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Abstract

We present a novel approach to compute the similarity

between two unordered variable-sized vector sets. To solve

this problem, several authors have proposed to model each

vector set with a Gaussian mixture model (GMM) and to

compute a probabilistic measure of similarity between the

GMMs. The main contribution of this paper is to model

each vector set with a GMM adapted from a common “uni-

versal” GMM using the maximum a posteriori (MAP) cri-

terion. The advantages of this approach are twofold. MAP

provides a more accurate estimate of the GMM parame-

ters compared to standard maximum likelihood estimation

(MLE) in the challenging case where the cardinality of the

vector set is small. Moreover, there is a correspondence

between the Gaussians of two GMMs adapted from a com-

mon distribution and one can take advantage of this fact to

compute efficiently the probabilistic similarity. This work

is applied to the image categorization problem: images are

modeled as bags of low-level features and classification is

performed using a kernel classifier based on the proposed

similarity measure. Experimental results on the PASCAL

VOC 2006 and VOC 2007 databases show the excellent per-

formance of our approach.

1. Introduction

There exist several pattern analysis problems where the

objects of interest can be represented by unordered vector

sets of variable cardinality. For instance, in computer vi-

sion, images are often represented as bags of low-level lo-

cal feature vectors. Performing such tasks as retrieval or

kernel-based learning on these representations requires the

definition of a suitable measure of similarity. The applica-

tion of interest in this work is the categorization of images.

∗Yan Liu is a Ph.D. student in the Laboratoire d’Informatique en Image

et Systmes d’Information (LIRIS) at the Ecole Centrale de Lyon (ECL).

While categorization systems based on the bag-of-features

representation neglect the absolute or relative position of

the feature vectors in the image, they have shown excellent

performance on several benchmarks [6, 5, 4].

There are two broad classes of approaches to measure

the similarity of vector sets: model-free approaches seek a

direct measure of similarity while model-based approaches

first estimate the distribution of a vector set and then mea-

sure the similarity between distributions.

A typical model-free approach is the pyramid match ker-

nel of Grauman and Darrell [11, 12]. The idea is to partition

the feature space in a hierarchical manner and to count the

number of correspondences between the two vector sets at

each level of the hierarchy.

Model-based approaches can themselves be divided into

two sub-classes as a vector set can be modeled with a dis-

crete or a continuous distribution. In the first case, one

makes use of an intermediate representation, generally re-

ferred to as a visual vocabulary in the context of images,

which is obtained offline through the clustering of a large

number of vectors. Each image is characterized by a his-

togram of visual word frequencies [21, 2]. One of the main

limitations of this approach is the assumption that the distri-

bution of the features that can be encountered by the system

is known a priori.

Of particular interest to us in this work are those ap-

proaches which model a vector set with a continuous dis-

tribution, generally a Gaussian mixture model (GMM)

[13, 14, 10, 18, 22, 23]. The most commonly used measures

of similarity between two GMMs are the Kullback-Leibler

divergence (KLD) [10, 18, 22, 23] and the probability prod-

uct kernel (PPK) [13, 14]. These methods have however

two main shortcomings.

First, to model accurately a vector set, one needs to train

a sufficiently large number of Gaussians. The robust esti-

mation of the GMM parameters may be difficult if the car-

dinality of the vector set is small. For instance, the number
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of local features extracted from an image typically varies

from a few hundreds up to a few thousands. One could in-

crease this number, e.g. by using a denser grid in the case

of regular extraction or by lowering the detection threshold

in the case of interest point detectors, but this would also

significantly increase the cost of the feature extraction and

the GMM estimation.

Second, as there is no closed form solution for the KLD

or the PPK between two GMMs (except in special cases),

approximate solutions have to be found. [18, 23] approx-

imate the KLD using Monte Carlo (MC) sampling. How-

ever, the cost of this method is prohibitive as one has to ran-

domly draw a large number of samples to obtain a reason-

able estimate. [10] uses the the unscented transform, a de-

terministic approach which is reminiscent of MC sampling.

