ω can be extracted by solving backwards in time the Ordinary Differential Equation
(ODE)

γ̇(t) := dF∗γ(t)(du(γ(t))), (10)

with final condition γ(T ) = p where T = u(p), see e.g. appendix C in [12]. The differential
dFp(p̂) ∈ (E∗)∗ ∼= E appearing in (10) is meant w.r.t. the second variable p̂.

1.1 Riemannian metrics

A Riemannian metric on the bounded domain Ω ⊆ E, is described via a field of positive definite
tensors M∈ C0(Ω,S++(E)). The metric function F : Ω× E→ R+ has the expression

Fp(ṗ) := ‖ṗ‖M(p). (11)

Our objective is to compute the Riemannian distance u : Ω→ R to the boundary of Ω, see (8),
which is known to be the unique viscosity solution [11] to the Riemannian eikonal equation: for
all p ∈ Ω

‖du(p)‖D(p) = 1 where D(p) :=M(p)−1, (12)

and u(p) = 0 for all p ∈ ∂Ω. Indeed, the dual to the Riemannian metric (11) reads F∗p(p̂) =

‖p̂‖D(p). For each p ∈ Ω, let (ρi(p), ėi(p))d
′
i=1 ∈ (R+ × L)d

′
be weights and offsets such that

D(p) =
∑

1≤i≤d′
ρi(p) ėi(p)⊗ ėi(p). (13)

In this paper, we advocate the use of Voronoi’s first reduction of quadratic forms for obtaining
the decomposition (13), see Proposition 1.1. Our convergence results however only require to
control the maximal stencil radius

r∗ := max{‖ėi(p)‖; p ∈ Ω, 1 ≤ i ≤ d′}. (14)
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If Proposition 1.1 is used for stencil construction, then r∗ is by (4) bounded in terms of the
maximal condition number of the metric, and d′ = d(d + 1)/2. For the sake of readability, we
omit in the rest of the paper to write the dependence of the offset ėi = ėi(p) on the point p ∈ Ω.

Theorem 1.3. Let M∈ C0(Ω,S++(E)) be a Riemannian metric, and for all p ∈ Ω let D(p) :=
M(p)−1 and (ρi(p), ėi(p))d

′
i=1 be as in (13). Then for any h > 0 there exists a unique solution

Uh : hL→ R to the following discrete problem: for all p ∈ Ωh

h−2
∑

1≤i≤d′
ρi(p) max{0, Uh(p)− Uh(p + hėi), Uh(p)− Uh(p− hėi)}2 = 1 (15)

and Uh(p) = 0 for all p ∈ ∂Ωh. The solution Uh can be computed via the fast-marching algorithm
with complexity O(d′Nh lnNh), where Nh = #(Ωh). If in addition the domain Ω satisfies an
exterior cone condition, and if M∈ Lip(Ω, S++(E)), then for some constant C = C(M,Ω) one
has for all h > 0

max
p∈Ωh

|Uh(p)− u(p)| ≤ C
√
r∗h. (16)

The estimate (16) outlines the importance of the stencil radius r∗, since it determines the
effective scale r∗h of the discretization and thus the accuracy of the numerical method. A similar
convergence rate is obtained in [31] for the Ordered Upwind Method [30], a semi-Lagrangian
solver of anisotropic eikonal equations. In [19], the construction of Proposition 1.1 is shown
to be optimal in terms of stencil radius, in dimension d = 2. Note that the dependency of
the constant C = C(Ω,M) in (16) with respect to the metric M is not explicited in Theorem
1.3. This point is analyzed in detail in the next sub-section, where we consider a family of
increasingly anisotropic Riemannian metrics converging to a degenerate sub-Riemannian model.

The minimal geodesics from ∂Ω obey, in view of (10) and of the dual metric expression
F∗p(p̂) = ‖p̂‖D(p), the (ODE)

γ̇(t) = D(γ(t))du(γ(t)).

The direction of these geodesics can be directly extracted from the numerical scheme, thanks to
the following proposition which generalises a similar result in the isotropic case in [24].

Proposition 1.4. For each p ∈ Ωh one has the formally consistent approximation

D(p)du(p) ≈ h−1
∑

1≤i≤d′
εiρi(p) max{0, Uh(p)− Uh(p + hėi), Uh(p)− Uh(p− hėi)}ėi, (17)

where for each 1 ≤ i ≤ d′ one defines εi = 0 (resp. εi = −1, resp. εi = 1) if the i-th maximum
is 0 (resp. Uh(p)− Uh(p + hėi), resp. Uh(p)− Uh(p− hėi)).

Proof. By consistent we mean that the formula (17) is exact if u = Uh is a linear function, say
U(p) = 〈η̂,p− p0〉. In that case the r.h.s of (17) becomes by (13)

h−1
∑

1≤i≤d′
εiρi(p)|〈η̂, hėi〉|ėi =

∑
1≤i≤d′

ρi(p)〈η̂, ėi〉ėi = D(p)η̂ = D(p)du(p).

Remark 1.5 (Second order scheme). The Discretization (15) is based on the first order approx-
imation 〈dU(p), ė〉 = 1

h(U(p + hė)− U(p)) +O(h), for smooth U , ė ∈ R, and small h > 0. In
the spirit of the HAFMM [28] we experiment numerically in §5 the use when possible of

〈dU(p), ė〉 =
1

h
(U(p + hė)− U(p))− 1

2h
(U(p)− 2U(p + hė) + U(p + 2hė)) +O(h2).

Second order accuracy is indeed observed, provided the boundary conditions are smooth.
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1.2 Sub-Riemannian metrics

We introduce a numerical scheme for the computation of sub-Riemannian distances and geodesics,
based on solving by fast marching the eikonal equations associated to a sequence of increasingly
anisotropic approximate Riemannian metrics, in the spirit of [25]. More precisely our results
apply to the slightly more general class of pre-Riemannian models.

Definition 1.6. A pre-Riemannian model on Ω is a finite family of vector fields ω̇1, · · · , ω̇n ∈
Lip(Ω,E). The control sets B ∈ Lip(Ω,C(E)), and the semi-definite tensor field D ∈ Lip(Ω, S+(E∗)),
for this model are defined for all p ∈ Ω by

B(p) := {
∑

1≤i≤n
αiω̇i(p); α ∈ Rn,

∑
1≤i≤n

α2
i ≤ 1}, D(p) :=

∑
1≤i≤n

ω̇i(p)⊗ ω̇i(p).

A sub-Riemannian model [20] of step k ≥ 0 is a pre-Riemannian model with the additional
properties that the vector fields are smooth and that, together with their iterated commutators
up to depth k, they span the tangent space E at each point p ∈ Ω. The minimal control time
TB(p,q) for a sub-Riemannian model is called the Carnot-Theodory distance, and by Chow’s

theorem it obeys TB(p,q) ≤ C|p − q|
1
k . The distance u to ∂Ω is the unique viscosity solution

to the sub-Riemannian eikonal equation: ‖du(p)‖D(p) = 1 for all p ∈ Ω, and u = 0 on ∂Ω.
For better or worse, we do not use any techniques or results from sub-Riemannian geometry

in this paper, but stick instead to the simpler pre-Riemannian concept. We do however make a
further assumption.

Assumption 1.7. We fix a pre-Riemannian model (ω̇i)
n
i=1, and assume that the exit time value

function u, defined in (8), is bounded on Ω. We further assume that the domain admits outward
normals ṅ(p) with Lipschitz regularity on ∂Ω, and that for each p ∈ ∂Ω there exists 1 ≤ i ≤ n
such that ṅ(p) · ω̇i(p) 6= 0.

The finiteness of u on Ω, a global controllability assumption, is obviously required if one
intends to prove convergence rates of discrete approximations of u. The second assumption,
is related to short time local controllability at the boundary [2], and implies in particular the
Lipschitz regularity of u, via Gronwall’s lemma see §3.1.

Definition 1.8. A completion of a pre-Riemannian model (ω̇i)
n
i=1 is a second finite family of

vector fields ω̇∗1, . . . , ω̇
∗
n∗ ∈ Lip(Ω,E), such that ω̇1(p), · · · , ωn(p), ω̇∗1(p), · · · , ω̇∗n∗(p) spans E for

each p ∈ Ω.

For each 0 < ε ≤ 1 the augmented pre-Riemannian model (ω1, · · · , ωn, εω∗1, · · · , εω∗n∗) is
equivalent (i.e. has the same control sets) to the Riemannian model of metric Mε := D−1

ε ,
where

Dε = D + ε2D∗, with D∗ :=
∑

1≤i≤n∗
ω̇∗i ⊗ ω̇∗i . (18)

In order to solve numerically the pre-Riemannian exit time problem, our strategy is to apply the
scheme of Theorem 1.3 to the positive definite (but strongly anisotropic) Riemannian metricMε,
for small ε > 0. Convergence towards the pre-Riemannian exit times u : Ω → R is established
in the next theorem, when the relaxation parameter ε and grid scale h tend to 0 suitably.
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Theorem 1.9. Consider a pre-Riemannian model ω̇1, · · · , ω̇n ∈ Lip(Ω,E) obeying Assumption
1.7, and a completion ω̇∗1, · · · , ω̇∗n. For each 0 < ε ≤ 1 let uε distance to ∂Ω for the Riemannian
metric Mε, and let Uh,ε be the discrete solution of (15) with scale h > 0. Then

max
Ω
|u− uε| ≤ Cε, max

Ωh
|uε − Uh,ε| ≤ C ′

√
rεh, (19)

where rε denotes the maximal stencil radius for Mε, see (14), and where C,C ′ only depend on
Ω, (ω̇i)

n
i=1, (ω̇

∗
i )
n∗
i=1. In particular Uh,ε → u uniformly as ε→ 0 and h rε → 0.

By construction the condition number of the tensors Mε is O(ε−1), hence rε ≤ Cε−(d−1) if
Proposition 1.1 is used for the stencil construction. The convergence rate maxΩh |Uh,ε − u| ≤
Ch

1
d+1 is thus ensured by choosing ε = h

1
d+1 .

1.3 Rander geometry

Rander metrics are asymmetric metrics, defined as the sum of a symmetric Riemannian part
and of an anti-symmetric linear part [23]. A Rander metric is thus described by a tensor field
M∈ C0(Ω, S++(E)), and a sufficiently small co-vector field η̂ ∈ C0(Ω,E∗)

Fp(ṗ) := ‖ṗ‖M(p) + 〈η̂(p), ṗ〉, where ‖η̂(p)‖M(p)−1 < 1. (20)

The smallness constraint (20, right) ensures the positivity of the asymmetric norm Fp(·). The
distance induced by a Rander metric is oriented: dF (p,q) 6= dF (q,p) in general.

Proposition 1.10. The distance u to ∂Ω, see (8), is the unique the viscosity solution to the
inhomogeneous static first order HJB PDE

‖du(p)− η̂(p)‖D(p) = 1, where D(p) =M(p)−1, (21)

for all p ∈ Ω, and u = 0 on ∂Ω.

Proof. It is known that u solves the eikonal PDE F∗p(du(p)) = 1, see (9). Now for any p̂ ∈ E∗
observe the sequence of equivalences:

F∗p(p̂) = 1 ⇔ ∃ṗ ∈ E \ {0}, p̂ = dFp(ṗ)

⇔ ∃ṗ ∈ E \ {0}, p̂ =M(p)ṗ/‖ṗ‖M(p) + η̂(p)

⇔ ‖p̂− η̂(p)‖D(p) = 1.

