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Abstract: We introduce a seemingly new functional scheme which ap-

proximates diffusion equations of type ht(t, x) + x2σ2(t,x)
2 hxx(t, x) = 0.

Contrarily to classical numerical methods, in particular finite difference
methods, the principle is only based on a discretization in time. We es-
tablish the uniform convergence in time of the scheme and provide the
rate of convergence. We illustrate the convergence by numerical exam-
ples.
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1. Introduction

There are two major methods to simulate a diffusion equation of type

ht(t, x) +
x2σ2(t, x)

2
hxx(t, x) = 0, t ∈ [0, T ),

with the boundary condition h(T, x) = g(x). The first one is to use the Monte
Carlo methods as the solution h admits a probabilistic representation, see
[2]. The second one is the very well known finite differences technique based
on approximations of the successive derivatives. It requires a discretization,
both in time and in the space variable, of the compact subset [0, T ]× [a, b],
a ≤ b, of interest. Moreover, as we need to fix extra boundary conditions,
when x = a or x = b, that are a priori approximations of h, a second
type of approximation errors may appear. For instance, if b is large enough,
we generally set the condition h(t, b) = limx→∞ h(t, x) if the latter may be
estimated while the condition h(t, 0) = g(0) is chosen if a = 0 under some
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mild conditions on σ. We here present a very simple alternative method
only based on a discretization in time of the interval [0, T ] that allows to
simulate t 7→ h(t, x) for a fixed x. The advantage of this method is the
ease of implementation of the functional scheme which is basically defined.
The numerical scheme we propose is defined by two functions depending on
the number n of discretization dates. We focus here on a particular choice
of such functions which leads to a uniform approximation in time of the
diffusion equation under some mild conditions. An open problem is to study
the suggested functional scheme more generally.

2. Functional scheme for diffusion equations

Let us consider a bounded diffusion function σ : [0, T ]×R+ and the associated
backward parabolic equation

ht(t, x) +
x2σ2(t, x)

2
hxx(t, x) = 0, t ∈ [0, T ), h(T, x) = g(x), (2.1)

where the terminal condition is defined by a Lipschitz function g with Lip-
schitz constant  Lg and ht and hxx are respectively the first and the sec-
ond derivatives of h with respect to time t and space variable x ∈ R. This
equation is very well known in physics but also in mathematical finance
for models without friction when the risky asset S is driven by a standard
Brownian motion W so that it satisfies the stochastic differential equation
dSt = σ(t, St)StdWt under a risk neutral probability measure P 1. In that
case, h(t, St) is the value at time t of the unique self-financing portfolio pro-
cess V composed of a fraction of the risk-less bond B = 1 and the risky asset
S such that it replicates the European option payoff g(ST ), i.e. VT = g(ST ).
The quantity σ(t, St) is then interpreted as a local volatility coefficient.

In the following, we consider the uniform grid on [0, T ] given by tni =
(T/n)i, i = 0, · · · , n where n ≥ 1. We then define the following functions:

kn+t (x) := 1 + σ(t, x)

√
T

n
, kn−t (x) := 1− σ(t, x)

√
T

n
, (2.2)

λnt (x) :=
1− kn−t (x)

kn+t (x)− kn−t (x)
=

1

2
, µn

t (x) := 1− λnt (x) =
1

2
.

1If we suppose that the risk-free interest rate is r = 0
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Let hn be the piecewise function defined on [0, T ] by hn(t, x) = hn(ti−1, x)
if t ∈ [tni−1, t

n
i [, i ≤ n, where the sequence (hn(ti, x))i≤n is defined recursively

by the following functional scheme:

hn(ti−1, x) = λnti−1
(x)hn

(
ti, k

n−
t (x)x

)
+ µn

ti−1
(x)hn

(
ti, k

n+
t (x)x

)
,

hn(T, x) = g(x), i ≤ n. (2.3)

Our main result states that the sequence of functions (hn)n∈N uniformly
converges to h as n → ∞ under some mild conditions (called Condition
D below) satisfied by the successive derivatives of h, solution to (2.1). Of
course, the functional scheme (2.3) may also be considered for other choices
of functions kn− and kn+. In this paper, we restrict ourselves to the functions
defined by (2.2) but it should be worthwhile to study such a scheme in its
full generality.

