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Abstract

We present an approach that leverages multiple datasets annotated for different

tasks (e.g., classification with different labelsets) to improve the predictive ac-

curacy on each individual dataset. Domain adaptation techniques can correct

dataset bias but they are not applicable when the tasks differ, and they need to

be complemented to handle multi-task settings. We propose a new selective loss

function that can be integrated into deep neural networks to exploit training

data coming from multiple datasets annotated for related but possibly different

label sets. We show that the gradient-reversal approach for domain adaptation

can be used in this setup to additionally handle domain shifts. We also pro-

pose an auto-context approach that further captures existing correlations across

tasks. Thorough experiments on two types of applications (semantic segmenta-

tion and hand pose estimation) show the relevance of our approach in different

contexts.
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1. Introduction

Semantic scene parsing (a.k.a. semantic full scene labeling) from RGB im-

ages aims at segmenting an image into semantically meaningful regions, i.e.,

to provide a semantic class label for each pixel of an image — see Fig. 3 for

examples of labels in an outdoor context. Semantic scene parsing is useful for a5

wide range of applications, for instance autonomous vehicles, automatic under-

standing and indexing of video databases, etc.

Most semantic scene parsing methods use supervised machine learning al-

gorithms and thus rely on densely labeled (manually annotated) training sets

which are very tedious to obtain. Only a small amount of training data is cur-10

rently available for this task 1, which makes this problem stand out from other

problems in vision (as for instance object recognition and localization). This

is a particularly stringent problem for deep networks models which are par-

ticularly needy in terms of training data even if they have demonstrated their

superior effectiveness to tackle this application [4]. In the case of depth images,15

data-augmentation using artificially-created training data has been employed

successfully for segmentation problems [5, 6, 7]. However, the high variations of

content in fully textured images make this solution at the moment very difficult

to use for RGB images.

Most datasets for scene parsing contain only several hundreds of images,20

some of them only several dozen [8, 9, 10, 11, 12, 13, 14, 15, 16]. Additionally,

combining these datasets is a non-trivial task as target classes are often tailored

to a custom application. For example, one might be interested in specific types

of vegetation like trees, bushes and grass, or types of objects such as graffiti or

billboard while other applications do not require discriminating between these25

types. One good example of such labelset diversity can be found within the

KITTI Vision benchmark [17, 18]. This dataset contains outdoor scene videos

1Since the CVPR 2016 conference, new datasets with larger amounts of data have been

released ([1, 2, 3]), but we are still not near ImageNet level amounts of data.
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acquired on roads around the city of Karlsruhe, in rural areas and on highways.

Many works have been done on this dataset since its release in 2013, tackling

computer vision tasks such as visual odometry, 3D object detection and 3D30

tracking [10, 11, 12, 13, 14, 15, 16]. To tackle these tasks, several research

groups have labeled parts of the original dataset, independently from the other

teams and often for different goals (among the works listed above, semantic

segmentation is the final goal only for [12] and [16]). In practice, the ground

truth segmentation quality varies and both the granularity and the semantics35

of the labels differ, even when some shared names (e.g., vegetation) are used as

labels. However, all the existing labels can be useful to tackle the scene labeling

problem. This inconsistency in the labelset is also true when using the Stanford

Background [8] and SIFTFlow [9] datasets in combination with or in addition

to KITTI.40

The contributions of this paper are multiple: i) we formalize a simple yet

effective selective loss function that can be used in deep networks to exploit

training target data coming from multiple datasets with possibly different tasks

(e.g., different labelsets). ii) we show that the gradient-reversal approach for

domain adaptation [19] can be used in this setup but needs to be manipulated45

with care especially when datasets are unbalanced, iii) we propose an auto-

context approach that further captures existing strong correlations across tasks,