The first equivalence follows from convex duality F∗(dF(ṗ)) = 1, ∀ṗ ∈ E, and the second one
from the explicit expression (20) of F .

Theorem 1.11. Let (M, η̂) be a Rander metric, and for all p ∈ Ω let D(p) := M(p)−1 and
(ρi(p), ėi(p))d

′
i=1 be as in (13). Then for any h > 0 there exists a unique solution to Uh : hL→ R

to the discrete problem: for all p ∈ Ωh∑
λi(p) max{0, Uh(p)− Uh(p + hėi) + h〈η̂(p), ėi〉, Uh(p)− Uh(p− hėi)− h〈η̂(p), ėi〉}2 = h2,

(22)
and Uh(p) = 0 for all p ∈ ∂Ωh. If in addition Ω obeys an exterior cone condition, and M and
η have Lipschitz regularity, then for some C = C(Ω,M, η̂) one has for all h > 0

max
p∈Ωh

|Uh(p)− u(p)| ≤ C
√
r∗h.

10



The discretized PDE (22) cannot be solved using the Fast-Marching algorithm, contrary to
the Riemannian case (15) and sub-Riemannian case, because the expression (22) may depend
on non-causal, negative finite differences U(p)−U(p+ ė) < 0 when 〈η̂(p), ė〉 6= 0, see Definition
2.1. For moderate anisotropies, good results are nevertheless obtained using Adaptive Gauss
Siedel Iteration (AGSI), see [5] and §5. Note that fast marching algorithm compatible with
Rander metrics, semi-Lagrangian and two dimensional only, is described in [17].

The numerical scheme (22) can, similarly to the Riemannian case, be used to reconstruct
the differential du. The proof, similar to Proposition 1.4, is left to the reader.

Proposition 1.12. For each p ∈ Ωh, one has the approximation, exact for linear u,

D(p)(du(p)− η̂(p)) ≈∑
εiλi(p) max{0, Uh(p)− Uh(p + hėi) + h〈η̂(p), ėi〉, Uh(p)− Uh(p− hėi)− h〈η̂(p), ėi〉}ėi,

where εi = 0 (resp. −1, resp. 1) if the i-th maximum is attained for the first term (resp. second
term, resp. third term).

The dual to a Rander metric F = F(M, η̂) is known to be a Rander metric as well F∗ =
F(M∗, η̇∗), which tensor fieldM∗ ∈ C0(Ω, S++(E∗)) and vector field η̇∗ ∈ C0(Ω,E) have simple
algebraic expressions in terms of M, η̂, given [17]. The next proposition describes the Rander
geodesic ODE, and expresses the Rander metric control sets and shifted ellipsoids, which is used
in §5 for modeling motion subject to drifts [23].

Proposition 1.13. Let F = F(M, η̂), as in (20), be a Rander metric with dual F∗ = F(M∗, η̇∗).
Then the geodesic ODE and the control sets read respectively with D∗ := (M∗)−1

γ̇(t) =
M∗(γ(t))du(γ(t))

‖du(γ(t))‖M∗(γ(t))
+ η̇∗(γ(t)), B(p) = {v̇ − η̇∗(p); ‖v̇‖D∗(p) ≤ 1}. (23)

Proof. The geodesic ODE (23, left) follows from (10) and the explicit expression of F∗. The
control set expression (23, right) follows from the observation, similarly to the proof of Propo-
sition 1.10, that ṗ ∈ ∂B(p) iff Fp(ṗ) = 1 iff ∃p̂ ∈ E∗ \ {0}, ṗ = dF∗(p̂) =M∗(p)p̂/‖p̂‖M∗(p) +
η̇∗(p).

2 Convergence in the Riemannian case

This section is devoted to the proof of Theorem 1.3, which contains two parts: a claim of well-
posedness for the system of equations discretizing the Riemannian eikonal PDE, and an error
analysis as the grid scale is refined. For that purpose, two general and classical results are stated
in §2.1, and later specialized in §2.2 to the model of interest.

2.1 Two general results

We present (reformulations of) two classical results. First, the existence and uniqueness of
solutions to monotone schemes and the algorithmic solution to causal schemes, in the spirit of
[34, 21] and under adequate assumptions, are stated in Theorem 2.2. Second, the doubling of
variables argument, a strategy for numerical analysis adapted [13], is stated in Theorem 2.3.

Definition 2.1. A (finite differences) scheme on a finite set X is a continuous map F : X ×
R× RX → R. The scheme is said:

11



• Monotone, iff F is non-decreasing w.r.t. the second and (each of the) third variables.

• Causal, iff F only depends on the positive part of the third variable.

To the scheme is associated a function RX → RX still (abusively) denoted by F, and defined by

(FU)(x) := F(x, U(x), (U(x)− U(y))y∈X),

for all x ∈ X, U ∈ RX . A discrete map U ∈ RX is called a sub- (resp. strict sub-, resp. super-,
resp. strict super-) solution of the scheme F iff FU ≤ 0 (resp. FU < 0, resp. FU ≥ 0, resp.
FU > 0) pointwise on X.

When the scheme F is obvious from context, we simply speak of sub- and super-solution.

Theorem 2.2 (Solving monotone schemes). Let F be a monotone scheme on a finite set X s.t.

(i) There exists a sub-solution U− and a super-solution U+ to the scheme F.

(ii) Any super-solution to F is the limit of a sequence of strict super-solutions.

Then there exists a unique solution U ∈ RX to FU = 0, and it satisfies U− ≤ U ≤ U+. If in
addition the scheme is causal, then this solution can be obtained via the Dynamic-Programming
algorithm, also called Dijkstra or Fast-Marching, with complexity O(M lnN) where

N = #(X), M = #({(x, y) ∈ X ×X; FU(x) depends on U(y)}). (24)

Proof. The proof is recalled for completeness. Proof of uniqueness, via the comparison principle.
Let U+ be a strict super-solution, and U− a sub-solution. Let p ∈ X be such that U−(p)−U+(p)
is maximal, so that U−(p)−U−(q) ≥ U+(p)−U−(q) for any q ∈ X. Assuming for contradiction
that U−(p) ≥ U+(p) we obtain 0 ≥ FU−(p) ≥ FU+(p) > 0 which is a contradiction, hence
U− ≤ U+. Next by assumption (ii) we obtain that U− ≤ U+ still holds for any sub-solution U−

and any (non-strict) super solution U+. The uniqueness of the solution to FU = 0 follows.
Proof of existence, by the min-max construction. Consider U : X → R defined by U(p) :=

sup{Ũ(p); Ũ sub-solution}, for all p ∈ X. By the previous argument U− ≤ U ≤ U+. Consider
an arbitrary p ∈ X, and let U∗ be a sub-solution such that U(p) = U∗(p), which exists by
continuity of F. By construction U ≥ U∗, hence FU(p) ≤ FU∗(p) ≤ 0, hence U is a sub-solution
by arbitraryness of p. Furthermore, assume for contradiction that there exists p0 ∈ X such that
FU(p0) < 0, and define Uε(p0) := U(p0) + ε and Uε(p) := U(p) for all p ∈ X \ {p0}. Then Uε
is a sub-solution for any sufficiently small ε > 0, by monotony and continuity of the scheme F,
thus U(p0) ≥ Uε(p0) by construction which is a contradiction. Thus FU = 0 identically on X
and therefore U is a solution to the scheme.

We refer to [34, 24] for the description of the fast marching algorithm.

The following result is a general strategy for proving convergence rates for discretizations of
first order HJB PDEs, adapted from [13]. For completeness, the proof is presented in §C. The
cartesian grid hL could be replaced with an arbitrary h-net of E, in other words a discrete set
such that union of all balls of radius h centered at the points of this set covers E.

Theorem 2.3 (Doubling of variables argument). Let u : E → R be supported on a bounded
domain Ω and CuLip-Lipschitz, and let Uh : hL → R be supported on Ωh := Ω ∩ hL. Given
λ ∈ [1/2, 1[ and δ > 0, define

Mλ,δ := sup
(p,q)∈hL×E

λUh(p)− u(q)− 1

2δ
‖p− q‖2, M̃λ,δ := sup

(p,q)∈hL×E
λu(q)− Uh(p)− 1

2δ
‖p− q‖2,
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and denote by (p,q), (p̃, q̃) ∈ (hL)×E the point pairs where the maxima are respectively attained.
Then ‖p − q‖ ≤ 4CuLipδ. Assume furthermore that for some CUbd, C ′Ubd and cUbd ≥ 4CLipδ the
following holds:

(i) None of the two maximal pairs (p,q) and (q̃, q̃) belongs to Ωh × Ω.

(ii) |Uh(p)| ≤ CUbdd∂Ω(p) + C ′Ubdh, for all p ∈ Ωh such that d∂Ω(p) ≤ cbd.

Then one has with C0 = 4CuLip max{CuLip, C
U
bd}

max
p∈Ωh

|u(p)− Uh(p)| ≤ 2

(
C0δ + C ′Ubdh+ (1− λ) max

Ω
|u|
)
. (25)

When applying Theorem 2.3, to a specific model, property (i) follows directly from the
consistency of the discretization, while Property (ii) requires to establish a discrete counterpart
of short-time local controllability at the boundary. Explicit expressions of the constants CuLip,

CUbd, cUbd, are provided in terms of the model parameters M,Ω. The constant C ′Ubd, also given
explicitly, depends linearly on the stencil maximal radius: C ′Ubd = C ′′Ubd r∗, and property (i) is
shown to hold provided

λ ≤ 1− C1δ − C2r∗
h

δ
,

where C1, C2 are again explicit constants depending only on M,Ω. Choosing λ equal to this
upper bound, and defining δ =

√
r∗h, one gets the announced error estimate

max
p∈Ωh

|u(p)− Uh(p)| ≤ 2C ′′Ubd r∗h+ 2(C0 + (C1 + C2)‖u‖∞)
√
r∗h.

2.2 Application to the Riemannian case

We establish Theorem 1.3, on the discretization of Riemannian exit time problems, by special-
izing the general results of §2.1. Consider the discretization scheme Fh on the finite domain Ωh

and defined for any U : Ωh → R and any p ∈ Ωh by

(FhU(p))2 := h−2
∑

1≤i≤d′
λi(p) max{0, U(p)− U(p + ėi), U(p)− U(p− ėi)}2, (26)

where U is extended by zero on hL \ Ωh. The next proposition implies, by Theorem 2.2, the
existence and uniqueness of a solution to the equation FhU − 1 ≡ 0, and the applicability of the
Fast-Marching algorithm to compute it, as announced in Theorem 1.3.

Recall that r∗ is the maximal stencil radius, as defined in (14). The square root of the largest
eigenvalue among all tensors of a tensor field M∈ C0(Ω,S++(E)) is denoted by

λ∗(M) := max
p∈Ω, ‖ṗ‖=1

‖ṗ‖M(p). (27)

Proposition 2.4. Let M ∈ C0(Ω, S++(E)) be a Riemannian metric, and for all p ∈ Ω let
D(p) := M(p)−1 and (ρi(p), ėi(p))d

′
i=1 be as in (13). Then the scheme Fh defined by (26) is

monotone and causal. In addition:

(i) The null map U = 0 satisfies FhU ≡ 0, hence is a sub-solution to the scheme Fh − 1.
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(ii) Let R > 0 be such that Ω is contained in the ball of radius R − hr∗ and centered at the
origin, and let U(p) := R− ‖p‖, for all p ∈ Ωh. Then for all λ ≥ 0, and all p ∈ Ωh

FhU(p) ≥ ‖p/‖p‖‖D(p),

where p/‖p‖ can be replaced with an arbitrary unit vector in the case p = 0. As a result,
λU is a super-solution to the scheme Fh − 1 for any λ ≥ λ∗(M).