Recall that h(t, x) = Eg(Sx,t(T )) where, for t ≤ T , Sx,t is the unique solu-
tion to the stochastic differential equation (5.10). We deduce that h(t, 0) =
g(0). In the following, we suppose that σ is locally Lipschitz and bounded so
that existence and uniqueness holds for (5.10), see for instance [2, Theorem
2.2, p104]. The conditions below hold in particular when the payoff function
g is continuous with linear growth at infinity, e.g. g(x) = (x−K)+, K ∈ R,
and the diffusion coefficient σ is smooth enough and positive as proven in [3,
Theorem 4.1] for a more general case 2, see also [4, Section 5].

Condition D:

There exists a constant C > 0 independent of n such that:

|hx(t, x)| ≤ C, |hxx(t, x)| ≤ C

|x|
√
T − t

,

|hxxx(t, x)| ≤ C

x2(T − t)
, |hxt(t, x)| ≤ C

T − t
,

|hxxt(t, x)| ≤ C

|x|(T − t)3/2
, |htt(t, x)| ≤ C | x |

(T − t) 3
2

,

|httt(t, x)| ≤ C | x |
(T − t) 5

2

, |hxtt(t, x)| ≤ C

(T − t)2
,

2Here, the coefficient γn of [3] appears to be a constant independent of n.
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Theorem 2.1. Suppose that σ is a bounded Lipschitz function and assume
that the solution to the equation (2.1) satisfies Condition (D). Then, there
exists a constant C(x) > 0 depending on x, g and σ such that

sup
t∈[0,T ]

|hn(t, x)− h(t, x)| ≤ C|x| ln(n)√
n

, n > 0.

The proof is deduced from the lemmas and the corollary of Section 4. Note
that by choosing specific discretization dates, see [1], we should improve the
convergence rate of the functional scheme. This is left for future research.

3. Numerical examples

To be done.

4. Proof

From a line to the next one, we shall use the same notation C for some
distinct constants independent of n. Also, notice that there is a constant
M > 0 such that |kn−t | + |kn+t | ≤ M for all n and t ∈ [0, T ]. We also use
the notation ∆tni = tni − tn−1i = T/n, i ≤ n. At last observe that the results
below are trivial when x = 0 hence we only provide the proofs when x 6= 0.

Lemma 4.1. Suppose that the conditions of Theorem (2.1) hold. Then, there
exists a constant C > 0 which does not depend on x such that

sup
t∈[tnn−1,T ]

|hn(t, x)− h(t, x)| ≤ C|x|√
n
.
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Proof. Let us define δnt =| h(t, x)−hn(t, x) |. Recall that h(t, x) = Eg (Sx,t(T ))
where Sx,t is the solution to (5.10). We have:

δnt = | h(t, x)− 1

2
g(kn−tnn−1

x)− 1

2
g(kn+tnn−1

x) |

≤| h(t, x)− g(x) | +1

2
| g(kn−tnn−1

x)− g(x) | +1

2
| g(kn+tnn−1

x)− g(x) |

≤ sup
tnn−1≤t≤T

| h(t, x)− g(x) | +  Lg

2
(1− kdtnn−1

) | x | +  Lg

2
(kutnn−1

− 1) | x |

≤  Lg sup
tnn−1≤t≤T

E | Sx,t(T )− x | +  Lg

2
σ(t, x)

√
T

n
| x | +  Lg

2
σ(t, x)

√
T

n
| x |

≤ C|x|
√
T

n
+

 Lg

2
σ∗
√
T

n
| x |,

where the last inequality is deduced from Lemma 5.1 and σ∗ = sup
t∈[0,T ],x∈R

|σ(t, x)|.
2

Lemma 4.2. Suppose that the conditions of Theorem (2.1) hold. Then, there
exists a constant C > 0 such that

|hn(tnn−2, x)− h(tnn−2, x)| ≤ C|x|√
n
.