iv) we run thorough experiments on two types of applications (classification and

regression) and on a total of 11 heterogeneously annotated datasets, underlining

the impact of each part of the approach.50

2. Related Works

In this section, we first discuss state-of-the-art methods dealing with multiple

datasets, focusing in particular on feature and knowledge transfer methods in

the context of deep networks. We then discuss semantic scene parsing with an

emphasis on methods used for the KITTI benchmark.55
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Learning across datasets. Many recent papers [19, 20, 21, 22, 23] proposed

methods to solve the problem of the transferability of deep features. Since

CNNs require a lot of labeled data to provide very good features, the trend

consists in exploiting features learned on one big dataset and in adapting them

to other datasets and other tasks [22]. In an extensive analysis about deep60

feature transfer, Yosinski et al. [22] show that it is better to initialize lower

layers from features learned on a different (and maybe distant) task than using

random weights. These transferred features improve generalization performance

even after fine-tuning on a new task. Hinton et al. [21] propose another way

to transfer (or distill) knowledge from one large network to a smaller one. The65

idea is for the small network to learn both the outputs (soft targets) of the

large network as well as the correct labels of the data. Accounting for the soft

labels from the other network helps in learning the correlation between the la-

bels. Furthermore, the authors showed that this distillation works even when

the transfer set that is used to train the final small model, lacks samples of one70

or more of the classes.

Considering situations where the task is the same, but datasets are differ-

ent(different distributions of the input data), the theory of domain adaptation

tells us that the most similar the feature representation is across domains, the

better the adaptation will be. Ganin and Lempitsky [19] follow this principle by75

learning features that are invariant with respect to the shift between the source

and target domains. In order to do that, they train an additional domain classi-

fier to discriminate the two domains from intermediate features. The goal is to

train the parameters of the domain classifier to minimize its error, and to train

the parameters of the feature representation to maximize the same error. This80

is in practise achieved by reversing the gradient during the backpropagation

step.

The method proposed by Tzeng et al. [20] could seem very well suited to our

problem. It merges the two previous ideas (soft labels and domain confusion)

into a framework that allows to transfer network knowledge across domains and85

tasks and thus across datasets. However, the tasks proposed in the source and
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target domain share the same labelset which makes the transfer of empirical

category correlations from the source to the target significantly easier than in

our case (where different label sets make distillation impossible). Still in the

context of domain adaptation, Zhang et al. [23] propose to match the source90

and target marginal distributions of features as well as the source and target

conditional distributions of the labels associated to the features. Therefore,

while learning the target network, they minimize both the marginal and condi-

tional empirical Maximum Mean Discrepancy (MMD) between the source and

target distributions. The domain adaptation problem is a bit different from our95

current problem, where we have datasets labeled by different authors, with dif-

ferent and inconsistent labelings. Nevertheless, we can report three important

points from the papers listed above: i) exploiting additional data improves gen-

eralization; ii) fine-tuning for each specific task improves the classification and

iii) exploiting the correlations between the labels also helps the classification.100

These observations guide the proposed approach.

The method proposed in [24] to take into account different domains might

seem similar to ours at first sight. However, they do not want to leverage mul-

tiple datasets (here video sequences) to improve single separated tasks across

different domains but they train their network on a single subtask (here the105

classification of patches of a video as ”target” vs ”background”) using multiple

”datasets” (each one being a single video). Their method ultimately aims at

providing good features to an online tracking algorithm. Their proposed archi-

tecture differs from ours (after the CNN of the joint training network shown in

Figure 1b since it does not focus in identifying and benefiting from the correla-110

tions between the different tasks.

In [25], the authors propose a unified neural network-based framework to

tackle at the same time the multi-domain and multi-task learning problems.

They consider that meta data, called semantic descriptors, providing e.g. the

domain and the task indexes, could be available for each example such that115

there is no need for further distinctions in the network between different do-

mains and different tasks. Their network has 2 ”sides”, one dedicated to learn

5



a new representation from the original input vector and one that learns a rep-

resentation from the meta data. Both sides outputs are combined in a single

output layer at the end. Their objective function minimizes the empirical risk120

for all domains/tasks. If their method encompasses some of the works published

on either multi domain or multi task learning before 2014 (when the paper was

submitted) and gives good results on a zero-shot learning problem, it does not

give any intuitions or theoretically founded results about how the proposed

method could perform domain adaptation and how it could explicitly capture125

correlations between the task other than by sharing parameters in the network.