(iii) If U is a super-solution to Fh − 1, then (1 + ε)U is a strict super-solution for any ε > 0.

Proof. The monotony and causality of the scheme Fh immediatly follow from its expression (26).
Point (i) is trivial, and point (iii) follows from the homogeneity property Fh(λU) = λFhU . In
the rest of this proof, the point p ∈ Ω is regarded both as a vector in E and as a co-vector in E∗,
thanks to the euclidean structure of E. For point (ii), we obtain by convexity of the euclidean
norm, for any p, ė ∈ E.

U(p)− U(p + ė) = ‖p + ė‖ − ‖p‖ ≥ 〈p/‖p‖, ė〉,

where p/‖p‖ can be replaced with any unit vector if p = 0. Hence for all p ∈ Ωh, as announced,

(FhU(p))2 ≥ 1

‖p‖2
∑

1≤i≤d′
ρi(p)〈p, ėi〉2 =

‖p‖2D(p)

‖p‖2
.

Finally Fh(λU)(p) ≥ 1 if λ ≥ λ∗(M) by the 1-homogeneity of F, and the observation that the
least eigenvalue of D(p) is inverse of the largest eigenvalue of M(p).

In the rest of this section, we establish the properties required to apply the doubling of
variables argument, Theorem 2.3, to prove the second part of Theorem 1.3. The following
proposition immediately implies that the exit time value function, denoted hereafter by u, is
CuLip-Lipschitz, with CuLip := λ∗(M).

Proposition 2.5. Let Ω ⊆ E be an arbitrary bounded domain, equipped with a metric F :
Ω × E → R such that Fp(ṗ) ≤ C0‖ṗ‖ for any p ∈ Ω, ṗ ∈ E. Then the distance u from ∂Ω is
C0-Lipschitz.

Proof. Let p,q ∈ Ω, and let us prove that u(q) ≤ u(p) + C0‖p − q‖. Let γ : [0, 1] → E be the
parametrization of the line segment [p,q] at constant speed. If this segment intersects ∂Ω, then
denoting T ∈ [0, 1] the largest time such that γ(T ) ∈ ∂Ω one has u(q) ≤ LengthF (γ|[T,1]) ≤
C0‖p − q‖ as announced. Otherwise, denoting by γ̃ a minimal path from ∂Ω to p one has by
path concatenation u(q) ≤ lengthF (γ̃) + lengthF (γ) ≤ u(p) + C0‖p− q‖ as announced.

In the rest of this section, we use the notations and assumptions of Theorems 1.3 and 2.3,
except of course assumptions (i) and (ii) of the latter which we intend to prove, and denote by
Uh is the solution to Fh − 1. In particular λ ∈ [1/2, 1[ and δ > 0 are parameters from Theorem

2.3, and (p,q), (p̃, q̃) ∈ E× hL are points pairs where the maxima Mλ,δ, M̃λ,δ are attained.

Establishing assumption (i) of Theorem 2.3. Our first lemma is a direct application of
the definition of sub- and super-solutions of HJB PDEs and monotone discretization schemes.
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Lemma 2.6. Let w := (p− q)/δ, and let U(p) := 〈w,p〉+ 1
2δ‖p− p‖2 for all p ∈ hL. Then

FhU(p) ≤ λ, ‖w‖D(q) ≥ 1. (28)

Let w̃ := (p̃− q̃)/δ, and let Ũ(p) := 〈w̃,p〉 − 1
2δ‖p− p̃‖2 for all p ∈ hL. Then

FhŨ(p̃) ≥ 1, ‖w̃‖D(q̃) ≤ λ. (29)

Here and below we regard w and w̃ as co-vectors, using the euclidean structure of E.

Proof. Note that the scheme Fh is here (slightly abusively) applied to the functions U , Ũ , which
are non-zero over hL \ Ωh. We focus on the proof of (28), the case of (29) being similar. By
definition of Mλ,δ, the function

p ∈ hL 7→ λUh(p)− u(q)− 1

2δ
‖p− q‖2 = λUh(p)− U(p)−K

attains its maximum at p, where K = u(q) − 1
2〈w,p + q〉 is independent of the variable p.

Hence for all p ∈ hL

λUh(p)− U(p)−K ≥ λUh(p)− U(p)−K, equivalently Uh(p)− Uh(p) ≥ U(p)/λ− U(p)/λ.

By monotony of the scheme Fh, see Definition 2.1, we obtain Fh(U/λ)(p) ≤ FhUh(q) = 1, hence
(28, left) by the homogeneity of Fh. Likewise, defining u(q) := 〈w,q〉− 1

2δ‖q−q‖2 for all q ∈ E,
the function

q ∈ E 7→ λUh(p)− u(q)− 1

2δ
‖p− q‖2 = u(q)− u(q)−K ′

attains its minimum at q, where K ′ is the adequate constant. Since u is a (super-)solution to
the PDE (12), this implies 1 ≤ ‖du(q)‖D(q) = ‖w‖D(q), which concludes the proof.

The following lemma assumes for contradiction that (p,q) ∈ Ωh × Ω and obtains estimates
contradicting Lemma 2.6, provided λ is above a certain bound, which is assumed in the following.
Therefore (p,q) /∈ Ωh×Ω, by contradiction, and likewise (p̃, q̃) /∈ Ωh×Ω, by a similar argument,
which establishes assumption (ii) of Theorem 2.3.

Let CDLip be a constant such that for all p,q ∈ Ω and all p̂ ∈ E∗

|‖p̂‖D(p) − ‖p̂‖D(q)| ≤ CDLip‖p− q‖‖p̂‖. (30)

Such a constant exists by the Lipschitz regularity of the metric M, assumed in Theorem 1.3.

Lemma 2.7. Assume that (p,q) ∈ Ωh × Ω and define w and U as in Lemma 2.6. Then∣∣FhU(p)− ‖w‖D(p)

∣∣ ≤ C1r∗
h

δ
,

∣∣‖w‖D(q) − ‖w‖D(p)

∣∣ ≤ C2δ, (31)

with C1 := λ∗(D)
√
d and C2 := (4CuLip)2CDLip. This contradicts (28) unless λ ≥ 1−C1r∗h/δ−C2δ.

The same estimates and conclusion hold for w̃ and Ũ if (p̃, q̃) ∈ Ωh × Ω.

Proof. We focus on the case of (p,q), the second case of (p̃, q̃) being similar, and begin with
the proof of (31, left) which contains the key technical points. By definition of the quadratic
function U , one has

max{0, U(p)− U(p + hėi), U(p)− U(p− hėi)} = h|〈w, ėi〉|+
h2

δ
‖ėi‖2, (32)
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for any 1 ≤ i ≤ d′, where (ρi(p), ėi)
d′
i=1 are the weights and offsets of the discretization scheme

at p, see (13). Denote by m,w, e ∈ Rd′ the vectors of components respectively: mi the LHS
of (32), wi := |〈w, ėi〉|, and ei := ‖ėi‖2, for all 1 ≤ i ≤ d′. Introduce also the semi-norm

‖z‖p :=
√∑d′

i=1 ρi(p)z2
i on Rd′ . Then one has

m = hw +
h2

δ
e, FhU(p) = h−1‖m‖p ‖w‖D(p) = ‖w‖p,

and therefore
∣∣FhU(p)− ‖w‖D(p)

∣∣ =
∣∣‖w + h

δ e‖p − ‖w‖p
∣∣ ≤ h

δ ‖e‖p by the triangular inequality.
Finally observe that

‖e‖2p =
∑

1≤i≤d′
ρi(p)

(
‖ėi‖2

)2 ≤ ∑
1≤i≤d′

ρi(p)‖ėi‖2 max
1≤i≤d′

‖ėi‖2 = Tr(D(p))r2
∗,

where Tr denotes the trace of a matrix. The announced result (31, left) then follows from
Tr(D(p)) ≤ d(λ∗(p))2.

The second estimate (31, right) follows from the Lipschitz regularity of the metric (30),
together with the upper bound ‖p − q‖ ≤ 4CuLipδ established in Theorem 2.3, which implies
‖w‖ ≤ 4CuLip. Combining these estimates with Lemma 2.6 yields

λ+ C1r∗h/δ ≥ ‖w‖D(p) ≥ 1− C2δ,

which implies the announced lower bound for λ. The same estimates can be derived in the
second case, and with Lemma 2.6 they imply 1 − C1r∗h/δ ≤ ‖w̃‖D(p̃) ≤ λ + C2δ which yields
the same lower bound for λ.

Establishing assumption (ii) of Theorem 2.3. The controlled growth of the discrete solu-
tion Uh close to ∂Ω, assumption (ii) of Theorem 2.3, is established in the Proposition 2.10. Note
that the assumptions of Theorem 1.3 are too weak to prove a global Lipschitz type estimate
for Uh, as in e.g. [5, 18], and actually cannot exclude a staggered grid effect (never observed in
practice) far from ∂Ω. The idea underlying this proof is to construct from any point in p0 ∈ Ωh

sufficiently close to ∂Ω, a short chain of neighbors p1, · · · ,pn ending in ∂Ωh and connected by
offsets of the numerical scheme pi+1 = pi+hėi(pi) which associated weights ρi(pi) are positively
bounded below; this is the discrete counterpart of a short time local control to the to boundary
[2].

Our first step is to provide a precise definition to the exterior cone condition assumed in the
statement of Theorem 1.3.

Definition 2.8 (Exterior cone condition). The domain Ω ⊆ E obeys an exterior cone condition
iff there exists constants CΩ and cΩ > 0 such that for all h ≤ cΩ,

∀p ∈ ∂Ω, ∃q ∈ B(p, CΩh), such that B(q, h) ⊆ E \ Ω,

where B(q, h) denotes the open ball of center q and radius h.

The next technical compares the euclidean norm to its first order Taylor expansion.

Lemma 2.9. For any p, ė ∈ E with p 6= 0, one has ‖p + ė‖ ≤ ‖p‖+ (p · ė)/‖p‖+ ‖ė‖2/(2‖p‖).

Proof. Multiplying both sides by ‖p‖ and rearranging terms the statement is found equivalent
to ‖p‖‖p + ė‖ ≤ 1

2(‖p‖2 + ‖p + ė‖2), equivalently to 0 ≤ (‖p‖−‖p + ė‖)2 which holds true.
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In the following proposition, we let Cond(D) := max{Cond(D(p); p ∈ Ω}, where the condi-
tion number of a symmetric matrix is defined in (4).

Proposition 2.10. Let p ∈ Ωh, and let q ∈ E be such that ‖p − q‖ ≥ C0r∗h, with C0 :=
Cond(D)

√
d′. Then there exists 1 ≤ i ≤ d′ and a sign s ∈ {−1, 1} such that

Uh(p) ≤ Uh(p + hsėi) + hC1‖ėi‖, and ‖p + hsėi − q‖ ≤ ‖p− q‖ − hc2‖ėi‖, (33)

with C1 := λ∗(M)
√
d′, c2 := 1/(2 Cond(D)

√
d′). This implies assumption (ii) of Theorem 2.3,

with the constants CUbd = C1/c2, C ′Ubd := CUbdCΩC0r∗, and cbd = +∞.