Proof. Let us introduce δnt−2 =| hn(tnn−2, x)− h(tnn−2, x) |. We have

δnt−2 = | 1

2
hn(tnn−1, k

n−
tnn−2

x) +
1

2
hn(tnn−1, k

n+
tnn−2

x)− h(tnn−2, x) |

≤ 1

2
| hn(tnn−1, k

n−
tnn−2

x)− h(tnn−2, x) | +1

2
| hn(tnn−1, k

n+
tnn−2

x)− h(tnn−2, x) |

≤ 1

2
| hn(tnn−1, k

n−
tnn−2

x)− h(tnn−1, k
n−
tnn−2

x) | +1

2
| h(tnn−1, k

n−
tnn−2

x)− h(tnn−2, k
n−
tnn−2

x) |

+
1

2
| h(tnn−2, k

n−
tnn−2

x)− h(tnn−2, x) |) +
1

2
(| hn(tnn−1, k

n+
tnn−2

x)− h(tnn−1, k
n+
tnn−2

x) |

+
1

2
| h(tnn−1, k

n+
tnn−2

x)− h(tnn−2, k
n+
tnn−2

x) | +1

2
| h(tnn−2, k

n+
tnn−2

x)− h(tnn−2, x) |).
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Under Condition D, by the mean value theorem, we deduce that

| h(tnn−2, x)− h(tnn−2, k
n−
tnn−2

x) | ≤ C | x− kn−tnn−2
x |≤ C | x | . | 1− kn−tnn−2

|≤ C | x |
√
T

n
,

| h(tnn−2, x)− h(tnn−2, k
n+
tnn−2

x) | ≤ C | x− kn+tnn−2
x |≤ C | x | . | 1− kn+tnn−2

|≤ C | x |
√
T

n
.

Note that, under Condition D, we have

| ht(t, x) |= x2σ2(t, x)

2
| hxx(t, x) |≤ C | x |√

T − t
. (4.4)

Therefore, by the mean value theorem, since kn−tnn−2
, kn+tnn−2

≤M ,

| h(tnn−1, k
n−
tnn−2

x)− h(tnn−2, k
n−
tnn−2

x) | ≤ CM | x |√
T − tnn−1

∆tnn−1 ≤ CM | x |
√
T

n
,

| h(tnn−1, k
n+
tnn−2

x)− h(tnn−2, k
n+
tnn−2

x) | ≤ CM | x |√
T − tnn−1

∆tnn−1 ≤ CM | x |
√
T

n
.

At last, by Lemma 4.1,

| hn(tnn−1, k
n−
tnn−2

x)− h(tnn−1, k
n−
tnn−2

x) | ≤ Ckn−tnn−2
|x|
√
T

n
,

| hn(tnn−1, k
n+
tnn−2

x)− h(tnn−1, k
n+
tnn−2

x) | ≤ Ckn+tnn−2
|x|
√
T

n
.

As kn−tnn−2
+ kn+tnn−2

= 2, we deduce that

1

2
| hn(tnn−1, k

n−
tnn−2

x)−h(tnn−1, k
n−
tnn−2

x) | +1

2
| hn(tnn−1, k

n+
tnn−2

x)−h(tnn−1, k
n+
tnn−2

x) |≤ C|x|
√
T

n
.