In this paper, we show how domain adaptation techniques can be inte-

grated in our proposed method to benefit from multiple heterogeneously labeled

datasets (which leads to different classifications tasks) without compromising

the classification accuracy on each dataset.130

Semantic Segmentation. Whereas the methods used for low level segmentation

are diverse, high level semantic segmentation is dominated by machine learning.

Learning methods range from random forests, to Support Vector Machines and

deep networks. In [26] for instance, a structured-output version of random

forests is proposed, where each leaf node predicts labels for every single pixel of135

an input patch, and predictions are integrated over patches using voting. Deep

neural networks have also been used in wide range of works [27, 28, 29, 30].

Over the years, segmentation algorithms (semantic or not) have often been

regularized through probabilistic graphical models like Markov Random Fields

or Conditional Random Fields (CRF). Inference in these models requires to140

solve combinatorial problems which are often non-submodular and intractable.

These methods have also been combined with machine learning, in particular

deep networks [27, 31]. Regrouping pixels into larger structures, like super-

pixels, is also a frequently used technique [32, 27].

Auto-context models [33] are a different way to include structural informa-145

tion. They are defined as stacks of predictors, each one improving on the result

of the previous, and have also been adapted for scene parsing. In [28], similarly
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to recurrent networks for sequence classification, the same network is applied

several times to outputs of different stages. In [29], a network is trained to pre-

dict context for a subsequent refinement network. Both networks are trained150

on segmentation maps, but the refinement network learns to cope with noisy

segmentations as input. In [34], scene parsing from depth images using auto-

context is formulated as a graphical model and solved through message-passing.

For the specific case of the KITTI dataset, [12] shows how to jointly classify

pixels and predict their depth. The depth classifier only predicts the likelihood155

of a pixel to be at any canonical depth (binary problem) and the joint classi-

fier is based on the multi-class boosted classifier suggested in [35]. In [16] the

authors use a random forest (RF) classifier to classify segments of an image for

different scales and sets of features (including depth information). Next, they

train another RF classifier on the segments with overlapping coverage to fuse160

the unimodal classification results. Lastly they apply a CRF on the obtained

results to enforce spacial consistency. None of the 7 cited methods used deep

learning to tackle the semantic segmentation step. The aim of this paper is to

show how to learn across datasets (with possibly different tasks) to improve the

classification results. In particular, we do not optimize our method to produce165

the best accuracy for each of the used dataset. For example, while in KITTI

many authors use rich features such as color, depth and temporal features, and

complex post processing, we only use the RGB channels for our experiments

and we do not take the label hierarchies into account. We also do not use any

post-processing for the Stanford Background and Sift-flow datasets. For the170

sake of completeness we will still provide the state-of-the-art results for these

datasets.

Recent methods explored a weakly supervised setting to alleviate the prob-

lem of manual annotations [36, 37]. Instead of requiring pixel-wise ground-truth,

they integrate image-wise information, or point-wise ground-truth which can be175

easily provided. They are usually strongly regularized through priors like ob-

jectness [36] or classification performance based on the full image [37].

This paper extends [38]. We introduced another method (called Joint train-
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ing with shared context) that can use the correlations between the labelsets

learned by the network to improve the accuracy. We showed with much more180

experiments that this strategy improves the results when the labelsets are cor-

related. Finally, we have also tested our method on another totally different

application: a hand pose estimation problem. With this new application we

have shown that our method can be successfully applied to both classification

and regression problems.185

3. Proposed Approach

Problem statement: multi-task multi-domain learning. Given a set of images

drawn from a set of K different datasets, pairs made of an input patch xki and

a target label yki are grouped into sets Dk = {xki , yki }, where k=1 . . .K and i

indexes patches. The label spaces are different over the datasets, therefore each190

yki can take values in space Lk.