Proof. Denote by (λ∗)
2 and (λ∗)2 the smallest and largest eigenvalue of D(p) respectively. Let

n := (q− p)/‖q− p‖, regarded as a co-vector thanks to the euclidean structure of E. Then

λ2
∗ ≤ ‖n‖2D(p) =

∑
1≤i≤d′

ρi(p)〈n, ėi〉2. (34)

Fix 1 ≤ i ≤ d′ such that ρi(p)〈n, ėi〉2 ≥ λ2
∗/d
′. Denote ρ2 := ρi(p), and ė := sėi where s is the

sign of 〈n, ėi〉. One has, using that ρ2ė⊗ ė � D(p) � (λ∗)2 Id for the second inquality

ρ〈n, ė〉 ≥ λ∗/
√
d′ ρ‖ė‖ ≤ λ∗ (35)

By definition of the discretization scheme (26) one has h−2ρ2 max{0, Uh(p) − Uh(p + ė)}2 ≤
(FhUh(p))2 = 1, hence using (35, left) we obtain (33, left):

U(p)− U(p + ė) ≤ h

ρ
≤ h‖ė‖

√
d′

λ∗
. (36)

By (35) and Cond(D) ≥ λ∗/λ∗ one has 〈n, ė〉 ≥ ‖ė‖/(Cond(D)
√
d′). Denote r := (p−q)/h and

observe that by assumption ‖r‖ ≥ C0r∗ ≥ Cond(D)
√
d′‖ė‖ and definition of the max stencil

radius r∗, see (14). Using Lemma 2.9 we obtain (33, right):

‖r + ė‖ ≤ ‖r‖ − 〈n, ė〉+
‖ė‖2

2‖r‖
≤ ‖r‖ − ‖ė‖

Cond(D)
√
d′

+
‖ė‖
2C0

‖ė‖
r∗
≤ ‖r‖ − ‖ė‖

2 Cond(D)
√
d′
.

Finally, we conclude the proof of assumption (ii). Let p0 ∈ Ωh. Let q∗ ∈ ∂Ω be the closest
point to p0, and let q ∈ B(q∗, CΩC0r∗h) be such that B(q, C0r∗h) ⊆ E \ Ω. By the above
argument, there exists a finite sequence of points p1, · · · ,pk−1 ∈ Ωh, pk ∈ ∂Ωh, such that
U(pi) ≤ U(pi+1) + C1δi and ‖pi+1 − q‖ ≤ ‖pi − q‖ − c2δi, denoting δi := ‖pi+1 − pi‖, for all
0 ≤ i < k. Since U(pk) = 0 we obtain U(p0) ≤ C1(δ0 + · · ·+ δk−1), and since ‖pk − q‖ ≥ 0 we
obtain c2(δ0 + · · ·+ δk−1) ≤ ‖p0 − q‖ ≤ ‖p0 − q∗‖+ CΩC0r∗h. Hence finally, as announced

U(p0) ≤ (C1/c2)(d∂Ω(p0) + CΩC0r∗h).

3 Convergence in the sub-Riemannian case

This section is devoted to the proof of Theorem 1.9, the numerical analysis of the proposed
scheme in the sub-Riemannian (or pre-Riemannian) setting. The estimates of u−uε and uε−Uh,ε,
respectively related to the model relaxation and to its discretization, are presented separately
in §3.1 and §3.2. The arguments used to prove the Lipschitz regularity of u and to control the
growth of Uh,ε close to ∂Ω substantially differ from those used in the Riemannian case.
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Before turning to these proofs, we recall two basic results on the regularity of the orthogonal
projection onto a set, assumed respectively to be convex or to have a smooth boundary. Let
dB(p) := minq∈B ‖p− q‖ the distance to a non-empty closed set B ⊆ E, and let PB(p) denote
the minimizer q ∈ B for dB(p), when it is unique. The Haussdorff distance between two closed
subsets of E is denoted H(·, ·).

Proposition 3.1. Let p,p′ ∈ E, and let B,B′ ⊆ E be non-empty closed and convex. Then

‖PB(p)− PB(p′)‖ ≤ ‖p− p′‖, ‖PB(p)− PB′(p)‖ ≤
√
H(B,B′)

√
dB(p) + dB′(p). (37)

Proof. The uniqueness and Lipschitz regularity of the projection onto a convex set (37, left),
are extremely classical hence their proof is omitted. Proof of (37, right). Let q := PB(p) and
q′ := PB′(p). We first assume that p 6= q, and regard q − p as a co-vector by Riez duality.
Observe that B is contained in the half space H := {r ∈ E; 〈q− p, r− q〉 ≥ 0}, hence

H(B,B′) ≥ dB(q′) ≥ dH(q′) = max
{

0,

〈
q− p

‖q− p‖
,q− q′

〉}
≥ 〈q− p,q− q′〉/dB(p).

Thus dB(p)H(B,B′) ≥ 〈q − p,q − q′〉, and this inequality also holds without the assumption
q 6= p. Summing this identity with the similar one obtained exchanging the roles of (B,B′) and
(q,q′) we obtain (dB(p) + dB′(p))H(B,B′) ≥ 〈(q− p) + (p− q′),q− q′〉 = ‖q− q′‖2 which is
the announced result.

Here and below, slightly abusively, we regard normal vectors to ∂Ω as co-vectors.

Proposition 3.2. Assume that the domain boundary ∂Ω admits outward normals n(q), q ∈ ∂Ω,
which have 1/RΩ-Lipschitz regularity w.r.t. q. Then P∂Ω(p) is uniquely defined for all p ∈ E
such that d∂Ω(p) < RΩ. Furthermore d∂Ω(p + ė), for p, ė ∈ E, is either zero or obeys

d∂Ω(p + ė) ≤ d∂Ω(p) + 〈n(p), ė〉+
‖ė‖2

2RΩ
, where n(p) := n(PB(p)).

Proof. The Lipschitz assumption on the normals implies, for any q ∈ ∂Ω, the inclusions B(q−
RΩn(q), RΩ) ⊆ Ω and B(q +RΩn(q), RΩ) ⊆ E \ Ω. Fix p ∈ E, and let q ∈ ∂Ω be an arbitrary
closest point to p. The first inclusion implies the announced uniqueness when d∂Ω(p) < RΩ,
and the second inclusion, together with Lemma 2.9 applied to ‖(q +RΩn(q)− p)− ė‖, implies
the distance estimate.

3.1 Estimating uε − u

In this subsection we bound, in the uniform norm, the difference between the value function u of
the pre-Riemannian problem, and the one uε associated to the Riemannian approximation (18),
for any 0 < ε ≤ 1. Assumption 1.7, on global controllability and short time local controllability
at the boundary, is central in the proof. Related arguments can be found in [2], but the proof
is provided for completeness and because in the process we establish estimates used in §3.2. We
use the notations and assumptions of Theorem 1.9. Let us introduce the control sets of the
Riemannian relaxation

Bε(p) := {ṗ ∈ E; ‖ṗ‖Mε(p) ≤ 1}

for each 0 < ε ≤ 1, p ∈ Ω, with the convention that B0 denotes the pre-Riemannian control sets
of Definition 1.6. Note the inclusion Bε(p) ⊆ Bε′(p) for any 0 ≤ ε ≤ ε′ ≤ 1, which implies the
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pointwise inequalities TBε(p,q) ≥ TBε′ (p,q) for the control times, and uε(p) ≥ uε′(p) for the

exit times, for any p,q ∈ Ω.
Our first lemma establishes the Lipschitz regularity of the control sets Bε(p) and of the

tensors Dε(p) with respect to the position p ∈ Ω and the relaxation parameter ε ∈ [0, 1]. The
control sets regularity allows to apply Gronwall’s Lemma in the proof of Proposition 3.4, whereas
the tensors regularity is used in §3.2 for establishing Assumption (i) of the doubling of variables
argument Theorem 2.3. Denote by Aε(p) the matrix of columns ω̇1, · · · , ω̇n, εω̇∗1, · · · , εω̇∗n∗ , for
all 0 ≤ ε ≤ 1, p ∈ Ω. Since the these vector fields are Lipschitz and bounded, the matrix field
Aε obeys for some constant CDLip the following Lipschitz regularity property: for all p,q ∈ Ω
and all ε, ε′ ∈ [0, 1]

max{‖Aε(p)−Aε′(q)‖, ‖AT
ε (p)−AT

ε′(q)‖} ≤ CDLip(‖p− q‖+ |ε− ε′|). (38)

Recall that the operator norm of an m × n matrix A is defined by ‖A‖ := sup{‖Aṙ‖; ṙ ∈
Rn, ‖ṙ‖ ≤ 1}. One easily checks that ‖A‖ = ‖AT‖ for any matrix A, hence the l.h.s. of (38)
could be slightly simplified, but we prefer to emphasize the fact that both the regularity of the
matrix field Aε and of its transpose are used.

Lemma 3.3. One has the Lipschitz regularity: for all p,q ∈ Ω, ε, ε′ ∈ [0, 1], and all r̂ ∈ E∗

H(Bε(p),Bε′(q)) ≤ CDLip(‖q− p‖+ |ε− ε′|) (39)∣∣‖r̂‖Dε(p) − ‖r̂‖Dε′ (q)

∣∣ ≤ CDLip(‖q− p‖+ |ε− ε′|)‖r̂‖. (40)

Proof. For any maps ϕ,ψ from an arbitrary spaceX to E, one hasH(ϕ(X), ψ(X)) ≤ supx∈X ‖ϕ(x)−
ψ(x)‖. Observing that Bε(p) = (Aε(p))(B), where B is the unit ball of Rn+n∗ , we obtain

H(Bε(p),Bε′(q)) ≤ sup
x∈B
‖Aε(p)x−Aε′(q)x‖ = ‖Aε(p)−Aε′(q)‖ ≤ CDLip(‖q− p‖+ |ε− ε′|).

which is (39). Observing that Dε(p) = Aε(p)Aε(p)T, see Definition 1.6, we obtain (40), since∣∣‖r̂‖Dε(p) − ‖r̂‖Dε′ (q)

∣∣ =
∣∣‖AT

ε (p)r̂‖ − ‖AT
ε′(q)r̂‖

∣∣ ≤ ‖AT
ε (p)−AT

ε′(q)‖‖r̂‖.

Proposition 3.4. Let 0 ≤ ε0 ≤ 1, let γ0 : [0, T0] → Ω be a Bε0-admissible path, and let
p0 := γ0(0). Let 0 ≤ ε1 ≤ 1, and let γ1 : [0, T1]→ Ω be a solution to the ODE

γ̇1 := PBε1 (γ1(t))(γ̇0(t)),

with initial condition γ1(0) = p1 ∈ Ω, where the final time T1 is either T0 or the time where γ1

reaches ∂Ω. Then γ1 is B1-admissible, and for any 0 ≤ t ≤ T1 one has

|γ0(t)− γ1(t)| ≤ (|p0 − p1|+ |ε0 − ε1|) exp(CBLipt)− |ε0 − ε1|.