As the cost of this method is quadratic in the number of

Gaussians, it is impractical when the number of Gaussians

is large. Goldberger et al. [10] and Vasconcelos [22] pro-

posed two very similar approximations of the KLD. They

are based on a two-step approach: first find a matching be-

tween the Gaussians of the two distributions and then com-

pute the KLD between the pairs of matched Gaussians. The

cost of these approaches is still quadratic in the number of

Gaussians.

The main contribution of this work is to model each vec-

tor set with a GMM adapted from a common “universal”

GMM using the maximum a posteriori (MAP) criterion.

This offers two main advantages:

• First, MAP estimation is more accurate than MLE in

the challenging case where the training data is scarce

as the universal model provides a priori information on

the location of the parameters in the whole parameter

space. We will show experimentally that this a priori

information needs not to be exact: even if the univer-

sal model is learned on a set of images which is not

directly related to the task at hand, excellent perfor-

mance is obtained.

• Second, if two GMMs are adapted from a common

distribution, there is a one-to-one correspondence be-

tween their Gaussians. We make use of this correspon-

dence to derive approximations of the PPK and KLK

with a cost linear in the number of Gaussians.

Note that the idea of learning visual vocabularies - mod-

eled as GMMs - through the adaptation of a common uni-

versal vocabulary has already been used in [19]. However,

in [19] the adapted vocabularies are class-GMMs and im-

ages are modeled with histograms of visual-word occur-

rences while in this article the adapted vocabularies are

image-GMMs.

The remainder of the paper is organized as follows.

In section 2 we describe the estimation of universal and

adapted image models. In section 3 we present two sim-

ilarity measures between distributions, the KLD and the

PPK, and explain how they can be approximated in our case.

Then in section 4 we provide experimental results on the

PASCAL VOC 2006 and VOC 2007 databases and show

the excellent performance of our system. Finally we draw

conclusions in section 5.

2. Images as Adapted Mixtures of Gaussians

Let us first introduce our notation. The parameters of a

GMM are denoted λ = {wi, µi,Σi, i = 1...N} where wi,

µi and Σi are respectively the weight, mean vector and co-

variance matrix of Gaussian i and N denotes the number of

Gaussians. Let x be an observation vector and q its associ-

ated hidden variable. The likelihood that observation x was

generated by the GMM is:

p(x|λ) =

N
∑

i=1

wipi(x|λ) . (1)

where pi(x|λ) = p(x|q = i, λ). Finally, γi(x) = p(q =
i|x, λ) is the occupancy probability, i.e. the probability that

observation x was generated by Gaussian i. It is computed

using Bayes formula:

γi(x) =
wipi(x|λ)

∑N
j=1 wjpj(x|λ)

. (2)

We now describe the training of the universal model and the

adapted image models.

2.1. Training the universal model

The universal GMM is supposed to describe the content

of any image and, therefore, it should be trained offline on

a varied set of images. Let λu denote the parameters of

the universal GMM. Let X = {xt, t = 1...T} be the set of

training vectors. The estimation of λu may be performed by

maximizing the log-likelihood function log p(X|λu). The

standard procedure for MLE is the Expectation Maximiza-

tion (EM) algorithm [3]. For the E-step, the values γi(xt)
are computed. We provide here for completeness the M-

step re-estimation equations [1]:

ŵu
i =

1

T

T
∑

t=1

γi(xt) , (3)

µ̂u
i =

∑T
t=1 γi(xt)xt

∑T
t=1 γi(xt)

, (4)

Σ̂u
i =

∑T
t=1 γi(xt)xtx

′
t

∑T
t=1 γi(xt)

− µ̂u
i µ̂u

i
′ . (5)
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2.2. Training adapted image models

Our primary motivation for learning the image GMMs

through the adaptation of a universal model is to overcome

the scarcity of the training material. Indeed, only a small

number of low-level feature vectors (typically from a few

hundreds up to a few thousands) are extracted from one im-

age. We will observe in section 4 that this is insufficient to

train robustly a mixture with a large number of Gaussians

(e.g. 100) for each image. In the following, λa denotes the

parameters of an adapted model.

