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Abstract: The function solution to the functional scheme derived from
the binomial tree with local volatility converges to the solution of a dif-

fusion equation of type ht(t, x) + x2σ2(t,x)
2 hxx(t, x) = 0 as the number

of discrete dates n → ∞. Contrarily to classical numerical methods, in
particular finite difference and finite element methods, the principle is
only based on a discretization in time. We establish the uniform con-
vergence in time of the scheme and provide the rate of convergence. We
illustrate the convergence result and compare its performance to the
finite difference and finite element methods by numerical examples.
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1. Introduction

There are three major methods to simulate a diffusion equation of type

ht(t, x) +
x2σ2(t, x)

2
hxx(t, x) = 0, t ∈ [0, T ), (1.1)

with the boundary condition h(T, x) = g(x). The first one is to use the Monte
Carlo methods as the solution h admits a probabilistic representation, see [8].
The second one is to numerically compute the solution directly from the PDE.
In particular, the very well known finite difference (FD) technique is based
on approximations of the successive derivatives. It requires a discretization,
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both in time and in the space variable, of some compact subset [0, T ]× [a, b],
a ≤ b. Moreover, as we need to fix extra boundary conditions, when x = a or
x = b, that are a priori approximations of h, a second type of approximation
error should appear. For instance, if b is large enough, we generally set the
condition h(t, b) = limx→∞ h(t, x) if the latter may be estimated while the
condition h(t, 0) = g(0) is chosen if a = 0 under some mild conditions on σ.
There are a lot of articles in the literature focusing on this technique, see for
example [2] and [15]. The finite element (FE) method is more sophisticated,
see [3], but it is also based on a discretization of the space variable, see e.g.
other techniques like finite volume [13] or spectral methods [12], [1].

The third technique is based on binomial trees. Here we study the con-
vergence of this very simple alternative scheme derived on the binomial tree
with local volatility financial model, which is only based on a discretization
in time of the interval [0, T ] and allows to simulate t 7→ h(t, x) for a fixed x.
The advantage of this method is the ease of implementation of the functional
scheme which is basically defined. The numerical scheme we study is defined
by two functions depending on the number n of discretization dates. We focus
here on a particular choice of such functions which leads to a uniform ap-
proximation in time of the diffusion equation under some mild conditions. We
present some examples where the functional scheme appears to outperform
the finite difference method but also the finite element method in the case of
an unbounded boundary condition. Moreover, the functional scheme is well
adapted to parallel computing. An open problem is to study the suggested
functional scheme more generally.

Motivation and interpretation in finance. Let us consider a binomial model
in finance with T steps defined as follows: we consider on a stochastic basis
(Ω, (Ft)t=0,··· ,T ,P) a price process (St)t=0,··· ,T where S0 is given at time 0.
Moreover, we suppose that P(St+1 = Stk

u
t (St)|Ft) = P(St+1 = Stk

d
t (St)|Ft) =

1/2 where 0 ≤ kdt < 1 < kut are two function-valued processes such that
kd + ku = 2. By the assumptions, we easily deduce that (St)t=0,··· ,T is a
P-martingale.

Let us define a portfolio process V as an adapted process satisfying ∆Vt :=
Vt − Vt−1 = θt−1∆St for all t = 1, · · · , T , where θt is Ft-measurable for all
t = 0, · · · , T − 1. Moreover, we say that it replicates the contingent claim
g(ST ), for some function g, if VT = g(ST ). If g(ST ) is integrable, we easily
deduce that V is a martingale and, by induction, we get that Vt = C(t, St) for
some measurable function C. Using the martingale property Vt−1 = E(Vt|Ft),
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we finally deduce that

C(t− 1, St−1) =
1

2
C(t, St−1k

d
t−1) +

1

2
C(t, St−1k

u
t−1), t = 1, · · · , T. (1.2)

The natural idea is to consider this scheme as the number n + 1 of dates
(Ti/n)i=0,··· ,n tends to ∞ when we discretize the continuous-time interval
[0, T ]. This leads to the scheme we propose to study in the next section
when kdt (x) = 1− σ(t, x)

√
T/n and kdt (x) = 1 + σ(t, x)

√
T/n. Actually, the

asymptotic behaviour of such binomial model is well known, at least for the
price process. Indeed, let us consider the continuous-time price process Sn

of the binomial model defined by Snt = SnT (i−1)/n if t ∈ [T (i − 1)/n, T i/n)

where SnT (i−1)/n is defined from kd and ku when starting from S0 at t = 0 as

explained above. Then, by [11, Proposition 3.2.1] under mild conditions on
σ, the sequence Sn weakly converges to the diffusion process S satisfying the
stochastic differential equation

dSt = Stσ(t, St)dWt, (1.3)

where W is a standard Brownian motion. We also deduce the convergence
of the price functions (Cn)n≥1 given by (1.2 ) towards the limit price C of
the continuous-time model given by (1.3), i.e. the solution to the diffusion
equation (1.1). This is indeed the case when σ is constant for a large class of
payoff functions g as proven in [2, Chapter 4] where it is also shown that the
best rate we can get in general is 1√

n
, see also [17] and the papers [4], [14],

[7], and [16] among others. Actually, our main contribution is to show that
the result is still valid when the diffusion coefficient is not a constant func-
tion provided that the solution of the diffusion equation is smooth enough.
Moreover, the numerical experiments we present confirm the accuracy of the
functional scheme in comparison to the (FD) and (FE) methods.

2. Functional scheme for diffusion equations

Let us consider a bounded diffusion function σ : [0, T ]×R+ and the associated
backward parabolic equation

ht(t, x) +
x2σ2(t, x)

2
hxx(t, x) = 0, t ∈ [0, T ), h(T, x) = g(x), (2.4)

where the terminal condition is defined by a Lipschitz function g with Lip-
schitz constant  Lg and ht and hxx are respectively the first and the sec-
ond derivatives of h with respect to time t and space variable x ∈ R. This
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equation is very well known in physics but also in mathematical finance
for models without friction when the risky asset S is driven by a standard
Brownian motion W so that it satisfies the stochastic differential equation
dSt = σ(t, St)StdWt under a risk neutral probability measure P 1. In that
case, h(t, St) is the value at time t of the unique self-financing portfolio pro-
cess V composed of a fraction of the risk-less bond B = 1 and the risky asset
S such that it replicates the European option payoff g(ST ), i.e. VT = g(ST ).
The quantity σ(t, St) is then interpreted as a local volatility coefficient.