Proof. The orthgonal projection PB(p), of a given p ∈ E , depends continuously (in fact with
(1/2)-Holder regularity) on the closed and convex set B, see Proposition 3.1. The right hand
side of (3.4) therefore depends continuously on γ1(t), hence this ODE admits solutions by
Peano’s existence theorem. Note that the Picard-Lindelof/Cauchy-Lipschitz uniqueness theorem
does not apply since it requires Lipschitz regularity of the r.h.s., but the lack of uniqueness is
fortunately not an issue in this proof.

The Bε1-admissibility of γ1 holds by construction, and since γ̇0(t) ∈ Bε0(γ0(t)) one has

|γ̇0(t)− γ̇1(t)| ≤ H(Bε0(γ0(t)),Bε1(γ1(t))) ≤ CBLip(|ε0 − ε1|+ |γ0(t)− γ1(t)|),

for any 0 ≤ t ≤ T1. The announced estimate then follows from Gronwall’s lemma.
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The following lemma makes use of transversality property in Assumption 1.7 to upper bound
the exit time function uε close to the domain boundary ∂Ω. This property is equivalent to:
‖n(p)‖2D(p) =

∑n
i=1〈n(p), ω̇i(p)〉2 6= 0 for all p ∈ ∂Ω, where n(p) denotes the outward normal

to ∂Ω. Hence denoting n(p) := n(P∂Ω(p)) for p close enough to ∂Ω, as in Proposition 3.2, there
exists by continuity positive constants cD, cΩ such that

‖n(p)‖D(p) ≥ cD, for all p ∈ Ω such that d∂Ω(p) ≤ cΩ. (41)

In the next lemma and proposition we construct paths from an arbitrary point p ∈ Ω to ∂Ω,
whereas the original problem (6) is to find a path from ∂Ω to p. This change of orientation is
only used for notational simplicity, and is valid since the paths can be reverse parametrized, and
since the control sets are symmetric: Bε(p) = {−ṗ; ṗ ∈ Bε(p)}, for all p ∈ Ω, ε ∈ [0, 1].

Lemma 3.5. For all p ∈ Ω such that d∂Ω(p) ≤ cΩ, one has u(p) ≤ d∂Ω(p)/cD.

Proof. Let DΩ := {q ∈ Ω; d∂Ω(q) ≤ cΩ}. Define a vector field v̇ : DΩ→ E by

v̇(q) :=
D(q)n(q)

‖n(q)‖D(q)
= A0(q)

AT
0 (q)n(q)

‖AT
0 (q)n(q)‖

,

for all q ∈ DΩ, and note that v̇(q) ∈ B(q). Consider the solution to the ODE γ̇(t) := v̇(γ(t)),
with initial condition γ(0) = p ∈ DΩ, stopping at the time T ∈ [0,∞] when γ leaves DΩ. By
construction, γ is a Bε-admissible path, and for all 0 ≤ t ≤ T one has by Proposition 3.2

d

dt
d∂Ω(γ(t)) = −〈n(γ(t)), v̇(γ(t))〉 = −‖n(γ(t))‖D(γ(t)) ≤ −cD.

Therefore T ≤ d∂Ω/cD and γ(T ) ∈ ∂Ω, hence u(p) ≤ T and the announced result follows.

The following proposition establishes the Lipschitz regularity of uε(p) with respect to both
ε ∈ [0, 1] and p ∈ Ω. Regularity w.r.t. ε proves (19, left) in Theorem 1.9, which was the aim of
this section. Regularity w.r.t. p is used in the next subsection to apply the doubling of variables
techniques.

Proposition 3.6. One has the Lipschitz regularity property

|uε0(p0)− uε1(p1)| ≤ CuLip(‖p0 − p1‖+ |ε0 − ε1|). (42)

for all p0,p1 ∈ Ω and all ε0, ε1 ∈ [0, 1], where CuLip := exp(CBLip‖u‖∞)/cD.

Proof. Assume w.l.o.g. that uε0(p0) ≤ uε1(p1). Let γ0 : [0, T0]→ Ω be an optimal Bε0-admissible
path from p0 to ∂Ω, where T0 := uε0(p0). Let γ1 : [0, T1] → Ω be as in Proposition 3.4. If
γ1(T1) ∈ ∂Ω, then u1(p1) ≤ T1 ≤ T0 and the result follows.

Otherwise by Proposition 3.4 we get d∂Ω(γ1(T0)) ≤ ‖γ1(T0)− γ0(T0)‖ ≤ C(|ε0 − ε1|+ ‖p0 −
p1‖) with C := exp(CLipT0). Therefore

uε1(p1) ≤ T0 + d∂Ω(γ1(T0))/cD ≤ uε0(p0) + CuLip(‖p0 − p1‖+ |ε0 − ε1|)

as announced, using Lemma 3.5 and recalling that uε1 ≤ u0 = u on Ω, and assuming that
d∂Ω(γ1(T0)) ≤ cΩ. Thus (42) holds for all (p0, ε0), (p1, ε1) ∈ Ω × [0, 1] obeying ‖p0 − p1‖ +
|ε0 − ε1| ≤ cΩ/C. By defining uε(p) = 0 for all p ∈ E \ Ω, ε ∈ [0, 1], the result extends to
all (p0, ε0), (p1, ε1) ∈ E × [0, 1] subject to the same closeness constraint, which finally can be
removed since Lipschitz regularity on a convex set is a local property.
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3.2 Estimating Uh,ε − uε

In this subsection we complete the proof of Theorem 1.9 by estimating the difference |Uh,ε−uε|
on Ωh, for any h > 0, ε ∈]0, 1], using the doubling of variables technique Theorem 2.3. We use
the notations and assumptions of Theorems 1.9 and 2.3, except of course assumptions (i) and
(ii) of the latter which we intend to prove.

The first assumption of Theorem 2.3 is the Lipschitz regularity of the value function uε,
which is established in Proposition 3.6 above, with a constant CuLip independent of ε. Note that,
in contrast, naively adapting the Riemannian argument of Proposition 2.5 yields the Lipschitz
constant λ(Mε) ≈ ε−1 exploding as ε→ 0, and thus unsuitable for proving Theorem 1.9.

The next step is to establish assumption (i) of Theorem 2.3. Lemma 2.6 from the Riemannian
case applies without modification to uε and Uh,ε since it does not involve quantitative properties
of the Riemannian metric field Mε. Lemma 2.7 from the Riemannian case also applies, with
constants independent of ε ∈]0, 1]. Indeed the dual tensors have the expression Dε = D+ ε2D∗,
see (18), and therefore their max norm (27) is bounded λ∗(Dε) ≤ λ∗(D1) independently of
ε ∈ [0, 1]. The last ingredient used to prove assumption (i) in the Riemannian case is the
Lipschitz regularity of the dual norms (30), which is established in (40) for the pre-Riemannian
model with a constant CDLip independent of ε ∈ [0, 1].

The following proposition establishes assumption (ii) of Theorem 2.3, a discrete counterpart
of short time local controllability at the boundary, by adapting the arguments developed in the
Riemannian case, see Proposition 2.10. Note the use Assumption 1.7, which is required due to
the lack of uniform definiteness of the the tensors Dε, 0 < ε ≤ 1. The weights and offsets used
in the decomposition (13) of Dε(p) are denoted (ρi,ε(p), ėi,ε(p))d

′
i=1, p ∈ Ω, 0 < ε ≤ 1.

Proposition 3.7. Let p ∈ Ωh be such that d(p, ∂Ω) ≤ cΩ, and let ε ∈]0, 1]. Then there exists
1 ≤ i ≤ d′ and a sign s ∈ {−1, 1} such that either p + hsėi,ε /∈ Ωh or

Uh,ε(p) ≤ Uh,ε(p + hsėi,ε) + hC1‖ėi,ε‖, d(p + hsėi,ε, ∂Ω) ≤ d(p, ∂Ω)− hc2‖ėi,ε‖,

with C1 :=
√
d′/cD and c2 := cD/(2λ

∗(D1)
√
d′). This implies assumption (ii) of Theorem 2.3,

with the constants Cbd = C1/c2, C ′bd := Cbdrε, and cbd = cD.

Proof. Using Assumption 1.7 and (41), one obtains a counterpart for (34)

c2
D ≤ ‖n(p)‖2Dε(p) =

∑
1≤i≤d′

ρi,ε(p)〈n(p), ėi,ε〉2,

where n(p) := n(P∂Ω(p)). The proof is then similar to the one of Proposition 2.10, up to the
replacement of Lemma 2.9 with Proposition 3.2.

4 Convergence in the Rander case

This section is devoted to proof of Theorem 1.11, namely the numerical analysis of the Rander
metric variant of our PDE discretization scheme, using its notations and assumptions. Con-
sider the scheme Fh on the discrete domain Ωh defined for any U : Ωh → R and p ∈ Ωh by
(FhU(p))2 :=

h−2
∑

1≤i≤d′
ρi(p) max{0, U(p)−U(p+hėi)+h〈η̂(p), ėi〉, U(p)−U(p−hėi)−h〈η̂(p), ėi〉}2. (43)

By convention, U is extended by 0 outside Ωh. Note that this scheme is non-causal as soon as
some of the terms h〈η̂(p), ėi〉 are non-zero, see Definition 2.1, in contrast with (26).
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Proposition 4.1. The scheme (43) is monotone. In addition:

(i) The null map U = 0 satisfies FhU(p) = ‖η̂(p)‖2D(p) < 1 for all p ∈ Ωh, hence it is a
sub-solution for Fh − 1.

(ii) Let R > 0 be such that Ω is contained in the ball of radius R−hr∗, and let U(p) := R−‖p‖,
for all p ∈ Ωh. Then for all λ ≥ 0, and all p ∈ Ωh,

Fh(λU)(p) ≥ ‖λp/‖p‖ − η̂(p)‖2D(p),

where p/‖p‖ can be replaced with an arbitrary unit vector in the case p = 0. Thus λU is
a super-solution for all sufficiently large λ.

(iii) Let U is a super-solution for Fh − 1, and let x1, · · · , xN be the points of Ωh ordered in
such way that U(x1) ≤ · · · ≤ U(xN ). For each ε > 0 let Vε : Ωh → R be defined by
Vε(xi) = U(xi) + ε− ε1+i. Then Vε is a strict super-solution to Fh − 1 for all sufficiently
small ε.

Proof. Point (i) follows from the identity
∑

1≤i≤d′ ρi(p)〈η̂(p), ėi〉2 = ‖η̂(p)‖2D(p), and the small-

ness assumption (20, right) on the co-vector field η̂. Point (ii) is proved as in Proposition
2.4. Point (iii) is in contrast non-trivial. Let U be a super-solution for Fh − 1 and let
1 ≤ k ≤ N . Denote by mi(p) the i-th maximum of three terms appearing in (43), so that

FhU(p) =
∑d′

i=1 ρi(p)mi(p)2 for each p ∈ Ωh. Then one has the Taylor expansion

FhVε(pk)− FhU(pk) = 2
∑

1≤i≤d′
ρi(pk)mi(pk)(ε

1+ki − ε1+k) +O(ε2+2k∗), (44)

where ki is an integer depending on k and i ∈ {1, · · · , d′} and chosen so that pki = pk, (resp.
pki = pk + hėi, resp. pki = pk − hėi) if the maximum defining mi(pk) is achieved for the first
(resp. second, resp. third) term. (If this point is outside Ωh, we let ki = 0. In case of a tie, the
point with smallest index is chosen.) Finally, k∗ := min{ki; 1 ≤ i ≤ d′}.