Let X = {xt, t = 1...T} now denote the set of adapta-

tion samples extracted from one image. We use the MAP

criterion to adapt a GMM. The goal of MAP estimation is

to maximize the posterior probability p(λa|X) or equiva-

lently log p(X|λa) + log p(λa). Hence, the difference with

MLE is in the assumption of a prior distribution p(λa). To

perform MAP learning, one has to (i) choose the prior dis-

tribution family and (ii) specify the parameters of the prior

distribution.

It was shown in [9] that the prior densities for GMM pa-

rameters could be adequately represented as a product of

Dirichlet (prior on weight parameters) and normal-Wishart

densities (prior on Gaussian parameters). When adapting a

universal model with MAP to more specific conditions, it

is natural to use the parameters of the universal model as

a priori information on the location of the adapted parame-

ters in the parameter space. As shown in [9], one can also

apply the EM procedure for MAP estimation. The M-step

re-estimation equations are provided here for completeness:

ŵa
i =

∑T
t=1 γi(xt) + τ

T + N × τ
, (6)

µ̂a
i =

∑T
t=1 γi(xt)xt + τµu

i
∑T

t=1 γi(xt) + τ
, (7)

Σ̂a
i =

∑T
t=1 γi(xt)xtx

′
t + τ [Σu

i + µu
i µu

i
′]

∑T
t=1 γi(xt) + τ

−µ̂a
i µ̂a

i
′ . (8)

The relevance factor τ keeps a balance between the a priori

information contained in the generic model λu and the new

evidence contained in X . If a mixture component i was es-

timated with a small number of observations
∑T

t=1 γi(xt),
then more emphasis is put on the a priori information. On

the other hand, if it was estimated with a large number of

observations, more emphasis is put on the new evidence.

Hence MAP provides a more robust estimate than MLE

when little training data is available. The parameter τ is

generally set manually [9, 20].

For a given number of Gaussians, the cost of one EM

iteration is (almost) identical for MLE and MAP. The only

difference is the addition in the M-step of MAP of the a pri-

ori information in the statistics (compare equations 3, 4 and

5 to 6, 7 and 8 resp.) However, as MAP uses some a priori

information on the location of the parameters, it requires a

smaller number of EM iterations to reach an accurate esti-

mate. Therefore, it is significantly faster compared to MLE.

This statement will be verified experimentally.

We finally note that an adapted model contains the same

number of Gaussians as the universal model from which it

is adapted.

3. Measuring the Similarity of GMMs

In the following, we present two measures of similarity

between distributions and show how to approximate them

in our case.

3.1. Probability Product Kernel

The probability product kernel (PPK) [14] between prob-

ability distributions p and q is defined as follows:

Kρ
ppk(p, q) =

∫

x∈Ω

p(x)ρq(x)ρdx . (9)

The PPK has two special cases. When ρ = 1, the PPK

takes the form of the expectation of one distribution under

the other:

Kelk(p, q) = Ep[q(x)] = Eq[p(x)] . (10)

This is referred to as the Expected Likelihood Kernel (ELK)

[14]. When ρ = 1/2, it is known as the Bhattacharyya

Kernel (BK).

There is a closed form solution for the PPK between two

Gaussians:

Kρ
ppk(p, q) = (2π)(1−2ρ)D/2 | Σ |1/2| Σp |−ρ/2| Σq |−ρ/2

exp

(

−
ρ

2
µ⊤

p Σ−1
p µp −

ρ

2
µ⊤

q Σ−1
q µq +

1

2
µ⊤Σµ

)

, (11)

where Σ = (ρΣ−1
p + ρΣ−1

q )−1, µ = ρ(Σ−1
p µp + Σ−1

q µq)
and D is the dimensionality of the feature vectors.