In the following, we consider the uniform grid on [0, T ] given by tni =
(T/n)i, i = 0, · · · , n where n ≥ 1. We then define the following functions:

kn+t (x) := 1 + σ(t, x)

√
T

n
, kn−t (x) := 1− σ(t, x)

√
T

n
, (2.5)

λnt (x) :=
1− kn−t (x)

kn+t (x)− kn−t (x)
=

1

2
, µnt (x) := 1− λnt (x) =

1

2
.

Let hn be the piecewise constant function defined on [0, T ] by hn(t, x) =
hn(ti−1, x) if t ∈ [tni−1, t

n
i [, i ≤ n, where the sequence (hn(ti, x))i≤n is defined

recursively by the following functional scheme:

hn(ti−1, x) = λnti−1
(x)hn

(
ti, k

n−
t (x)x

)
+ µnti−1

(x)hn
(
ti, k

n+
t (x)x

)
,

hn(T, x) = g(x), i ≤ n. (2.6)

Our main result states that the sequence of functions (hn)n∈N uniformly
converge to h as n→∞ under some mild conditions (called Condition D be-
low) satisfied by the successive derivatives of h, solution to (2.4). Of course,
the functional scheme (2.6) may also be considered for other choices of func-
tions kn− and kn+. In this paper, we restrict ourselves to the functions defined
by (2.5), i.e. when the coefficients defining the binomial model are symmetric,
but it is an interesting problem to study such a scheme in its full generality,
i.e. for more general coefficients kn− and kn+.

Recall that h(t, x) = Eg(Sx,t(T )) where, for t ≤ T , Sx,t is the unique
solution to the stochastic differential equation (5.14) on the interval [t, T ] with
initial condition Sx,t(t) = x. We deduce that h(t, 0) = g(0). In the following,
we suppose that σ is locally Lipschitz and bounded so that existence and

1If we suppose that the risk-free interest rate is r = 0
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uniqueness holds for (5.14), see for instance [8, Theorem 2.2, p104]. The
conditions below hold in particular when the payoff function g is continuous
with linear growth at infinity, e.g. g(x) = (x−K)+, K ∈ R, and the diffusion
coefficient σ is smooth enough and positive as proven in [10, Theorem 4.1]
for a more general case 2, see also [6, Section 5].

Condition D:

There exists a constant C > 0 independent of n such that:

|hx(t, x)| ≤ C, |hxx(t, x)| ≤ C

|x|
√
T − t

,

|hxxx(t, x)| ≤ C

x2(T − t)
, |hxt(t, x)| ≤ C

T − t
,

|hxxt(t, x)| ≤ C

|x|(T − t)3/2
, |htt(t, x)| ≤ C | x |

(T − t) 3
2

,

|httt(t, x)| ≤ C | x |
(T − t) 5

2

, |hxtt(t, x)| ≤ C

(T − t)2
.

Theorem 2.1. Suppose that σ is a bounded Lipschitz function and assume
that the solution to Equation (2.4) satisfies Condition (D). Then, there exists
a constant C(x) > 0 depending on x, g and σ such that

sup
t∈[0,T ]

|hn(t, x)− h(t, x)| ≤ C|x|√
n
, n > 0.

The proof is deduced from the lemmas and the corollary of Section 4. Note
that, by choosing specific discretization dates, see [5], we should improve the
convergence rate of the functional scheme. This is left for future research.

3. Numerical examples

In the following, we compare the performance of the functional scheme to
the Crank-Nicolson finite difference method (FD) and to the Finite Element
(FE) method on some examples.

2Here, the coefficient γn of [10] appears to be a constant independent of n.
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3.1. The case where the diffusion coefficient only depends on
time.

Suppose that σ(t, x) = σ(t), t ∈ [0, T ], only depends on time. In that case,
we may show (see [9]) that

h(t, x) =

∫ ∞
−∞

g

(
xeρty−

ρ2t
2

)
1√
2π
e−

y2

2 dy,

where ρt ≥ 0 is defined by ρ2t =
∫ T
t
σ2
udu. Moreover, for some particular

functions g, e.g. g(x) = (x−K)+, it is trivial to derive an explicit formula of
h(t, x). As kn− and kn+ do not depend on the space variable, we also deduce
an explicit expression of hn, solution to (2.6):

h(tnn−i, x) =
1

2i

∑
z∈En−i

g(xz), i = 0, · · · , n, (3.7)

where the sets (Ei)i=0,··· ,n do not depend on x and are recursively defined as

En = {1} and En−i−1 =
(
kn−tnn−i−1

En−i
)
∪
(
kn+tnn−i−1

En−i
)

for all i = 0, · · · , n−1.

Regarding the implementation, we may see each Ei as a vector with 2n−i

components. Once these vectors computed for all, we may simulate the
scheme (2.6) for any x and any arbitrary terminal condition g. Indeed,
just compute the vectors Gi whose components are (g(xz))z∈Ei and deduce
h(tnn−i, x) as the scalar product of Gi with 1 = (1, · · · , 1) ∈ R2n−i .

Let us now consider the case σ(t) = σ(2 + cos(t)). Then,

ρ2t = 4σ2 [(T + sinT )− (t+ sin t)] +
σ2

2

[
(T +

1

2
sin(2T )− (t+

1

2
sin 2t)

]
,

and for g(x) = (x−K)+, h(t, x) is given explicitly by:
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h(t, x) =

∫ ∞
−∞

g

(
xeρty−

ρ2t
2

)
1√
2π
e−

y2

2 dy

=

∫ ∞
−∞

(
xeρty−

ρ2t
2 −K

)+
1√
2π
e−

y2

2 dy

=

∫ ∞
ρ−1
t

(
ln(K

x
)+

ρ2t
2

)
(
xeρty−

ρ2t
2 −K

)
1√
2π
e−

y2

2 dy

=

∫ ∞
ρ−1
t

(
ln(K

x
)+

ρ2t
2

) xe−
(y−ρt)

2

2

√
2π

dy −K

(
1− Φ

(
ln(K

x
) +

ρ2t
2

ρt

))

= x

(
1− Φ

(
ln(K

x
) +

ρ2t
2

ρt
− ρt

))
−KΦ

(
ln( x

K
)− ρ2t

2

ρt

)

= xΦ

(
ln( x

K
) +

ρ2t
2

ρt

)
−KΦ

(
ln( x

K
)− ρ2t

2

ρt

)
.