The conclusion follows. 2

Lemma 4.3. Suppose that the conditions of Theorem (2.1) hold. Then, there
exists a constant C > 0 such that

|hn(tni , x)− h(tni , x)| ≤ C|x|√
n
, for all i ≤ n− 2.
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Proof. We first prove the result for i = n− 2 and, then, we generalize the
result by induction. Let us introduce the function

Fi(x) =
1

2
h(tni , k

n−
tni−1

x) +
1

2
h(tni , k

n+
tni−1

x).

By the Taylor formula, we get that

Fi(x) =
1

2

[
h(tni−1, x) +R11

i (x) +R12
i (x) +R13

i (x)
]

+
1

2

[
h(tni−1, x) +R21

i (x) +R22
i (x) +R23

i (x)
]
.

where, for some constants αi, i = 1, · · · , 4, and t̃ni−1 ∈ [tni−1, t
n
i ], x̃ = x +

θ̃x(kn−tni−1
− 1), θ̃ ∈ [0, 1], t̂ni−1 ∈ [tni−1, t

n
i ], x̂ = x + θ̂x(kn+tni−1

− 1), θ̂ ∈ [0, 1], we

have

R11
i (x) = ht(t

n
i−1, x)

T

n
− hx(tni−1, x)xσ(tni−1, x)

√
T

n
,

R12
i (x) = −htx(tni−1, x)xσ(tni−1, x)

(
T

n

) 3
2

+
1

2
hxx(tni−1, x)x2σ2(tni−1, x)

T

n
+

1

2
htt(t

n
i−1, x)

(
T

n

)2

,

R13
i (x) = α1httt(t̃

n
i−1, x̃)

(
T

n

)3

− α2httx(t̃ni−1, x̃)σ(tni−1, x)x

(
T

n

)5/2

+α3htxx(t̃ni−1, x̃)σ2(tni−1, x)x2
(
T

n

)2

− α4hxxx(t̃ni−1, x̃)σ3(tni−1, x)x3
(
T

n

)3/2

,

R21
i (x) = ht(t

n
i−1, x)

T

n
+ hx(tni−1, x)xσ(tni−1, x)

√
T

n
,

R22
i (x) = htx(tni−1, x)xσ(tni−1, x)

(
T

n

) 3
2

+
1

2
hxx(tni−1, x)x2σ2(tni−1, x)

T

n
+

1

2
htt(t

n
i−1, x)

(
T

n

)2

,

R13
i (x) = α1httt(t̂

n
i−1, x̂)

(
T

n

)3

+ α2httx(t̂ni−1, x̂)σ(tni−1, x)x

(
T

n

)5/2

+α3htxx(t̂ni−1, x̂)σ2(tni−1, x)x2
(
T

n

)2

+ α4hxxx(t̂ni−1, x̂)σ3(tni−1, x)x3
(
T

n

)3/2

.

We deduce that Fi(x) = h(tni−1, x) + R1
i (x) + R2

i (x) + R3
i (x) where R1

i (x) =
1
2

(R11
i (x) +R21

i (x)),R2
i (x) = 1

2
(R12

i (x) +R22
i (x)) andR3

i (x) = 1
2

(R13
i (x) +R23

i (x)).
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As h is the solution to (2.1), we may simplifly Fi(x) as

Fi(x) = h(tni−1, x) +
1

2
htt(t

n
i−1, x)

(
T

n

)2

+R3
i (x).

Under Condition D, there exists a constant C independant of i and n such
that

1

2

∣∣htt(tni−1, x)
∣∣ ≤ C | x |

(T − tni−1)
3
2

. (4.5)

On the other hand, since t̃ni−1, t̂
n
i−1 ∈ [tni−1, t

n
i ] and |x̂| + |x̃| ≤ C|x| where

C > 0 is independent of i and n, the residual error R3
i (x) is the sum of terms

which may be dominated under Condition D using the following inequalities:

∣∣α1httt(t̂
n
i−1, x̂)

∣∣ ≤ C | x |
(T − tni )

5
2

. (4.6)