However there is no closed form solution for the PPK

in the case of mixtures of Gaussians (except for the special

case ρ = 1). In the case of a mixture model, we have p(x) =
∑N

i=1 αipi(x) and q(x) =
∑M

j=1 βjqj(x). In [13] (section

4) the following approximation is suggested:

Kρ
ppk(p, q) ≈

N
∑

i=1

M
∑

j=1

αiβjK
ρ
ppk(pi, qj) . (12)

When ρ ≤ 1 this approximation corresponds to an upper-

bound on the true value of Kρ
ppk(p, q) and when ρ ≥ 1 it is

a lower-bound.

The evaluation of the PPK between two GMMs which

contain respectively M and N Gaussians requires the com-

putation of M×N PPKs between individual Gaussians. This
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cost may be a handicap in the case of large values of M and

N. We thus make use of the fact that two mixtures of Gaus-

sians have been adapted from the same generic model to

speed-up the computation. Indeed, Reynolds et al. [20] first

noticed that there is a one-to-one correspondence between

the i-th Gaussian of an adapted GMM and the i-th Gaussian

of the GMM it is adapted from. By transitivity, it means that

there is a one-to-one correspondence between the i-th Gaus-

sians of two GMMs adapted from the same GMM (we recall

that we necessarily have M = N in our adaptation frame-

work). Consequently, in our case, the terms Kρ
ppk(pi, qi)

dominate the previous sum and the PPK may be further ap-

proximated as follows:

Kρ
ppk(p, q) ≈

N
∑

i=1

αiβiK
ρ
ppk(pi, qi) . (13)

This evaluation requires only the computation of N PPKs

between individual Gaussians.

3.2. Kullback-Leibler Kernel

The Kullback-Leibler Divergence (KLD) between two

continuous distributions is defined as follows:

KL(p||q) =

∫

x∈Ω

p(x) log
p(x)

q(x)
dx . (14)

There is also a closed form solution for the KLD between

two Gaussians:

KL(p||q) =
1

2

[

log
| Σq |

| Σp |
+ Tr(Σ−1

q Σp)

+(µp − µq)
T Σ−1

q (µp − µq) − D

]

. (15)

However, no closed-form expression exists for the KLD be-

tween two GMMs.

We follow the method of [10]. This approximation first

consists in finding a mapping π from the Gaussians of p to

the Gaussians of q as follows:

π(i) = arg min
j

(KL(pi||qj) − log βj) . (16)

Then π is used to approximate the KLD:

KL(p||q) ≈

N
∑

i=1

αi

(

KL(pi||qπ(i)) + log
αi

βπ(i)

)

.

(17)

This approximation is well motivated when Gaussians have

little overlap, e.g. when the dimensionality D of the feature

space is high. In our experiments, D = 50 (c.f. section 4.1).

If two GMMs contain respectively M and N Gaussians,

computing the mapping function π requires the computa-

tion of M×N KLDs between individual Gaussians. Once

again, we can make use of the fact that there is a one-to-

one correspondence between the Gaussians of two GMMs

adapted from the same model to perform the following ap-

proximation: π(i) = i. Under this assumption, the KLD

can be rewritten:

KL(p||q) ≈

N
∑

i=1

αi

(

KL(pi||qi) + log
αi

βi

)

. (18)

Hence, the computation of the KLD requires only N Gaus-

sian computations in our case.

The Kullback-Leibler Kernel (KLK) can then defined by

exponentiating the symmetric KLD SKL(p, q):

SKL(p, q) = KL(p||q) + KL(q||p) (19)

Kklk(p, q) = exp (−γSKL(p, q)) . (20)

When choosing the value γ, one should take care that the

kernel matrix is positive definite to ensure that Kklk is a

true kernel.