Therefore, we are in position to numerically compare the convergence error
between the explicit solution given above and the functional scheme as well as
the finite difference and finite element approximations . We first consider the
parameters σ = 0.5, T = 10, K = 100, x = 120 and 30 discrete dates. As we
may observe in Figure 1, with a space discretization of 400 points, the finite
difference method does not provide a good approximation and, moreover, the
monotonicity we expect to is not satisfied.

With the parameters σ = 1.5, T = 1, K = 115, x = 95 and the same
discretization in time and in space (see Figure 2), the finite difference method
provides an approximating function which explodes as time tends to 0.

At last, with the parameters σ = 0.1, T = 5, K = 115, we consider 25
discrete dates and 400 points for the discretization in space. We observe that
the approximating function given by the finite difference method is not very
efficient as well.

In order to better compare the methods, we have computed the needed
time for several strikes to obtain a reasonable convergence error for the value
of h(0, x) with respect to the analytic expression of the later. Initially, the
time discretization is composed of 10 dates while the space is discretized in
400 points. If the error is larger than 5%, we add as many discrete dates as
necessary (see Tables 3, 4, 5 and 5). In the following tables, the number of
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Fig 1. Numerical example with σ = 0.5, T = 10, K = 100, x = 120. The case where the
diffusion coefficient only depends on time.

discrete dates is denoted by t.f. for Time Discretization and the needed time
is denoted by c.t. for Computation Time.

K Result (FS) Error t.d. c.t.(s) Result (FE) Error t.d. c.t.(s)
50 117.74 4.78% 23 2.36 111.44 -0.83% 10 0.004
60 117.04 4.91% 24 4.90 110.59 -0.90% 10 0.005
70 116.18 4.83% 26 19.62 109.77 -0.96% 10 0.005
80 115.66 4.99% 27 76.45 109.04 -1.02% 10 0.004
90 115.00 4.99% 28 152.14 108.36 -1.08% 10 0.005
100 114.19 4.80% 30 323.16 107.72 -1.14% 10 0.005
110 113.76 4.93% 31 1273.74 107.11 -1.19% 10 0.005

Fig 3. Values at t = 0 of h(t, 0) by the (FS) and (FE) methods with parameters σ = 0.5,
T = 10, x = 120. The case where the diffusion coefficient only depends on time.

Clearly, the results are bad for the finite difference method, see Table 4.
With the parameters σ = 1.5, T = 1, x = 95, see Table 5. Notice that the
results given by the finite difference method are not acceptable, e.g. when K
is too large, see Table 6.
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Fig 2. Numerical example with σ = 1.5, T = 1, K = 115, x = 95. The case where the
diffusion coefficient only depends on time.

K Result (FD) Error Time Discretization Computation time (s)
50 105.34 -6.26% 4000 > 1400
60 103.84 -6.93% 4000 > 1400
70 102.63 -7.40% 4000 > 1400
80 101.59 -7.78% 4000 > 1400
90 100.81 -7.97% 4000 > 1400
100 100.12 -8.11% 4000 > 1400
110 99.60 -8.12% 4000 > 1400

Fig 4. Values at t = 0 by finite differences with parameters σ = 0.5, T = 10, x = 120.
The case where the diffusion coefficient only depends on time.

Strike Result (FS) Error t.d. c.t. (s) Result (FE) Error t.d. c.t. (s)
50 95.84 3.34% 20 0.29 90.94 -1.95% 10 0.005
60 95.84 3.58% 20 0.29 90.62 -2.06% 10 0.005
70 95.83 3.80% 20 0.29 90.32 -2.17% 10 0.005
80 95.83 4.01% 20 0.29 90.04 -2.27% 10 0.005
90 95.82 4.20% 20 0.29 89.78 -2.37% 10 0.005
100 95.81 4.38% 20 0.29 89.53 -2.47% 10 0.004
110 95.81 4.54% 20 0.29 89.29 -2.57% 10 0.005

Fig 5. Values at t = 0 by the (FS) and (FE) methods with parameters σ = 1.5, T = 1,
x = 95. The case where the diffusion coefficient only depends on time.
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Strike Result(FD) Error Time Discretization Computation time (s)
50 3876.89 > 4000% 100 > 20
60 3874.93 > 4000% 100 > 20
70 3873.15 > 4000% 100 > 20
80 3871.49 > 4000% 100 > 20
90 3869.98 > 4000% 100 > 20
100 3868.58 > 4000% 100 > 20
110 3867.27 > 4000% 100 > 20

Fig 6. Values at t = 0 by the (FD) method where σ is constant with parameters σ = 1.5,
T = 1, x = 95. The case where the diffusion coefficient only depends on time.

3.2. The case where the diffusion coefficient only depends on
space.

Let us consider the diffusion coefficient σ(t, x) = σ(x) = σ ∗ (1 + e−x
2
). As

h(t, x) does not admit any analytic expression, we first evaluate it by using
its probabilistic representation through a Monte-Carlo discretization of the
associated diffusion process (5.14). The discretization in time is composed of
10000 dates with 50000 samples for the Monte-Carlo method. We discretize
the space variable in 400 points. With the parameters σ = 1.5, T = 1,
K = 115, x = 95 and only 25 discrete dates, the function scheme provides
a rather good approximation contrarily to the finite difference method. As
we may observe in Figure 7, the finite difference method does not provide
a non increasing function in time as expected and the approximation is not
accurate.

In Table 11, we see that refining more the space variable grid does not
significantly improve the results while the computation time increases.
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Fig 7. Numerical example with σ = 1.5, T = 1, K = 115, x = 95. The case where the
diffusion coefficient only depends on space.

K Result(FS) Error t.d. c.t. (s) Result(FE) Error t.d. c.t. (s)
50 66.41 4.36% 11 < 0.01 64.80 1.83% 10 0.013
60 62.89 4.52% 12 < 0.01 61.26 1.81% 10 0.013
70 59.20 3.66% 12 < 0.01 58.13 1.80% 10 0.013
80 56.66 4.24% 17 0.03 55.34 1.80% 10 0.013
90 53.64 3.41% 17 0.03 52.82 1.83% 10 0.013
100 51.98 4.77% 17 0.03 50.54 1.87% 10 0.013
110 49.47 4.04% 20 0.26 48.45 1.91% 10 0.012

Fig 8. Values at t = 0 by the (FS) and (FE) methods with parameters σ = 1.5, T = 1,
x = 95. The case where the diffusion coefficient only depends on space.