The problem is a multi-task problem: the tasks may be of the same nature

(e.g., classification) but they are genuinely different tasks. The problem differs

from a multi-label classification: instead of predicting the presence or absence

of each label, we must predict one and exactly one label from each labelset Lk.195

Merging datasets also yields a domain adaptation problem: all datasets may

be of the same kind (e.g., RGB images) but the input distributions vary vastly

across datasets.

Our goal is to learn a nonlinear mapping ŷ = θ(x,Θ) with parameters Θ

which minimizes a chosen risk R(y, ŷ). The mapping θ is represented as a200

convolutional neural network, where each layer itself is a nonlinear mapping

fl(Wlhl−1 + bl) where hl is the lth hidden representation, Wl and bl are the

weights and bias of the lth layer and fl(.) is the activation function of the

lth layer. We minimize the empirical risk, R(θ(x,Θ), y) = 1
N

∑n
k=1 J(x, y,Θ),

where N is the number of training samples and J is the loss function for each in-205

dividual sample. We use the cross entropy loss J(x, y,Θ) = −
∑
j 1y=j log θ(x,Θ)j ,

where θ(x,Θ)j is the network output for class j.

8



CNN	1

CNN	2

CNN	3

Dataset 1

Dataset 2

Dataset 3

Label set 1

Label set 2

Label set 3
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(b) Joint training
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(c) Joint training with shared context

Figure 1: 1a,1b and 1c show our different strategies. 1a, named No Fusion is our baseline and

consist of learning one network per dataset. 1b, named Joint training, consist of learning only

one network with our selective loss function. 1c named Joint training with shared context add

a Multi-Layer Perceptron after the network 1b (already learned) and fine tune it using all the

datasets.
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Limitations of separate training. Considering K different datasets, the classical

baseline approach is to train K separate mappings (models) θk, each defined

on its own label set Lk. This baseline approach is illustrated in Figure 1a.210

Unfortunately this basic approach presents several shortcomings:

(i) Each mapping θk is trained on its own dataset Dk, which requires minimiz-

ing over a separate sets of parameters Θk. In the chosen deep convolutional

implementation the parameters Θk={Wl,bl}Ll=1 include all convolution’s

filters and the weights and bias of all fully connected layers, which are215

generally large sets (more than 2 millions parameters). Learning such a

large amount of parameters from limited (and generally small) amounts

of training data is very challenging.

(ii) Relationships between label spaces are neither modeled nor exploited,

which further limits the power of the trained models.220

Joint feature training with selective loss. We propose to tackle shortcoming (i)

by exploiting the hierarchical nature of deep models. It is well known that, on

most classical problems in computer vision, supervised training leads to a rising

complexity and specificity of features over layers [39]. In our case, we propose

to train a single deep network on the union of all individual datasets. This al-225

lows the network to decide at every layer which features should be generic and

which ones should be task-specific. Note, that we do not force this separation

into private and shared subspaces explicitly. However, given that we training

proceeds by sampling from different subsets, features which are useful for mul-

tiple subsets will arise naturally. Given sufficient network capacity, they will be230

completed by features which allow to minimize loss on individual subsets.

This joint training approach is illustrated in Figure 1b. There is one output

unit per label in the union of all label sets Lk, which means that the output

layer is able to provide predictions for any of the considered datasets.

In a traditional multi-class setting, the network output is computed using235

a soft-max function (as the activation function of the last layer) to produce a
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probability vector. This is used to stochastically optimize the likelihood of the

target labels. However, with K different datasets, this is counter-productive:

it maximizes the target class probability but minimizes the probability of all

other classes, including the ones from different label sets. This minimization240

is problematic when there exists a correlation between labels across different

datasets. As a concrete example, in the KITTI dataset (see Fig. 3 where all

labels are reported) the class Tree of the dataset from He et al. [10] is likely

correlated with the class Vegetation from the dataset labeled by Kundu et al

[11]. A plain softmax, optimizing the probability of the Tree class will implicitly245

penalize the probability of Vegetation, which is not the desired effect.