4. Experimental Results

We first describe our experimental setup. We then re-

port results on two challenging datasets: the PASCAL VOC

2006 and VOC 2007 databases.

4.1. Experimental setup

Low-level feature vectors are extracted on regular grids

at multiple scales in our experiments. On the average, on

the order of 1, 000 feature vectors are extracted per image

per feature type. We make use of two types of low-level

features. The first features are based on local histograms

of orientations as described in [17] (128 dimensional fea-

tures). The second ones are based on RGB statistics (96

dimensional features). In both cases, the dimensionality of

the feature vectors is reduced to 50 through Principal Com-

ponent Analysis (PCA).

The universal GMM is trained using the following itera-

tive strategy inspired by HTK [24]. We first train a GMM

with a single Gaussian. We then split it into two by intro-

ducing a small perturbation in the mean parameter and re-

train the GMM using several iterations of EM. The process

of splitting and retraining is repeated until the desired num-

ber of Gaussians is obtained. To train the adapted image

GMMs with MAP, the default value for the relevance factor

is τ = 10.

For the PPK, we choose ρ = 1/2 (i.e. the Bhattacharyya

Kernel) as this value lead to the best results in preliminary

experiments. To set parameter γ for the KLK (c.f. equation

20) we followed [25]: γ is equal to the inverse of the mean

of the symmetric KL divergence SKL(p, q) between two

GMMs (c.f. equation 19) as estimated on a subset of the

whole training set.
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For classification we experimented with kernel logistic

regression (KLR) and support vector machines (SVM). As

we obtained very similar performance with both classifiers,

in the following we report only the KLR results. One linear

classifier is trained per class in a one-against-all manner.

We have two separate systems: one for each feature type.

The end result is the average of the scores of the two sys-

tems.

4.2. VOC 2006 database

The PASCAL VOC 2006 database [5] consists of 10 ob-

ject classes: bicycle, bus, car, cat, cow, dog, horse, motor-

bike, person and sheep. There are 2,618 images for training

and 2,686 for testing. During the VOC 2006 competition,

the accuracy was primarily measured with the Area under

the Curve (AUC). Therefore we also use the AUC (averaged

over the 10 categories) to make our results easily compara-

ble to the state-of-the-art.

In the following, we start with a comparative evaluation

of the proposed approach. We then proceed with the analy-

sis of the influence of parameter τ . We also carry out cross-

database experiments showing that, even if the universal

model is learned on a different database, the performance

does not vary significantly. Finally, we analyze the compu-

tational cost of the proposed method on this database.

4.2.1 Comparative evaluation

We compare the performance of three systems:

(i) The proposed approach with MAP adaptation and the

fast one-to-one mapping of Gaussian components (c.f.

formula 13 for PPK and formula 18 for KLK). This

system is later referred to as MAP OTO.

(ii) A system which learns the image GMMs with MLE

(using the same iterative strategy which was employed

to train the universal model) and the slow one-to-many

mapping of Gaussian components (c.f. formula 12 for

PPK and formulae 16 and 17 or KLK). This system is

later referred to as MLE OTM.

(iii) An intermediate system which makes use of MAP

adaptation as is the case of (i) but which uses the slow

one-to-many scoring of (ii). This system is later re-

ferred to as MAP OTM.

Hence, when comparing (ii) and (iii), we can measure the

benefit of MAP compared to MLE. When comparing (i) and

(iii) we can measure the impact on the accuracy of the fast

one-to-one scoring versus the slow one-to-many scoring.

Results are provided on figure 1. We can draw the fol-

lowing conclusions. First, MAP clearly outperforms MLE

for both PPK and KLK. Especially the performance of the
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Figure 1. Performance on the PASCAL VOC 2006 database of the

PPK (top) and KLK (bottom) for a varying number of Gaussian

components.