Fig 9. Numerical example with σ = 0.5, T = 10, K = 100, x = 120. The case where the
diffusion coefficient only depends on space.
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K Result (FS) Error t.d. c.t. (s) Result (FE) Error t.d. c.t. (s)
50 91.25 4.93% 12 < 0.01 88.46 1.71% 10 0.005
60 87.17 4.81% 13 < 0.01 84.49 1.58% 10 0.005
70 83.51 4.68% 12 < 0.01 80.93 1.44% 10 0.005
80 80.47 4.91% 10 < 0.01 77.72 1.33% 10 0.005
90 76.94 4.13% 19 0.13 74.79 1.22% 10 0.005
100 73.96 3.73% 19 0.13 72.12 1.15% 10 0.004
110 72.16 4.72% 19 0.13 69.65 1.09% 10 0.004

Fig 10. Values at t = 0 by the (FS) and the (FE) method with parameters σ = 0.5,
T = 10, x = 120. The case where the diffusion coefficient only depends on space.

Number of points Result (FD) Error Time discretization Computation time (s)
400 93.45 -13.78% 30 11.58
600 94.57 -12.75% 20 112.23
800 94.96 -12.39% 30 305.76
1000 95.12 -12.24% 30 573.46
1200 95.23 -12.14% 30 1071.47
1400 95.23 -12.10% 30 1913.85
1600 95.32 -12.05% 30 2938.44

Fig 11. Values at t = 0 by the finite differences with parameters σ = 0.5, T = 10, x = 120
and K = 100 when refining the space variable grid. The case where the diffusion coefficient
only depends on space.

Fig 12. Numerical example with σ = 2, T = 5, K = 10, x = 95. The case where the
diffusion coefficient only depends on space.
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3.3. The case where the diffusion coefficient depends on time
and space: comparison to the (FD) method

We consider the volatility function σ(t, x) = σ(1 + 0.01x2

1+0.01x2
+ t). The number

of discrete dates is 25 for the functional scheme as well as the finite difference
method and 400 points for the space variable. The Monte Carlo discretization
is based on 10000 discrete dates and 50000 trajectories. When the parameters
are σ = 0.5, T = 10, K = 100, x = 120, the finite difference method provides
bad results and it takes a long time to compute them as shown in Figure 13
and Table 14.

Fig 13. Numerical example with σ = 0.5, T = 10, K = 100, x = 120. The case where the
diffusion coefficient depends on time and space.

Strike Result (FS) Error t.d. c.t. (s) Result (FD) Error t.d. c.t. (s)
50 83.21 4.36% 11 < 0.01 0.02 -99.98% 30 11.42
60 78.26 4.52% 11 < 0.01 0.01 -99.99% 30 13.00
70 73.64 3.66% 11 < 0.01 0.00 -100.00% 30 11.82
80 69.61 4.24% 11 < 0.01 0.00 -100.00% 30 12.23
90 66.18 3.41% 11 < 0.01 0.00 -100.00% 30 11.77
100 63.15 4.77% 11 < 0.01 0.00 -100.00% 30 12.42
110 60.32 4.04% 11 < 0.01 0.00 -100.00% 30 11.77

Fig 14. Values at t = 0 by the (FS) and the (FE) methods with parameters σ = 0.5,
T = 1, x = 120. The case where the diffusion coefficient depends on time and space.

For the parameters σ = 0.1, T = 5, K = 110, x = 95, the functional
scheme over evaluates the Monte Carlo method while monotonicity is not
satisfied for the finite difference method.
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Fig 15. Numerical example with σ = 0.1, T = 5, K = 110, x = 95. The case where the
diffusion coefficient depends on time and space.

Strike Result Error Time Discretization Computation time (s)
50 56.13 4.36% 10 < 0.01
60 51.10 4.52% 10 < 0.01
70 46.69 3.66% 10 < 0.01
80 42.79 4.24% 10 < 0.01
90 39.33 3.41% 10 < 0.01
100 36.23 4.77% 10 < 0.01
110 33.46 4.04% 10 < 0.01

Fig 16. Values at t = 0 by the functional scheme with parameters σ = 0.1, T = 5, x = 95.
The case where the diffusion coefficient depends on time and space.

Strike Result Error Time Discretization Computation time (s)
50 27.21 -50.66% 30 11.69
60 22.88 -54.42% 30 11.58
70 19.37 -57.79% 30 11.55
80 16.38 -61.11% 30 11.56
90 14.03 -63.83% 30 11.66
100 12.04 -66.40% 30 11.60
110 10.41 -68.65% 30 11.59

Fig 17. Values at t = 0 for finite differences with parameters σ = 0.1, T = 5, x = 95. The
case where the diffusion coefficient depends on time and space.

Notice that it is possible to execute parallel computations by means of pro-
gramming interfaces (e.g. OpenMP or MPI) i.e. we may use several calculus
units simultaneously and reduce computation time. Using n ≥ 1 processors,
we should theoretically divide the needed time by n. In practice, that de-
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pends on how the executed parallel calculus are interconnected. In the finite
difference method, when computing the value function at some point of the
grid, we need to estimate some expressions depending on the adjacent nodes
that may be calculated and used by other processors. This should increase
the computation time, as it is necessary to wait for some computations to
be executed before starting new ones. On the contrary, for the functional
scheme, we do not face this problem as the nodes of the binomial tree at the
same level are independent. This is confirmed by the realized time savings we
observe to be very closed to the theoretical ones (e.g. 50% with two cores and
75% with 4 cores), see Table 18 with the example of the current subsection
and the parameters σ = 0.5, T = 10, K = 100, S0 = 120. Therefore, even
with parallel computing, the functional scheme should outperform the finite
difference method in the examples we have presented.

Number of cores Computation time (s) Theoretical time saving Realized time saving
1 388.203 0% 0%
2 194.492 50% 49.90%
4 102.717 75% 73.54%

Fig 18. Time savings with the parallel functional scheme when σ = 0.5, T = 10, K = 100,
S0 = 120. The case where the diffusion coefficient depends on time and space.

3.4. Comparison to the (FE) method.

3.4.1. The case of a bounded payoff function.

Let us consider the payoff function h(x) = (K − x)+. The case when h(x) =
(x−K)+ may be deduced by the Call-Put parity (x−K)+−(K−x)+ = x−K.
When the volatility function only depends on time (see Section 3.1), we
obtained above very good approximations. We now consider the volatility
function

σ(t, x) = σ

(
1 +

0.01x2

1 + 0.01x2
+ t

)
.