∣∣α2hxtt(t̂
n
i−1, x̂)σ(tni−1, x)x

∣∣ ≤ C | x |
(T − tni )2

. (4.7)

∣∣α3htxx(t̂ni−1, x̂)σ2(tni−1, x)x2
∣∣ ≤ C | x |

(T − tni−1)
3
2

. (4.8)

∣∣α4hxxx(t̂ni−1, x̂)σ3(tni−1, x)x3
∣∣ ≤ C | x |

T − tni
. (4.9)

The inequalities above are also satisfied if we replace t̂ni−1 by t̃ni−1 and x̂ by
x̃. Recall that the constant C may denote distinct constants that change for
a line to the next one but this constant does not depend on i and n.

Let us introduce δnti−1
(x) :=

∣∣hn(tni−1, x)− h(tni−1, x)
∣∣, i ≤ n − 2. From
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above, we get that

δnti−1
(x) =

∣∣∣∣12hn(tni , k
n−
tni−1

x) +
1

2
hn(tni , k

n+
tni−1

x)− h(tni−1, x)

∣∣∣∣
=

∣∣∣∣∣12hn(tni , k
n−
tni−1

x) +
1

2
hn(tni , k

n+
tni−1

x)− Fi(x) +
1

2
htt(t

n
i−1, x)

(
T

n

)2

+R3
i (x)

∣∣∣∣∣
≤ 1

2
δnti(k

n−
tni−1

x) +
1

2
δnti(k

n+
tni−1

x) +
1

2

(
T

n

)2 ∣∣htt(tni−1, x)
∣∣+
∣∣R3

i (x)
∣∣ .

Using the inequalities (4.5), (4.6),· · · , (4.9), we then deduce a constant
C > 0 independent of i and n such that

δntni−1
(x) ≤ 1

2
δnti(k

n−
tni−1

x) +
1

2
δnti(k

n+
tni−1

x)

+
C|x|

(T − tni )
1
2

(
T

n

) 3
2

+
C|x|
T − tni

(
T

n

) 3
2

+
C|x|

(T − tni )
3
2

(
T

n

)2

+
C|x|

(T − tni )2

(
T

n

) 5
2

+
C|x|

(T − tni )
5
2

(
T

n

)3

.

Recall that, by Lemma 4.2,

1

2

(
δntnn−2

(kn−tnn−3
x) + δntnn−2

(kn+tnn−3
x)
)
≤ 1

2
C|x|(kn−tnn−3

+ kn+tnn−3
)

√
T

n
= C|x|

√
T

n
.

We deduce that

|δntnn−3
(x)| ≤ C|x|

√
T

n
+

C|x|
(T − tnn−2)

1
2

(
T

n

) 3
2

+
C|x|

T − tnn−2

(
T

n

) 3
2

+
C|x|

(T − tnn−2)
3
2

(
T

n

)2

+
C|x|

(T − tnn−2)2

(
T

n

) 5
2

+
C|x|

(T − tnn−2)
5
2

(
T

n

)3

.

Repeating the reasoning, given that 1
2
(kn−tni−1

+kn+tni−1
) = 1, we deduce by induc-

tion that, for every i ≤ n− 3,

|δntni (x)| ≤ C|x|
√
T

n
+ S1

i,n + S2
i,n + S3

i,n + S4
i,n + S5

i,n,
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where, for i ≤ n− 3,

S1
i,n :=

n−2∑
j=i+1

C|x|
(T − tnj )

1
2

(
T

n

) 3
2

, S2
i,n =

n−2∑
j=i+1

C|x|
T − tnj

(
T

n

) 3
2

,

S3
i,n =

n−2∑
j=i+1

C|x|
(T − tnj )

3
2

(
T

n

)2

, S4
i,n =

n−2∑
j=i+1

C|x|
(T − tnj )2

(
T

n

) 5
2

,

S5
i,n =

n−2∑
j=i+1

C|x|
(T − tnn−2)

5
2

(
T

n

)3

.