MLE OTM system starts to drop for more than 32 Gaus-

sians while for MAP it continues to increase. This shows

that we can learn robustly a larger number of Gaussians with

MAP than with MLE. Second, the accuracy of PPK OTO is

superior to that of PPK OTM. This observation came as a

surprise as we first thought that by dropping terms in equa-

tion 12, we would lose information. Our best explanation

is that the bound 12 is too coarse an approximation of the

PPK. This suggests an alternative approach for computing

the PPK similar to that used for KLK: first find a match-

ing between the Gaussians of p and q and then approx-

imate the PPK as a weighted sum of PPKs between the

matched Gaussians. This approximation might be worth

testing in the future. Third, the accuracy of KLK OTO

is inferior to that of KLK OTM, but not significantly so,

showing that our one-to-one approximation is a good one.

Finally, PPK OTO and KLK OTO perform very similarly:

the best results we obtained for both kernels was 0.945 for
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Figure 2. Average AUC on the VOC 2006 database as a function

of parameter τ .

128 Gaussian components. To the best of our knowledge,

the best average AUC reported so far on this database was

0.936 (this was the accuracy of the winning QMUL LSPCH

system [5]).

4.2.2 Influence of MAP parameter τ

We now analyze the influence of the relevance factor τ . τ
impacts two competing aspects of our system:

• First τ influences the robustness of the estimation. We

can consider two extreme cases. When τ = 0, MAP

turns into MLE and the parameters are not estimated

robustly as was shown in the previous experiments.

When τ = ∞, the image GMMs remain equal to the

universal model. As the distance between any pair of

images is constant no kernel classifier can be learned.

The best performance will thus be obtained when an

intermediate value between these two extremes is cho-

sen.

• Second τ impacts the proposed fast scoring. Indeed,

our fast scoring is only possible if there is a one-to-one

correspondence between the Gaussians of two adapted

GMMs. The strength of the correspondence will de-

pend on τ . If τ = ∞, the correspondence is max-

imized and the one-to-one mapping is exact. When

τ = 0, the correspondence is minimal.

Hence, the τ which optimizes the robustness (0 < τ <
∞) is necessarily different from the τ which optimizes the

Gaussian correspondence (τ = ∞).

We present the result in figure 2. This analysis was per-

formed on the 128 Gaussians model using the KLK kernel.

We can see that for small values of τ MAP OTM outper-

forms MAP OTO. This shows that, when τ is small the cor-

respondence between the Gaussian of two adapted models

is loose and that our one-to-one assumption is too naı̈ve.

However, as expected, as τ increases to more reasonable

values, the difference between the two systems becomes

narrower. For both systems the best performance is ob-

tained for τ = 10.

4.2.3 Cross database experiments

As the estimation of the image models with MAP relies on

the a priori information contained in the universal model,

it is important to understand how the performance of our

approach is affected when the universal model is learned

on another dataset. The alternate dataset we used to learn

the visual vocabulary contains 120,000 unannotated images

from a printing workflow of photo albums. We had a look at

a small sample of these images to try to understand whether

they were representative of the 10 categories found in the

VOC 2006 database. While this set of images contains a

very large number of photos of persons, it seems to con-

tain very few (if no) occurrences of the 9 other classes.

Hence, we believe that there is a strong mismatch between

this dataset and VOC 2006. To learn a universal vocabulary,

we took a random sub-sample of 2,000 images. This exper-

iment was repeated 10 times with 10 different subsamples.

We restricted this analysis to the case where we employ the

fast scoring.

For both the PPK and the KLK kernels, the AUC (av-

eraged over the 10 runs) did not change (0.945). What

is interesting to notice is also that the AUC variation was

very small from one sub-sample to another one: over the

10 runs, the worst performance obtained was 0.944 for PPK

and 0.943 for KLK respectively.

Clearly, the proposed approach does not seem to be sen-

sitive to the set of images used to train the universal model.

Hence the same universal model can be used across differ-

ent category sets. This is a clear advantage when one grows

a category set incrementally as one does not need to relearn

the universal GMMs, and thus the image GMMs, every time

a new category is added.