In Figure 20, we may observe that the (FE) method is very performant.
This is confirmed by other parameters, see Figure 21 and Table 22.
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Fig 19. Numerical example with σ = 0.5, T = 1, K = 100, x = 120. The case where the
diffusion coefficient depends on time and space with a bounded payoff function.

Strike Result Error Time Discretization Computation time (s)
50 82.03 1.45% 10 0.014
60 76.98 1.44% 10 0.014
70 72.48 1.38% 10 0.015
80 68.43 1.31% 10 0.014
90 64.77 1.24% 10 0.014
100 61.45 1.19% 10 0.013
110 58.42 1.15% 10 0.013

Fig 20. Values at t = 0 by the (FE) method with parameters σ = 0.5, T = 1, x = 120.
The case where the diffusion coefficient depends on time and space with a bounded payoff
function.

Fig 21. Numerical example with σ = 0.1, T = 5, K = 115, x = 95. The case where the
diffusion coefficient depends on time and space with a bounded payoff function.
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Strike Result Error Time Discretization Computation time (s)
50 55.69 0.98% 10 0.014
60 50.61 0.81% 10 0.014
70 46.18 0.61% 10 0.014
80 42.30 0.40% 10 0.013
90 38.87 0.21% 10 0.014
100 35.84 0.02% 10 0.013
110 33.15 -0.16% 10 0.014

Fig 22. Values at t = 0 by the (FE) with parameters σ = 0.1, T = 5, x = 95. The case
where the diffusion coefficient depends on time and space with a bounded payoff function.
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3.4.2. The case of an unbounded payoff function.

Let us consider the payoff function h(x) = (x−K)8 and let us fix the following
parameters: σ = 0.25, T = 1 and K = 0.5. We then compute t 7→ h(t, x)
for x = 1. We compare the obtained results to the approach based on the
probabilistic representation of h(t, x), i.e. by implementing the Monte Carlo
(MC) technique with a time discretization of 50000 dates and a sample of
100000 trajectories.

First, we observe that the (FE) method is very performant when σ(t, x) =
σ is a constant function and the interval space [0, 10] is discretised in 500
points. To see it, we estimate the relative error of the (FE) approximation
with respect to the (MC) method, see Table 23.

number of dates (FE) method Time (s) Error
5 1.1201 0.001 215.32%
10 0.5969 0.001 68.02%
20 0.4508 0.002 26.91%
50 0.3855 0.005 8.52%
100 0.3666 0.009 3.19%
200 0.3576 0.017 0.66%
300 0.3547 0.025 0.16%

Fig 23. Approximation of h(0, x) with the (FE) method when the volatility function is
constant with an unbounded payoff function.

In this example, the functional scheme seems to be more unstable even if
it only takes 3 m.s. to get an error less than 5%. Nevertheless it takes too
much time to obtain an error less than 1%, see Table 24.
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Number of dates Functional Scheme Time (s) Error
5 0.1831 0.000 93.96%
6 0.3331 0.000 6.66%
7 0.3344 0.000 6.23%
8 0.2280 0.000 55.81%
9 0.2382 0.000 49.15%
10 0.3378 0.001 5.16%
11 0.2543 0.001 39.70%
12 0.2608 0.001 36.23%
13 0.3402 0.003 4.41%
14 0.3409 0.006 4.21%
15 0.3415 0.013 4.03%
16 0.2799 0.012 26.91%
17 0.2835 0.024 25.29%
18 0.2868 0.049 23.87%
19 0.3433 0.197 3.48%
20 0.2925 0.196 21.47%
21 0.2949 0.400 20.44%
22 0.3443 1.571 3.17%
23 0.3446 3.135 3.08%
24 0.3449 6.285 3.00%
25 0.3031 6.237 17.20%
26 0.3454 24.917 2.86%
27 0.3456 51.146 2.80%
28 0.3458 107.718 2.74%
29 0.3460 213.635 2.68%

Fig 24. Approximation of h(0, x) with the (FS) method when the volatility function is
constant and the payoff function is unbounded.

We now consider the volatility function

σ(t, x) = σ

(
1 +

x2

100
(
1 + x2

100

) + t

)
.

In that case, it is difficult to obtain the desired convergence with the (FE)
method as the result is very sensitive to the chosen space variable and its
discretization as well. It appears that we reduce the error by increasing the
discretization in time but it is not possible to lower the error as much as
desired, see Table 25.

nbIterations Finite Elements Method Time (s) Error
5 110,8036 0.001 644.37%
10 63.7537 0.001 328.29%
20 39.5068 0.003 165.40%
50 26.7455 0.006 79.67%
100 23.0440 0.011 54.81%
200 21.3239 0.022 43.25%
300 20.7713 0.034 39.54%

Fig 25. Approximation of h(0, x) with the (FE) method. The case where the diffusion
coefficient depends on time and space with an unbounded payoff function.

Surprisingly, if we reduce the number of discrete points of the space variable
to 100 points, the error is smaller as observed in Table 26. Nevertheless, even
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by increasing the number of discrete dates to 107 and more, it is not possible
to reduce as much as desired the convergence error. If we enlarge the space
variable to [0, 25], the error is 837% for 2000 discrete dates so that we need
to increase more the number of discrete dates.

nbIterations Finite Elements Method Time (s) Error
5 103,3949 0,000 594,60%
10 56,7661 0,000 281,35%
20 33,6140 0,001 125,81%
50 21,9113 0,001 47,20%
100 18,6310 0,002 25,16%
200 17,1327 0,005 15,10%
300 16,6556 0,008 11,89%
500 16,2822 0,012 9,38%
1000 16,0070 0,03 7,53%
2000 15,8710 0,049 6,62%

1000000 15,7363 25,581 5,71%
10000000 15,7360 254,609 5,71%

Fig 26. Approximation of h(0, x) with the (FE) method for 100 discrete points. The case
where the diffusion coefficient depends on time and space with an unbounded payoff func-
tion.