We prove below that ki < k for some 1 ≤ i ≤ d′, which by (44) implies that FhVε(pk) >
FhU(pk) ≥ 1 for all sufficiently small ε > 0 as announced. Assume for contradiction that ki ≥ k
for all 1 ≤ i ≤ d′, hence that U(pki) ≥ U(pk) and therefore that mi(pk) ≤ |〈η̂(pk), ėi〉| for all
1 ≤ i ≤ d′. Then denoting p := pk one obtains

FhU(p) =
∑

1≤i≤d′
ρi(p)mi(p)2 ≤

∑
1≤i≤d′

ρi(p)〈η̂(p), ėi〉2 = ‖η̂(p)‖2D(p) < 1,

in contradiction with our assumption that U is a super-solution for Fh−1. The result follows.

In the rest of this section, we establish the properties required to apply the doubling of
variables argument Theorem 2.3, using its notations. The first ingredient is with the Lipschitz
regularity of the exit time value function u. By construction the Rander metric (20) satisfies for
all p ∈ Ω and all ṗ ∈ E.

Fp(ṗ) = ‖ṗ‖M(p) + 〈η̂(p), ṗ〉 ≤ (λ∗(M) + ‖η̂‖∞)‖ṗ‖.

Hence u is CuLip-Lipschitz by Proposition 2.5, as desired, with constant CuLip := λ∗(M) + ‖η̂‖∞
where the max-norm λ∗(M) of a tensor field is defined in (27).
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Establishing assumption (i) of Theorem 2.3. We proceed similarly to the Riemannian
case §2.2, starting with an extension of Lemma 2.6 to Rander metrics. The proof, left to the
reader, is similar up to fact that the scheme FhU and the PDE operator ‖du − η̂‖D are not
homogeneous w.r.t. their respective argument U and u. The variables λ ∈ [1/2, 1[, δ > 0,
(p,q), (p̃, q̃) ∈ Ωh × Ω are from Theorem 2.3.

Lemma 4.2. Let w := (p− q)/δ and let U(p) := 〈w,p〉+ 1
2δ‖p− p‖2, for all p ∈ Lh. Then

Fh(U/λ)(p) ≤ 1 ‖w − η̂(q)‖D(q) ≥ 1.

Let w̃ := (p̃− q̃)/δ and let Ũ(p) := 〈w̃,p〉 − 1
2δ‖p− p̃‖2, for all p ∈ Lh. Then

FhŨ(p̃) ≥ 1 ‖w̃/λ− η̂(q̃)‖D(q̃) ≤ 1.

Let CDLip be a Lipschitz regularity constants for the tensors D, in the sense of (30). Let also

C η̂Lip and cD,η̂ > 0 be such that for all p,q ∈ Ω

‖η̂(p)− η̂(q)‖ ≤ C η̂Lip‖p− q‖, ‖η̂(p)‖D(p) ≤ 1− cD,η̂.

Lemma 4.3. Assume that (p,q) ∈ Ωh × Ω and define w and U as in Lemma 2.6. Then∣∣∣Fh(U/λ)(p)− ‖w/λ− η̂(p)‖D(p)

∣∣∣ ≤ C0r∗
h

δ
,
∣∣‖w − η̂(q)‖D(q) − ‖w − η̂(p)‖D(p)

∣∣ ≤ C1δ,

(45)

with C0 := λ∗(D)
√
d and C1 := CDLip(4CuLip)(4CuLip+C η̂Lip)+λ∗(D)C η̂Lip. Assuming δ ≤ cD,η̂/(2C1)

this implies λ ≥ 1− 2
cD,η̂

(C0r∗
h
δ + C1δ). The same estimates and conclusion hold for (p̃, q̃).

Proof. We focus on the case of (p,q), the second case of (p̃, q̃) being similar, and we begin with
the proof of (45, left). By definition of the quadratic function U , one has for any 1 ≤ i ≤ d′

max{0, U(p)/λ− U(p + ėi)/λ+ h〈η̂(p), ėi〉, U(p)/λ− U(p− ėi)/λ− h〈η̂(p), ėi〉} (46)

= h|〈w/λ− η̂(p), ėi〉|+
h2

δ
‖ėi‖2.

From this point, the arguments developed in the Riemannian case apply without modification.
The second estimate (45, right) follows from∣∣‖w − η̂(q)‖D(q) − ‖w − η̂(p)‖D(p)

∣∣ ≤ CDLip‖p− q‖(‖w‖+ ‖η̂(q)‖) + λ∗(D)C η̂Lip‖p− q‖,

combined with ‖p − q‖ ≤ 4CuLipδ, see Theorem 2.3, hence ‖w‖ ≤ 4CuLip. Combining the two
estimates (31) with Lemma 4.2, and using the convexity of the norm, we obtain

1 + C0r∗
h

δ
≥ ‖w/λ− η̂(p)‖D(p) ≥ ‖w − η̂(p)‖D(p) +

1/λ− 1

‖w − η̂(p)‖D(p)
〈w,D(p)(w − η̂(p))〉

The scalar product in the above r.h.s. is bounded below as follows

2〈w,D(p)(w − η̂(p))〉 = ‖w − η̂(p)‖2D(p) + ‖w‖2D(p) − ‖η̂(p)‖2D(p)

≥ ‖w − η̂(p)‖2D(p) − (1− cD,η)2

Using ‖w− η̂(p)‖D(p) ≥ 1−C1δ, and assuming 2C1δ ≤ cD,η for the second inequality, we obtain

1 + C0r∗
h

δ
≥ (1− C1δ) + (1/λ− 1)

(
(1− C1δ)−

(1− cD,η)2

1− C1δ

)
≥ (1− C1δ) + (1− λ)

cD,η
2
.

We used the elementary inequalities 1/λ− 1 ≥ 1− λ and (1− c/2)− (1− c)2/(1− c/2) ≥ c/2.
This implies the announced lower bound for λ.
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Establishing assumption (ii) of Theorem 2.3. The case of Rander metrics only requires
a minor adaptation of the Riemannian argument, presented Proposition 2.10.

Proposition 4.4. Let p ∈ Ωh, and let q ∈ E be such that ‖p − q‖ ≥ C0r∗h, where C0 :=
µ(D)

√
d′. Then there exists 1 ≤ i ≤ d′ and a sign s ∈ {−1, 1} such that

Uh(p) ≤ Uh(p + hsėi) + hC1‖ėi‖, ‖p + hsėi − q‖ ≤ ‖p− q‖ − hc2‖ėi‖,

with C1 := λ∗(M)
√
d′ + ‖η̂‖∞, c2 := 1/(2µ(D)

√
d′). This implies assumption (ii) of Theorem

2.3, with the constants CUbd = C1/c2, C ′Ubd := CbdCΩC0r∗, and cUbd = +∞.

Proof. The arguments developed in the Riemannian case apply with the following adaptation of
(36): by definition of the discretization scheme (43) one has h−2ρ2 max{0, Uh(p)− Uh(p + ė)−
h〈η̂(p), ė〉}2 ≤ (FhUh(p))2 = 1, hence

U(p)− U(p + ė) ≤ h

ρ
+ h〈η̂(p), ė〉 ≤ h‖ė‖(

√
d′

λ∗
+ ‖η̂‖∞).

5 Numerical results

We demonstrate the numerical methods introduced in this paper in a series of numerical ex-
periments, involving Riemannian, sub-Riemannian and Rander metrics in §5.1, §5.2 and §5.3
respectively. Open source numerical codes for the Riemannian and sub-Riemannian models1 are
available on the author’s webpage2.

5.1 Riemannian examples

We validate our algorithm on a number of two and three dimensional test cases, which are split
into two groups. The problems of the first group - related to differential geometry and seismic
imaging - feature smooth Riemannian metrics with pronounced yet bounded anisotropy, and
accuracy is the main concern. The problems of the second group - related to tubular structure
segmentation in medical image data - feature discontinuous Riemannian metrics and extreme
anisotropies, and robustness is the main concern.

Smooth Riemannian metrics. The first test, two dimensional and introduced in [36], is the
computation of the distance from the origin w.r.t. the riemannian metric induced on a parametric
surface by the euclidean metric on R3. The surface is described by the height map

z(x, y) := (3/4) sin(3πx) sin(3πy),

hence the Riemannian metric is M(x, y) = Id +∇z(x, y)∇z(x, y)T, which maximum condition
number (4) is ≈ 5.1. The parametrization domain, is the unit square [−0.5, 0.5]2 rotated by the
angle π/6.

The second test, two dimensional and introduced in [30], is inspired by seismic imaging appli-
cations. The Riemannian metric tensor M(x, y) has eigenvector (1, (π/2) cos(4πx)) with eigen-
value 0.8−2. The second eigenvalue is 0.2−2, hence the condition number is 4. The parametriza-
tion domain is [−0.5, 0.5]2, and the distance is computed from the origin.

1Numerical codes for Rander metrics, which are more experimental, are available on demand.
2https://github.com/Mirebeau
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The third test, introduced here for the first time, extends the seismic imaging inspired
second test to three dimensions. The Riemannian metric tensor M(x, y, z) has eigenvector
(cos(3π(x + y)), sin(3π(2x − y)), 0.5), with eigenvalue 0.2−2. The two other eigenvalues are
equal to 0.8−2, hence the condition number is 4. The domain is [−0.5, 0.5]3 and the distance is
computed from the origin (0, 0, 0).

Numerical results for these three tests are presented in Figure 3. The accuracy and com-
putation time in the two dimensional test cases are compared in Appendix §B with several
alternative numerical methods. The proposed method is state of the art, comparable with the
FM-LBR [18] but with the advantage of being compatible with second order finite differences.

Discontinuous Riemannian metrics with extreme anisotropy. Anisotropic fast march-
ing methods have shown their relevance for image segmentation methods based on minimal
paths [4, 8]. In these applications, the metric often varies quickly, if not discontinuously, both
in orientation and aspect ratio. For instance, the Riemannian metric is often designed to favor
paths which remain close and tangent to a collection of thin tubular structures in the image.

We present two numerical experiments inspired by these applications, in two and three
dimensions respectively, which first appeared in [4] and [18]. The Riemannian metric is euclidean
(identity matrix) except in the neighborhood of a curve Γ embedded in the domain, where the
metric is extremely anisotropic, with eigenvalues (1, 1/1002) or (1, 1, 1/502) in the two and
three dimensional experiments, and the curve tangent vector Γ′ is an eigenvector for the small
eigenvalue. See Figure 4 for an illustration, and [18] for a complete description of the test cases.

Again the CPU time and accuracy of the FM-VR1 are state of the art, and comparable to
those of the FM-LBR. In contrast, iterative numerical methods such as the AGSI [5], and fast
marching methods based on less sophisticated stencil constructions [1], have be shown to fail on
these types of benchmarks [4, 18]

5.2 Sub-riemannian models

We consider several sub-Riemannian models, posed on the domain M := Rd × Sd−1, which
elements are denoted p = (x,n), and tangent vectors ṗ = (ẋ, ṅ). For that purpose, let us
introduce the orthogonal projection

Pn(ẋ) := ẋ− 〈n, ẋ〉n

of a vector ẋ onto the hyperplane orthogonal to a given unit vector n ∈ Sd−1. We choose to
describe the sub-Riemannian models via the relaxed Riemannian metric Mε, which is often
easier to read than the control vector fields (ωi)

n
i=1 or the dual tensors Dε.