4.2.4 Computational cost

We now perform a brief analysis of the computational cost

of the proposed approach. For this analysis, we considered

GMMs containing 128 Gaussians. The following durations

were measured on a 2.4 GHz OpteronTMmachine.

The cost of training the GMM of one image with MLE

using the iterative strategy of [24] is approximately 850 ms

while it is only 30 ms for MAP. We recall that this difference

is due to the greater number of EM iterations required for

MLE compared to MAP. Note that, instead of the iterative
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Figure 3. Comparison on the VOC 2007 database of the proposed

approach (in white) with the leading participants (in black).

approach of [24], we could have used the alternative strat-

egy which consists in starting from multiple random initial-

izations of the parameters and picking the best one, i.e. the

one which leads to the highest log-likelihood. However, the

cost of this alternative would have been even greater.

We now consider the cost of the kernel computations.

On the VOC 2006 database, classifying one image takes ap-

proximately 140 s for the PPK and 30 s for the KLK using

the one-to-many scoring. With the proposed fast scoring

based on the one-to-one correspondence, the classification

cost is reduced to 1.3 s for PPK and 0.4 s for KLK. These

figures are consistent with the fact that, for both kernels,

we expect the proposed one-to-one scoring to be 128 times

faster than the one-to-many scoring when GMMs contain

128 Gaussians (linear versus quadratic cost). It is also in-

teresting to note that for both the fast and slow approaches,

KLK is almost 5 times faster to compute than PPK. We also

carried-out small-scale experiments using MC sampling to

approximate the PPK and KLK. However, using MC sam-

pling with 1,000 samples (a rather modest number) we es-

timated it would take on this database approximately 240 s

to classify one image from this database.

4.3. VOC 2007 database

The PASCAL VOC 2007 database [4] contains a total of

9,963 images: 5,011 images for training and 4,952 for test-

ing. There are twenty object classes in this database: per-

son, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle,

boat, bus, car, motorbike, train, bottle, chair, dining table,

potted plant, sofa and tv monitor. During the VOC 2007

competition, the accuracy was primarily measured with the

Average Precision (AP). Therefore, we also use the AP (av-

eraged over the 20 categories) to make our results easily

comparable to the state-of-the-art.

For these experiments, we used the proposed MAP OTO

approach. Figure 3 shows that the performance of our sys-

tems (0.561 for PPK and 0.553 for KLK) is comparable to

the performance obtained by the leading participants (the

best reported result is 0.594). More details on the competi-

tion can be found in [4].

5. Conclusion

In this article, we introduced a novel approach to com-

pute the similarity between two unordered vector sets. The

main contribution was to model each vector set with a gen-

erative model – a GMM in our case – adapted from a com-

mon universal model using MAP. We showed that this adap-

tation framework offers two major advantages compared to

the case where the distributions are trained with MLE. First

MAP provides a more accurate estimate compared to MLE

when the cardinality of the vector sets is small. Second,

there is a one-to-one correspondence between the compo-

nents of adapted mixture models which may be used for

fast scoring. This correspondence was used to derive effi-

cient approximations for two kernels on distributions: the

probability product kernel and the Kullback-Leibler kernel.

This approach was applied to the image categorization

problem and it exhibited state-of-the-art results on the PAS-

CAL VOC 2006 and VOC 2007 databases. We also showed

that this approach is very practical. First, the classification

cost is very reasonable. Second, the a priori information

contained in the universal model needs not to be perfectly

representative of the category set under consideration to ob-

tain good results.

Future work could consider the use adaptation tech-

niques other than MAP. Especially, techniques such as max-

imum likelihood linear regression (MLLR) [16, 7], cluster

adaptive training (CAT) [8] or “eigenvoices” [15] have been

shown to yield significantly better results than MAP in the

speech recognition literature when the amount of adaptation

data is extremely scarce.
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