On the contrary, the functional scheme appears to be efficient, see Table
27. In particular, it is possible to reduce as much as desired the convergence
error. It takes about 145 seconds to obtain an error less that 5%. Moreover, a
code parallelisation should significantly reduce the needed computation time.

nbIterations Functional Scheme Time (s) Error
5 1,4608 0,000 919,00%
6 6,9680 0,000 113,63%
7 7,6439 0,000 94,74%
8 3,0234 0,000 392,35%
9 3,5389 0,001 320,63%
10 9,3410 0,001 59,36%
11 4,5235 0,000 229,07%
12 4,9881 0,001 198,43%
13 10,6514 0,01 39,75%
14 11,0229 0,008 35,04%
15 11,3674 0,017 30,95%
16 6,6509 0,017 123,81%
17 7,0200 0,032 112,04%
18 7,3720 0,066 101,92%
19 12,5264 0,261 18,83%
20 8,0281 0,261 85,42%
21 8,3339 0,527 78,61%
22 13,2189 2,098 12,61%
23 13,4236 4,167 10,89%
24 13,6171 8,331 9,32%
25 9,4280 8,436 57,89%
26 13,9739 34,286 6,52%
27 14,1387 71,794 5,28%
28 14,2953 144,877 4,13%
29 14,4445 291,819 3,05%

Fig 27. Approximation of h(0, x) with the (FS) method. The case where the diffusion
coefficient depends on time and space with an unbounded payoff function.
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3.5. Conclusion

The numerical experiments we have implemented show that the finite element
method appears to be very efficient (less time consuming) in the case of a
bounded payoff function even with a volatility function depending on time
and the space variable. The only difficulty for this method is to suitably
chosen the (bounded) space variable interval. Nevertheless, as soon as the
payoff function is unbounded, the (FE) technique does not allow to control
in an easy way the convergence error. In the example above, it does not
seem possible to reduce it more. A priori, this is due to the choice of the
space variable and the extra boundary condition we need to impose. On the
contrary, the functional scheme is efficient as it is possible to reduce as much
as desired the convergence error.

4. Proof

From a line to the next one, we shall use the same notation C for some
distinct constants independent of n. Also, notice that there is a constant
M > 0 such that |kn−t | + |kn+t | ≤ M for all n and t ∈ [0, T ]. We also use
the notation ∆tni = tni − tn−1i = T/n, i ≤ n. At last, observe that the results
below are trivial when x = 0 hence we only provide the proofs when x 6= 0.

Lemma 4.1. Suppose that the conditions of Theorem (2.1) hold. Then, there
exists a constant C > 0 which does not depend on x such that

sup
t∈[tnn−1,T ]

|hn(t, x)− h(t, x)| ≤ C|x|√
n
.
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Proof. Let us define δnt =| h(t, x)−hn(t, x) |. Recall that h(t, x) = Eg (Sx,t(T ))
where Sx,t is the solution to (5.14). We have:

δnt = | h(t, x)− 1

2
g(kn−tnn−1

x)− 1

2
g(kn+tnn−1

x) |

≤| h(t, x)− g(x) | +1

2
| g(kn−tnn−1

x)− g(x) | +1

2
| g(kn+tnn−1

x)− g(x) |

≤ sup
tnn−1≤t≤T

| h(t, x)− g(x) | +  Lg
2

(1− kdtnn−1
) | x | +  Lg

2
(kutnn−1

− 1) | x |

≤  Lg sup
tnn−1≤t≤T

E | Sx,t(T )− x | +  Lg
2
σ(t, x)

√
T

n
| x | +  Lg

2
σ(t, x)

√
T

n
| x |

≤ C|x|
√
T

n
+

 Lg
2
σ∗
√
T

n
| x |,

where the last inequality is deduced from Lemma 5.1 and σ∗ = sup
t∈[0,T ],x∈R

|σ(t, x)|.
2

Lemma 4.2. Suppose that the conditions of Theorem (2.1) hold. Then, there
exists a constant C > 0 such that

|hn(tnn−2, x)− h(tnn−2, x)| ≤ C|x|√
n
.

Proof. Let us introduce δnt−2 =| hn(tnn−2, x)− h(tnn−2, x) |. We have

δnt−2 = | 1

2
hn(tnn−1, k

n−
tnn−2

x) +
1

2
hn(tnn−1, k

n+
tnn−2

x)− h(tnn−2, x) |

≤ 1

2
| hn(tnn−1, k

n−
tnn−2

x)− h(tnn−2, x) | +1

2
| hn(tnn−1, k

n+
tnn−2

x)− h(tnn−2, x) |

≤ 1

2
| hn(tnn−1, k

n−
tnn−2

x)− h(tnn−1, k
n−
tnn−2

x) | +1

2
| h(tnn−1, k

n−
tnn−2

x)− h(tnn−2, k
n−
tnn−2

x) |

+
1

2
| h(tnn−2, k

n−
tnn−2

x)− h(tnn−2, x) |) +
1

2
(| hn(tnn−1, k

n+
tnn−2

x)− h(tnn−1, k
n+
tnn−2

x) |

+
1

2
| h(tnn−1, k

n+
tnn−2

x)− h(tnn−2, k
n+
tnn−2

x) | +1

2
| h(tnn−2, k

n+
tnn−2

x)− h(tnn−2, x) |).
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Under Condition D, by the mean value theorem, we deduce that

| h(tnn−2, x)− h(tnn−2, k
n−
tnn−2

x) | ≤ C | x− kn−tnn−2
x |≤ C | x | . | 1− kn−tnn−2

|≤ C | x |
√
T

n
,

| h(tnn−2, x)− h(tnn−2, k
n+
tnn−2

x) | ≤ C | x− kn+tnn−2
x |≤ C | x | . | 1− kn+tnn−2

|≤ C | x |
√
T

n
.

Note that, under Condition D, we have

| ht(t, x) |= x2σ2(t, x)

2
| hxx(t, x) |≤ C | x |√

T − t
. (4.8)

Therefore, by the mean value theorem, since kn−tnn−2
, kn+tnn−2

≤M ,

| h(tnn−1, k
n−
tnn−2

x)− h(tnn−2, k
n−
tnn−2

x) | ≤ CM | x |√
T − tnn−1

∆tnn−1 ≤ CM | x |
√
T

n
,

| h(tnn−1, k
n+
tnn−2

x)− h(tnn−2, k
n+
tnn−2

x) | ≤ CM | x |√
T − tnn−1

∆tnn−1 ≤ CM | x |
√
T

n
.

At last, by Lemma 4.1,

| hn(tnn−1, k
n−
tnn−2

x)− h(tnn−1, k
n−
tnn−2

x) | ≤ Ckn−tnn−2
|x|
√
T

n
,

| hn(tnn−1, k
n+
tnn−2

x)− h(tnn−1, k
n+
tnn−2

x) | ≤ Ckn+tnn−2
|x|
√
T

n
.