Reeds-Shepp model. The first considered model is the Reeds- Shepp subRiemannian model,
with relaxed metric

‖ṗ‖2Mε(p) := S(p)−2
(
〈n, ẋ〉2 + ε−2‖Pn(ẋ)‖2 + ξ2‖ṅ‖2

)
(47)

where S : M →]0,∞[ is a point dependent speed function, with physical units [length]/[time],
and ξ is a parameter which has the dimension [length] of a radius of curvature. Note that the
choice of speed function S is typically application dependent and data driven, and that there
is no obstruction, theoretical or practical, to letting ξ depend on the current point p ∈ M.
This model is related to curvature penalization for the following reason: consider a smooth path
x : [0, T ] → Rd, with non-vanishing speed. Then there exists a unique n : [0, T ] → Sd−1 such
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that the lifted path t ∈ [0, T ] 7→ γ(t) = (x(t),n(t)) has finite length with respect to the sub-
Riemannian metric M0. Indeed, one must set n(t) := ẋ(t)/‖ẋ(t)‖, so that Pn(t)(ẋ(t)) = 0 for
all t ∈ [0, T ]. Then denoting by κ(t) := ‖ṅ(t)‖/‖ẋ(t)‖ the curvature of the path x one obtains∫ T

0
‖γ̇(t)‖M0(t) dt =

∫ T

0

√
1 + ξ2κ(t)2

‖ẋ(t)‖ dt

S(γ(t))
.

Note that (contrary to what this discussion may suggest) the physical projections of geodesics
paths for the sub-Riemannian metric M0 are only piecewise smooth, because they generically
feature cusps, see Figures 5, 7, and the discussion in [12].

Some experiments involving two and three dimensional physical paths are presented in Fig-
ures 5, 6 and 7. We are here solving strongly anisotropic PDEs on three and five dimensional
domains respectively. The control sets for the Reeds-Shepp model posed on R2 × S1 are illus-
trated on Figure 2 (ii). For the model posed on R3×S2, the sphere S2 is parametrized using the
Euler angles (θ, ϕ) 7→ (cos θ, sin θ cosϕ, sin θ sinϕ), from the flat domain [0, π]× [0, 2π] equipped
with the adequate Riemannian metric and boundary conditions.

The numerical results are similar to those obtained in [12] using the semi-lagrangian FM-
LBR, but computation times are substantially smaller for the 5D test case, see the discussion
in §5.1, by a factor 5 typically for the five dimensional test cases.

A model related to torsion penalization. We introduce a new sub-Riemannian model,
which relaxed metric is defined for all p = (x,n) ∈M, ṗ = (ẋ, ṅ) ∈ TpM by

‖ṗ‖2M̃ε(p)
:= S(p)−2

(
〈n, ẋ〉2 + ε−2‖Pn(ẋ)‖2 + ξ2‖ṅ‖2

)
, (48)

where again S : M→]0,∞[ is the speed function, and ξ has the dimension of a length. The model
(48) favors planar paths, which was the motivation of torsion penalization in the first place [33].
Indeed the physical velocity ẋ is constrained by the cost of ε−2〈n, ẋ〉2 to remain (approximatedly
if ε > 0) in the plane orthogonal to the vector n, which variation is itself controlled by the
cost of ‖ṅ‖2. Note also that the most natural way to lift a physical curve x : [0, T ] → R3

into γ = (x,n) : [0, T ] → R3 × S2 obeying the orthogonality constraint 〈x(t),n(t)〉 = 0 for all
t ∈ [0, T ], is to define n(t) := (ẋ(t)×ẍ(t))/‖ẋ(t)×ẍ(t)‖. Then denoting by τ(t) := ‖ṅ(t)‖/‖ẋ(t)‖
the torsion of the path x one obtains∫ T

0
‖γ̇(t)‖M̃0(t)

dt =

∫ T

0

√
1 + ξ2τ(t)2

‖ẋ(t)‖ dt

S(γ(t))
.

Nevertheless our model is only related to torsion penalization, and not equivalent to it, because
there exists other lifts γ = (x,n) : [0, T ] → Rd × Sd−1 of the curve x : [0, T ] → Rd obeying
the required orthogonality constraint, and which energy could be smaller than the torsion based
one.

Numerical experiments presented in Figures 6 and 7 show that the orthogonality relation
〈n(t), ẋ(t)〉 = 0 is indeed approximately satisfied by the extracted paths. On the experiment
presented Figure 6, the speed function S : R3×S2 →]0,∞[ only depends on the physical position
x, and is small away from two curves Γ1,Γ2 of interest

S(x,n) := max{s, exp

(
−dist(x,Γ1 ∪ Γ2)2

2σ2

)
},

where s = 1/6 and σ = 0.15. The curves Γ1,Γ2 are parametrized by t ∈ [0, π] as follows

γ1(t) := (t, sin(t)2 cos(4t), 0), γ2(t) := (t, sin(t)3 cos(2t), sin(t)3 sin(2t)).
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Hence Γ1 has large curvature but no torsion, whereas Γ2 has small curvature but some torsion.
Using our anisotropic fast marching method, we compute the shortest path between the common
endpoints x0,x1 ∈ R3 of these curves, among all possible orientations of the unit vector n0,n1 ∈
S2. As could be expected, the torsion related model selects a path along Γ1, whereas the Reeds-
Shepp model selects a path along Γ2.

On Figure 6 we validate our sub-Riemannian fast marching method by comparing the ob-
tained minimal paths with solutions of the Hamilton equations of geodesics

dp

dt
= −∂H

∂p̂

dp̂

dt
=
∂H
∂p̂

, (49)

where H(p, p̂) := 1
2〈p̂,D0(p)p̂〉. We denoted by D0 the inverse tensor to the sub-Riemannian

metric (47) (resp. (48)), which is well defined in contrast to M0 itself. The ODE is solved
using a fourth order Runge-Kutta method, and the ODE initial conditions are adjusted using a
Newton method to match the desired endpoints.

5.3 Rander models

We consider some instances of Zermelo’s navigation problem, which models vehicles such as
planes or boats moving within a domain Ω ⊆ Rd and subject to a given drift η̇ : Ω → Rd.
The objective is to find the minimal time T ≥ 0 for which there exists a path γ : [0, T ] → Ω,
connecting two given points γ(0) = p0, γ(1) = p1 ∈ Ω, and subject for all t ∈ [0, T ] to the
constraint

‖γ̇(t)− v̇(γ(t))‖ ≤ 1.

We present a two and a three dimensional experiment, on the domains Ω = [0, 1]2 and Ω = [0, 1]3.
The drift has the explicit expression

η̇(x) := α sin(4πx1) sin(4πx2)
x

‖x‖
.
(

resp. η̇(x) := α sin(4πx1) sin(4πx2) sin(4πx3)
x

‖x‖
.
)

The two dimensional instance was first presented in [30]. Note that ‖η̇(x)‖ < 1 for all x ∈ Rd,
otherwise the system would not be locally controllable, and the proposed method would not be
applicable. The PDE solved is

‖du(p)− η̂(p)‖D(p) = 1,

where, as follows from Proposition 1.13 and expression of the dual to a Rander metric given in
[17],

D(p) := (1− ‖v̇(p)‖2)(1− v̇(p)⊗ v̇(p)), η̂(p) =
−η̇(p)

1− ‖η̇(p)‖2
.

Since the resulting numerical scheme lacks the causality property, see Definition 2.1, the fast
marching method is not applicable. We use instead Adaptive Gauss Siedel Iterations, in the
spirit of [5].

The computation time and the L∞ and L1 errors obtained with the two dimensional problem
are presented in §B, and compared with several alternative semi-lagrangian methods [17, 5, 1].
In summary, the proposed method works well but does not outperform its alternatives on this
test case, in particular Fast Marching using Anisotropic Stencil Refinement (FM-ASR) [17]. The
following points are however in defense of the the discretization introduced in this paper:

• (Dimension) The proposed discretization applied in arbitrary dimension, whereas the sten-
cil construction of the FM-ASR is intrinsically two dimensional.
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• (Second order accuracy) The proposed discretization can take advantage of second order
finite differences to improve accuracy by one order of magnitude or more, as demonstrated
in §B, in contrast with the semi-lagrangian methods.

6 Conclusion

In this paper, we introduced a new discretization of anisotropic eikonal equations on cartesian
grids. The discretization makes use of adaptive stencils built using a tool from discrete geometry:
Voronoi’s first reduction of quadratic forms.

Convergence proof is provided, with convergence rates, is the setting of riemannian metrics,
but also sub-riemannian and asymmetric Rander metrics. Numerical experiments show that the
method is particularly suitable for problems with one or more of the following features: (i) strong
anisotropy, with Riemannian tensor condition numbers of ≈ 10 and more, (ii) high dimension,
up to 5, (iii) high accuracy requirements, addressed using second order finite differences.

Future directions of research include (a) causal discretizations for non-symmetric Hamil-
tonians, (b) point sets more general than cartesian grids, either unstructured or obtained by
gluing several grid patches of different scales, (c) applications to motion planning and image
segmentation.

Acknowledgement. The author thanks Jorg Portegies, PhD student at Eindhoven TU/e
University under the direction of Remco Duits, for careful testing of the numerical codes and
designing some of the numerical experiments.

A Figures for the numerical experiments

B Two dimensional benchmark

We compare the accuracy and computation time of the proposed algorithm with several al-
ternative methods proposed in the literature. They can be divided into two groups: causal
discretizations, solved via the single pass fast marching algorithm, and non-causal discretiza-
tions, solved via iterative methods. These groups are analogous, in the context of distance
computation on graphs, to Dijkstra’s algorithm and Bellman-Ford’s algorithm respectively, and
the counterpart of causality is the positivity of the edge weights.

Our numerical tests confirm the good performance discretization introduced in this paper,
which does not outperform [17, 18], but compensates for this by its compatibility with second
order finite differences, its generalization potential, and its CPU time advantage in the high
dimensional problems §5.2. This benchmark extends previous works of the author published in
[17, 18].

Causal discretizations.

• Fast Marching using Voronoi’s first reduction (FM-VR1), introduced in this paper.

• Fast-Marching using Lattice Basis Reduction (FM-LBR), and Fast-Marching using Adap-
tive Stencil Refinement (FM-ASR), introduced by the author in [18] and [17]. Like the
FM-VR1, these are a single pass methods, which require a cartesian grid, and achieve
their efficiency by the use of adaptive stencils built using arithmetic techniques. In con-
trast with the FM-VR1, these are semi-Lagrangian discretizations. FM-LBR is intended
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Pictures/HamiltonFM/Riemann2/SurfaceMetricRot_Paths.pdf

Figure 3: Numerics for smooth Riemannian metrics, illustrating §5.1. Test cases involving
smooth riemannian metrics. Top: level lines of the distance maps. Bottom: some minimal
geodesics. Left: distance computation on a parametric surface, 2832 grid, 0.1s CPU time.
Center: inspired by seismic data analysis, 1932 grid, 0.04s CPU time. Right: likewise in 3D,
on a 1013 grid, CPU time 5.02s. See Appendix B for more CPU information and accuracy
comparisions.