Since (T − u)−1 ≥ (T − tnj )−1 if u ∈ [tnj , t
n
j+1], we deduce that

S1
i,n ≤ C|x|

√
T

n

∫ T

0

1√
T − t

dt,

S2
i,n ≤ C|x|

√
T

n

∫ T−T/n

0

1

T − t
dt ≤ C|x| ln(n)

√
T

n
,

S3
i,n ≤ C|x|T

n

∫ T−T/n

0

1

(T − t)3/2
dt ≤ C|x|

√
T

n
,

S4
i,n ≤ C|x|

(
T

n

)3/2 ∫ T−T/n

0

1

(T − t)2
dt ≤ C|x|

√
T

n
,

S5
i,n ≤ C|x|

(
T

n

)2 ∫ T−T/n

0

1

(T − t)5/2
dt ≤ C|x|

√
T

n
.

Both with Lemma 4.1 and 4.2 and the inequalities above, we may conclude.
2

Corollary 4.4. Suppose that the conditions of Theorem (2.1) hold. Then,
there exists a constant C > 0 such that

sup
t∈[0,T ]

|hn(t, x)− h(t, x)| ≤ C|x|√
n
.

Proof. Let t ∈ [0, T ] be such that t ∈ [tni−1, t
n
i ) for some i ≥ 1. By Lemma

4.1, we may suppose that i ≤ n− 2. Then,

|hn(t, x)− h(t, x)| = |hn(tni−1, x)− h(t, x)|
≤ |hn(tni−1, x)− h(tni−1, x)|+ |h(tni−1, x)− h(t, x)|.
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By the mean value theorem and Inequality (4.4), since T − tni ≥ T/n, we
deduce that

|h(tni−1, x)− h(t, x)| ≤ C|x|√
T − tni

∆tni ≤
C|x|√
n
.

We then conclude by Lemma 4.3. 2

5. Appendix

Let us consider the unique solution Sx,t, t ∈ [0, T ], to the stochastic differen-
tial equation

dSt,x(u) = St,x(u)σ(u, St,x(u))dWu, u ∈ [t, T ], St,x(t) = x ∈ R, (5.10)

where W is a standard Brownian motion.

Lemma 5.1. Suppose that t ∈ [0, T ]. Let Sx,t be the solution to the stochastic
differential equation (5.10). If σ is bounded by a constant σ∗ > 0, there exists
a constant C such that

E sup
t≤u≤T

S2
t,x(u) ≤ Cx2, E(St,x(T )− x)2 ≤ Cx2(T − t).

Proof. By the Doob’s inequality, we obtain that for every t ≤ r ≤ T :

φ(r) := E | sup
t≤u≤r

Sx,t(u) |2≤ 4E | Sx,t(r) |2

As Ŝx,t(r) = x+
∫ r

t
σ(u, Sx,t(u))Sx,t(u)dWu, using the inequality (a+ b)2 ≤

2(a2 + b2) and the Ito isometry, we get that :

φ(r) ≤ 8x2 + 8E
(∫ r

t

σ(u, Sx,t(u))Sx,t(u)dWu

)2

≤ 8x2 + 8E
(∫ r

t

σ2(u, Sx,t(u))S2
x,t(u)du

)
≤ 8x2 + 8(σ∗)2

∫ r

t

ES2
x,t(u)du

≤ 8x2 + 8(σ∗)2
∫ r

t

φ(u)du.



/ 12

Applying the Gronwall lemma, we deduce that:

E | Ŝx,t(r) |2 ≤ 8x2 exp (8σ∗(T − t)) ≤ Cx2,

where C does not depend on x. By the Ito isometry, we then deduce that

E(Ŝx,t(T )− x)2 = E
∫ T

t

σ2(u, Sx,t(u))S2
x,t(u)du

Using the inequality above, we may conclude. 2
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