As kn−tnn−2
+ kn+tnn−2

= 2, we deduce that

1

2
| hn(tnn−1, k

n−
tnn−2

x)−h(tnn−1, k
n−
tnn−2

x) | +1

2
| hn(tnn−1, k

n+
tnn−2

x)−h(tnn−1, k
n+
tnn−2

x) |≤ C|x|
√
T

n
.

The conclusion follows. 2

Lemma 4.3. Suppose that the conditions of Theorem (2.1) hold. Then, there
exists a constant C > 0 such that

|hn(tni , x)− h(tni , x)| ≤ C|x|√
n
, for all i ≤ n− 2.
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Proof. We first prove the result for i = n− 2 and, then, we generalize the
result by induction. Let us introduce the function

Fi(x) =
1

2
h(tni , k

n−
tni−1

x) +
1

2
h(tni , k

n+
tni−1

x), i ≤ n.

By the Taylor formula, we get that

Fi(x) =
1

2

[
h(tni−1, x) +R11

i (x) +R12
i (x) +R13

i (x)
]

+
1

2

[
h(tni−1, x) +R21

i (x) +R22
i (x) +R23

i (x)
]
.

where, for some constants αi, i = 1, · · · , 4, and t̃ni−1 ∈ [tni−1, t
n
i ], x̃ = x +

θ̃x(kn−tni−1
− 1), θ̃ ∈ [0, 1], t̂ni−1 ∈ [tni−1, t

n
i ], x̂ = x + θ̂x(kn+tni−1

− 1), θ̂ ∈ [0, 1], we

have

R11
i (x) = ht(t

n
i−1, x)

T

n
− hx(tni−1, x)xσ(tni−1, x)

√
T

n
,

R12
i (x) = −htx(tni−1, x)xσ(tni−1, x)

(
T

n

) 3
2

+
1

2
hxx(t

n
i−1, x)x2σ2(tni−1, x)

T

n
+

1

2
htt(t

n
i−1, x)

(
T

n

)2

,

R13
i (x) = α1httt(t̃

n
i−1, x̃)

(
T

n

)3

− α2httx(t̃
n
i−1, x̃)σ(tni−1, x)x

(
T

n

)5/2

+α3htxx(t̃
n
i−1, x̃)σ2(tni−1, x)x2

(
T

n

)2

− α4hxxx(t̃
n
i−1, x̃)σ3(tni−1, x)x3

(
T

n

)3/2

,

R21
i (x) = ht(t

n
i−1, x)

T

n
+ hx(t

n
i−1, x)xσ(tni−1, x)

√
T

n
,

R22
i (x) = htx(t

n
i−1, x)xσ(tni−1, x)

(
T

n

) 3
2

+
1

2
hxx(t

n
i−1, x)x2σ2(tni−1, x)

T

n
+

1

2
htt(t

n
i−1, x)

(
T

n

)2

,

R13
i (x) = α1httt(t̂

n
i−1, x̂)

(
T

n

)3

+ α2httx(t̂
n
i−1, x̂)σ(tni−1, x)x

(
T

n

)5/2

+α3htxx(t̂
n
i−1, x̂)σ2(tni−1, x)x2

(
T

n

)2

+ α4hxxx(t̂
n
i−1, x̂)σ3(tni−1, x)x3

(
T

n

)3/2

.

We deduce that Fi(x) = h(tni−1, x) + R1
i (x) + R2

i (x) + R3
i (x), for every i ≤

n, where R1
i (x) = 1

2
(R11

i (x) +R21
i (x)), R2

i (x) = 1
2

(R12
i (x) +R22

i (x)) and
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R3
i (x) = 1

2
(R13

i (x) +R23
i (x)). As h is the solution to (2.4), we may simplifly

Fi(x) as

Fi(x) = h(tni−1, x) +
1

2
htt(t

n
i−1, x)

(
T

n

)2

+R3
i (x), i ≤ n.

Under Condition D, there exists a constant C independant of i and n such
that

1

2

∣∣htt(tni−1, x)
∣∣ ≤ C | x |

(T − tni−1)
3
2

, i ≤ n. (4.9)

On the other hand, since t̃ni−1, t̂
n
i−1 ∈ [tni−1, t

n
i ] and |x̂| + |x̃| ≤ C|x| where

C > 0 is independent of i and n, the residual error R3
i (x) is the sum of terms

which may be dominated under Condition D using the following inequalities:

∣∣α1httt(t̂
n
i−1, x̂)

∣∣ ≤ C | x |
(T − tni )

5
2

. (4.10)

∣∣α2hxtt(t̂
n
i−1, x̂)σ(tni−1, x)x

∣∣ ≤ C | x |
(T − tni )2

. (4.11)

∣∣α3htxx(t̂
n
i−1, x̂)σ2(tni−1, x)x2

∣∣ ≤ C | x |
(T − tni )

3
2

. (4.12)

The inequalities above are also satisfied if we replace t̂ni−1 by t̃ni−1 and x̂ by x̃.
Recall that the constant C may denote distinct constants that change from
a line to the next one but these constants do not depend on i and n. At last,
by the Taylor formula, we rewrite the last term as

εi = α4

(
hxxx(t̂

n
i−1, x̂)σ3(tni−1, x)− hxxx(t̃ni−1, x̃)σ3(tni−1, x)

)
x3
(
T

n

)3/2

,

= α4hxxxt(t̄
n
i−1, x̄)x3(t̂ni−1 − t̃ni−1)

(
T

n

)3/2

+ α4hxxxx(t̄
n
i−1, x̄)x3(x̂− x̃)

(
T

n

)3/2

,
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where t̄ni−1 ∈ [t̃ni−1, t̂
n
i−1] and x̄ = αx̃+ (1−α)x̂ for some α ∈ [0, 1]. It is easily

seen that |t̂ni−1 − t̃ni−1| ≤ CT/n for some constant C independent of i and
n. Similarly, by definition of x̃ and x̂, there exists a constant C such that
|x̂− x̃| ≤ C|x|

√
T/n. Therefore,

|εi| ≤
C | x |

(T − tni )2

(
T

n

)5/2

+
C | x |

(T − tni )3/2

(
T

n

)2

, i ≤ n. (4.13)

Let us introduce δnti−1
(x) :=

∣∣hn(tni−1, x)− h(tni−1, x)
∣∣, i ≤ n − 2. From

above, we get that

δnti−1
(x) =

∣∣∣∣12hn(tni , k
n−
tni−1

x) +
1

2
hn(tni , k

n+
tni−1

x)− h(tni−1, x)

∣∣∣∣
=

∣∣∣∣∣12hn(tni , k
n−
tni−1

x) +
1

2
hn(tni , k

n+
tni−1

x)− Fi(x) +
1

2
htt(t

n
i−1, x)

(
T

n

)2

+R3
i (x)

∣∣∣∣∣
≤ 1

2
δnti(k

n−
tni−1

x) +
1

2
δnti(k

n+
tni−1

x) +
1

2

(
T

n

)2 ∣∣htt(tni−1, x)
∣∣+
∣∣R3

i (x)
∣∣ .