Figure 4: Numerics for discontinuous, extremely anisotropic Riemannian metrics, illustrating
§5.1. Test cases inspired by tubular structure segmentation, favoring paths which remain close
and tangent to a curve, featuring discontinuous and extremely anisotropic Riemannian metrics.
Left: 201× 201 grid, 0.03s CPU time. Right 201× 201× 272 grid, 25s CPU time.
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Figure 5: Numerics for the Reeds-Shepp sub-Riemannian model posed on R2 × S1, illustrating
§5.2. Left: minimal paths without obstacles, model parameters ε = 0.1, ξ = 0.3. Center left:
likewise, with dashed lines obtained using an ODE shooting method based on the Hamilton
equations of geodesics. Center right and right: Path planning with the Reeds-Shepp model in
the presence of obstacles. Domain [0, 1]2 × S1 discretized on a 902 × 60 grid, CPU time 0.36s.
Model parameters ε = 0.1, and ξ = 0.4 or 0.8 respectively.

0
1

2

3 -1.0
-0.5

0.0
0.5

1.0-0.5

0.0

0.5

0

1

2

3 -1.0

-0.5

0.0
0.5

1.0-0.5

0.0

0.5

Figure 6: Numerics for sub-riemannian models posed on R3 × S2, illustrating §5.2. Test case
inspired by 3D tubular structure segmentation. Left: contour plot of the speed function, which
is high in the neighborhood of two curves of small curvature and small torsion respectively. The
curvature-penalized model (center) and the torsion-penalized-like model (right) select distinct
paths. Domain ([0, π]× [−1, 1]× [−1, 0.5])×P2 discretized using a (40×20×16)× (5×20) grid,
ε = 0.2. CPU time 6.6 s.
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Figure 7: Numerics for sub-riemannian models posed on R3 × S2, illustrating §5.2. Top:
curvature-penalized model. Bottom: torsion-penalized-like model. Left: minimal paths in the
presence of obstacles. ξ = 0.2, domain [0, 1]3×P2. Size 203×(5×20), ε = 0.2. CPU time 2.6s and
2.4s. Center: Minimal paths with constant cost, ε = 0.1, ξ = 0.5. The vector n(t), illustrated
with arrows, satisfies approximatedly as required the sub-riemannian constraint n(t)× ẋ(t) = 0
(top) or 〈n(t), ẋ(t)〉 = 0 (bottom). Right: comparison with an ODE shooting method based on
Hamilton’s equations of geodesics.
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Figure 8: Numerics for Rander metrics, Illustrating §5.3. Left: Two dimensional instance of
Zermelo’s navigation problem. Metric etric anisotropy ratio 19, 201 × 201 grid, 0.14s CPU
time. Level lines of the solution (top) and some geodesics (bottom) Center: Likewise in three
dimensions. Grid size 1013, CPU time 7.8s. Right examples of non-centered control sets, and
stencils used in the discretization.

FM-VR1
1st order 2nd order FM-LBR FM-8 FE MAOUM

Embedded surface distance test, 293× 293 grid
CPU time 0.10∗ 0.12∗ 0.20 0.21 1.44 1.31
L∞ error 5.8 1.2∗∗ 5.52 12.5 9.45 8.56
L1 error 1.6 0.063 1.46 3.42 2.51 2.52

Seismic inspired test, 193× 193 grid
CPU time 0.042∗ 0.048∗ 0.076 0.079 0.77 0.36
L∞ error 4.5 0.26∗∗ 2.90 3.03 3.67 7.66
L1 error 1.5 0.052 1.03 1.30 1.40 2.3

Figure 9: Comparison of the CPU time and accuracy of the proposed FM-VR1 with several
alternatives in two Riemannian test cases, see §5.1 and §B. All errors multiplied by 100 for
readability. When testing second order accuracy, the seed point (0, 0) was replaced with a
precomputed solution on the disk D(0, 1/8). Asterix ∗ a slightly faster CPU was used for the
new tests (2.7GHz instead of 2.4GHz). Asterix ∗∗ a layer of 5 pixels along the domain boundary
was excluded.
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RD-VR1
1st order 2nd order FM-ASR FM-8 FE MAOUM

Zermelo navigation problem, 285× 285 grid
CPU time 1.03(0.48∗) 1.39(0.81∗) 0.29 0.16 1.08 0.69
L∞ error 0.74 0.20 0.64 0.64 1.05 2.8
L1 error 0.38 0.01 0.13 0.11 0.41 0.17

Figure 10: Comparison of the CPU times and accuracy of the proposed RD-VR1 method
with several alternatives in a test case involving a Rander metric, see §5.3 and §B. All errors
multiplied by 100 for readability. When testing second order accuracy, the single seed point was
replaced with an accurate precomputed solution within the subdomain [−1/10, 1/10]2. Asterix
∗ first time using the AGSI as decribed in [5], second time with a variant which limits the front
width to 10 pixels.
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Figure 11: Numerical error as a function of gridsize for the two dimensional test cases. Second
order convergence is achieved in the L1 norm, but not in the L∞ norm (despite the removal of
a 5 pixel layer along the boundary), which is not surprising since solutions to eikonal equations
are not smooth along a (d− 1)-dimensional interface called the cut locus.
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for two and three dimensional Riemannian metrics, and FM-ASR for two dimensional
Finslerian metrics.

• The Monotone Acceptance Ordered Upwind method (MAOUM) [1] is a single pass semi-
Lagrangian method using adaptive stencils. It differs from the FM-LBR and FM-ASR by
its less sophisticated stencil construction, which produces large isotropic stencils, often at
the expense of accuracy and complexity.

• Fast-Marching using 8-point stencils (FM-8) is the original semi-Lagrangian scheme [34]
instantiated with non-adaptive 8-point stencils. This method is non-consistent for Rie-
mannian metrics which condition number exceeds 1 +

√
2, because its stencils lack the

acuteness property [29]. Hence convergence towards the continuous problem solution fails
as the grid is refined. Nevertheless, the method is fast and its accuracy is surprisingly
competitive at low grid sizes.

Non causal discretizations. We use Adaptive Gauss Siedel Iterations (AGSI3) to solve the
following discretizations. We also report some computation times obtained with a variant of
this method limiting the front width to 10 pixels.

• Rander Distances using Voronoi’s First Reduction (RD-VR1), introduced in this paper.

• The Finite Element discretization (FE) of [5], a semi-Lagrangian discretization using non-
adaptive stencils extracted from a triangulation of the domain, here by half-squares.

All CPU times obtained using a single thread. CPU times are empirical data, only indicative
of general performance. CPU times for the FM-VR1 and RD-VR1 obtained on a 2.7GHz core
i7 laptop, whereas CPU times for the other methods were copied from previous works [18, 17]
and obtained using a 2.4 GHz core 2 duo laptop.

C Doubling of variables

We establish in this section the doubling of variables argument, presented in Theorem 2.3 and
adapted from [13]. Since the domain Ω is by assumption bounded, its closure Ω is compact, and
its sampling Ωh := Ω ∩ hL is finite. Since the functions u and Uh are supported on these sets,
and since u is CLip-Lipschitz hence continuous, the maxima Mλ,δ and M̃λ,δ are well defined and
attained, at some point pairs (p,q), (p̃, q̃) ∈ (hL)×E. Our first step is to establish the closeness
of p with q, and of p̃ with q̃, as announced in Theorem 2.3.

Lemma C.1. Under the assumptions of Theorem 2.3, one has max{‖p−q‖, ‖p̃−q̃‖} ≤ 4CLipδ.

Proof. Using the optimality properties defining (p,q) and (p̃, q̃), see Theorem 2.3, and compar-
ing with the alternative point pairs (p,p) and (p̃, p̃) respectively, one obtains

λUh(p)− u(q)− 1

2δ
‖p− q‖2 = Mλ,δ ≥ λUh(p)− u(p),

λu(q̃)− Uh(p̃)− 1

2δ
‖p̃− q̃‖2 = M̃λ,δ ≥ λu(p̃)− Uh(p̃).

3Note that in [18, 17] the acronym AGSI refers to discretization FE of [5]. This is inadequate, since it mixes
the PDE discretization and the numerical solver used for the discrete system of equations.
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The next line is obtained by first rearranging the terms of these inequalities, eliminating in
particular the instances of Uh, and then using the Lipschitz regularity of u

1

2δ
‖p− q‖2 ≤ u(p)− u(q) ≤ CLip‖p− q‖, 1

2δ
‖p̃− q̃‖2 ≤ λ(u(q̃)− u(p̃)) ≤ λCLip‖q̃− p̃‖.

The announced result follows from these estimates and the upper bound 1/λ ≤ 2.

The rest of this section is devoted to the proof of (25), and begins with an estimate of u−Uh
in terms of the suprema Mλ,δ, M̃λ,δ and of the max norm ‖u‖∞ := supE |u|, which is well defined
by continuity of u and compactness of its support.

Lemma C.2. Under the assumptions of Theorem 2.3, one has

sup
p∈hL

|u(p)− Uh(p)| ≤ 2
(

max{Mλ,δ, M̃λ,δ}+ (1− λ)‖u‖∞
)
.

Proof. By the optimality properties of (p,q) and (p̃, q̃) one obtains for any p ∈ Ωh, respectively,

Mλ,δ ≥ λUh(p)− u(p) ≥ λ(Uh(p)− u(p))− (1− λ)‖u‖∞.

M̃λ,δ ≥ λu(p)− Uh(p) ≥ (u(p)− Uh(p))− (1− λ)‖u‖∞.

The announced result follows from these one-sided estimates on u− Uh, and from 1/λ ≤ 2.

The next paragraph establishes some conditional estimates on Mλ,δ and M̃λ,δ, depending on
the location of the points p,q, p̃, q̃. If p̃ ∈ hL \ Ωh, then Uh(p̃) = 0 and we obtain

M̃λ,δ = λu(q̃)− 1

2δ
‖p̃− q̃‖2 ≤ λu(q̃) ≤ λCLipd∂Ω(q̃) ≤ CLip‖p̃− q̃‖ ≤ 4C2

Lipδ. (50)

We used successively the negativity of the quadratic term, the Lipschitz regularity of u and the
fact that it vanishes outside Ω, the fact that p̃ ∈ hL \ Ωh ⊆ E \ Ω, and the previously obtained
estimate on p̃− q̃. Likewise, if p ∈ hL \ Ωh then Mλ,δ ≤ −u(p) ≤ 4C2

Lipδ.
Next if q ∈ E \ Ω, then u(q) = 0 and we obtain similarly to (50)

Mλ,δ = λUh(p)− 1

2δ
‖p− q‖2 ≤ Uh(p) ≤ Cbdd∂Ω(p) + C ′bdh ≤ 4CLipCbdδ + C ′bdh.

We used the same arguments as in (50), except for the second inequality which is based on

assumption (ii) of Theorem 2.3. Likewise, if q̃ ∈ E \Ω then M̃λ,δ ≤ −Uh(p̃) ≤ Cbd(h+ 4CLipδ).
Following assumption (i) of Theorem 2.3, we assume that (p,q) /∈ Ωh×Ω, thus either p /∈ Ωh

or q /∈ Ω, which yields by the above arguments

Mλ,δ ≤ max{4C2
Lipδ, 4CLipCbdδ + C ′bdh}.

Likewise for M̃λ,δ using the assumption that (p̃, q̃) /∈ Ωh×Ω. The announced result (25) follows

from Lemma C.2 and the these bounds on Mλ,δ and M̃λ,δ.
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[26] A Schürmann. Computational geometry of positive definite quadratic forms. University
Lecture Series, 2009.
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