Using the inequalities (4.9), (4.10),· · · , (4.13), we then deduce a constant
C > 0 independent of i and n such that

δntni−1
(x) ≤ 1

2
δnti(k

n−
tni−1

x) +
1

2
δnti(k

n+
tni−1

x)

+
C|x|

(T − tni )
1
2

(
T

n

) 3
2

+
C|x|

(T − tni )
3
2

(
T

n

)2

+
C|x|

(T − tni )2

(
T

n

) 5
2

+
C|x|

(T − tni )
5
2

(
T

n

)3

.

Recall that, by Lemma 4.2,

1

2

(
δntnn−2

(kn−tnn−3
x) + δntnn−2

(kn+tnn−3
x)
)
≤ 1

2
C|x|(kn−tnn−3

+ kn+tnn−3
)

√
T

n
= C|x|

√
T

n
.
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We deduce that

|δntnn−3
(x)| ≤ C|x|

√
T

n
+

C|x|
(T − tnn−2)

1
2

(
T

n

) 3
2

+
C|x|

(T − tnn−2)
3
2

(
T

n

)2

+
C|x|

(T − tnn−2)2

(
T

n

) 5
2

+
C|x|

(T − tnn−2)
5
2

(
T

n

)3

.

Repeating the reasoning, given that 1
2
(kn−tni−1

+kn+tni−1
) = 1, we deduce by induc-

tion that, for every i ≤ n− 3,

|δntni (x)| ≤ C|x|
√
T

n
+ S1

i,n + S2
i,n + S3

i,n + S4
i,n,

where, for i ≤ n− 3,

S1
i,n :=

n−2∑
j=i+1

C|x|
(T − tnj )

1
2

(
T

n

) 3
2

, S2
i,n =

n−2∑
j=i+1

C|x|
(T − tnj )

3
2

(
T

n

)2

,

S3
i,n =

n−2∑
j=i+1

C|x|
(T − tnj )2

(
T

n

) 5
2

, S4
i,n =

n−2∑
j=i+1

C|x|
(T − tnn−2)

5
2

(
T

n

)3

.

Since (T − u)−1 ≥ (T − tnj )−1 if u ∈ [tnj , t
n
j+1], we deduce that

S1
i,n ≤ C|x|

√
T

n

∫ T

0

1√
T − t

dt ≤ C|x|
√
T

n
,

S2
i,n ≤ C|x|T

n

∫ T−T/n

0

1

(T − t)3/2
dt ≤ C|x|

√
T

n
,

S3
i,n ≤ C|x|

(
T

n

)3/2 ∫ T−T/n

0

1

(T − t)2
dt ≤ C|x|

√
T

n
,

S4
i,n ≤ C|x|

(
T

n

)2 ∫ T−T/n

0

1

(T − t)5/2
dt ≤ C|x|

√
T

n
.

Both with Lemma 4.1 and 4.2 and the inequalities above, we may conclude.
2
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Corollary 4.4. Suppose that the conditions of Theorem (2.1) hold. Then,
there exists a constant C > 0 such that

sup
t∈[0,T ]

|hn(t, x)− h(t, x)| ≤ C|x|√
n
.

Proof. Let t ∈ [0, T ] be such that t ∈ [tni−1, t
n
i ) for some i ≥ 1. By Lemma

4.1, we may suppose that i ≤ n− 2. Then,

|hn(t, x)− h(t, x)| = |hn(tni−1, x)− h(t, x)|
≤ |hn(tni−1, x)− h(tni−1, x)|+ |h(tni−1, x)− h(t, x)|.

By the mean value theorem and Inequality (4.8), since T − tni ≥ T/n, we
deduce that

|h(tni−1, x)− h(t, x)| ≤ C|x|√
T − tni

∆tni ≤
C|x|√
n
.

We then conclude by Lemma 4.3.2

5. Appendix

Let us consider the unique solution Sx,t, t ∈ [0, T ], to the stochastic differen-
tial equation

dSt,x(u) = St,x(u)σ(u, St,x(u))dWu, u ∈ [t, T ], St,x(t) = x ∈ R, (5.14)

where W is a standard Brownian motion.

Lemma 5.1. Suppose that t ∈ [0, T ]. Let Sx,t be the solution to the stochastic
differential equation (5.14). If σ is bounded by a constant σ∗ > 0, there exists
a constant C such that

E sup
t≤u≤T

S2
t,x(u) ≤ Cx2, E(St,x(T )− x)2 ≤ Cx2(T − t).

Proof. By the Doob’s inequality, we obtain that for every t ≤ r ≤ T :

φ(r) := E | sup
t≤u≤r

Sx,t(u) |2≤ 4E | Sx,t(r) |2
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As Sx,t(r) = x+
∫ r
t
σ(u, Sx,t(u))Sx,t(u)dWu, using the inequality (a+ b)2 ≤

2(a2 + b2) and the Ito isometry, we get that :

φ(r) ≤ 8x2 + 8E
(∫ r

t

σ(u, Sx,t(u))Sx,t(u)dWu

)2

≤ 8x2 + 8E
(∫ r

t

σ2(u, Sx,t(u))S2
x,t(u)du

)
≤ 8x2 + 8(σ∗)2

∫ r

t

ES2
x,t(u)du

≤ 8x2 + 8(σ∗)2
∫ r

t

φ(u)du.

Applying the Gronwall lemma, we deduce that:

E | Sx,t(r) |2 ≤ 8x2 exp (8σ∗(T − t)) ≤ Cx2,

where C does not depend on x. By the Ito isometry, we then deduce that

E(Sx,t(T )− x)2 = E
∫ T

t

σ2(u, Sx,t(u))S2
x,t(u)du

Using the inequality above, we may conclude. 2
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