We thus define the dataset-wise soft-max (that produces a probabilities vec-

tor per dataset): for each label j from dataset k,

f(j, θ(x,Θ)) =
eθ(x,Θ)j∑

j′∈Lk

eθ(x,Θ)j′
(1)

In practice, during learning, the dataset-wise soft-max is combined with a

cross-entropy loss function to build what we call the Selective cross-entropy loss

function :

J ′(k, x, y,Θ) = −θ(x,Θ)y + log(
∑
j∈Lk

eθ(x,Θ)j ) (2)

Cross-entropy is a standard loss for classification tasks, which maximizes the

negative log likelihood of the winning class. In practice, and for efficiency rea-

sons, both the standard cross entropy and the dataset-wise soft-max are com-

bined (Eq. 2) into a single computational layer. During the training phase, the250

network parameters are updated classically using SGD and gradient backprop-

agation. From Equation 2 it can be seen that gradients are zero for parameters

involving output units corresponding to labels from datasets l with l 6= k mean-

ing that they are not penalized by the weight updates. This is equivalent to

using separate output layers for each dataset and intermediate layers with shared255

parameters over the different datasets.
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Modeling correlations between label-sets. Shortcoming (ii) is partly addressed by

the joint feature training method, as correlations between labels across datasets

can be learned by the shared layers in the network. On the other hand, we will

show that explicitly modeling these correlations further improves the discrimi-260

native power of the classifier.

To take into account the correlation between labelsets, we add an additional

fully-connected layer to the network θ(x,Θ) learned with our Joint training

strategy. The new mapping θ′(x,Θ) is trained using the same selective loss

function than for the Joint training strategy. This Joint training with shared265

context approach is illustrated in Figure 1c. Note, that in this setting dataset

selection is performed twice: selective loss is used at the output layer of the new

network, and the dataset-wise soft-max activation function is also used at the

layer corresponding to the output of the pre-trained network before additional

fully connected layers were added.270

Gradient Reversal for Domain Adaptation. So far, our method trains a single

network on several datasets adapting for different labelsets, while ignoring even-

tual shifts in the input domain between datasets. This is not a problem in the

case where the input data is sampled from a single distribution (e.g., for the dif-

ferent subsets of the KITTI dataset). In other cases, a non neglectable shift in275

input distribution does exist, for instance between the Stanford and SIFTFlow

data.

The theory of domain adaptation tells us that a better adaptation between

source and target domains can be achieved when the feature distributions of

both sets are closer to each other. In the lines of Ganin and Lempitsky [19],280

this can be achieved using an additional classifier trained on the same features,

which attempts to predict the domain of the input data. In the case of domain

invariant features, this classifier will achieve high error.

More precisely, our full mapping y = θ(x,Θ) is conceptually split into two

parts: the feature extractor f = θf (x,Θf ), which corresponds to the first con-285

volutional layers and results in features f , and the task classifier y = θt(f,Θt),
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which corresponds to the later fully connected layers including the selective loss

layer. The domain classifier is an additional mapping, which maps the features

f to an estimated domain d = θd(f,Θd). The goal here is to minimize the loss

of the domain classifier θd over its parameters Θd in order to train a meaning-290

ful classifier, and to maximize the same loss over the features f , i.e., over the

parameters Θf of the feature extractor θf , in order to create domain invariant

features. In the lines of [19] this is achieved through a single backpropagation

pass over the full network implementing θf , θt and θd, inversing the gradients

between the domain classifier θd and the feature extractor θf . In practice, the295

gradient is multiplied with a hyper-parameter −λ, which inverse the gradient

and controls the importance of the task classifier and the domain one.

Our experiments described in Section 4 show, that this domain adaptation

step is also useful and important in our more general setting where results are

requested for different labelsets.300

4. Experimental Results

Our experiments use the Torch7 [40] framework and training was operated

on NVIDIA Titan-X GPUs.

4.1. Training details for Semantic Segmentation

For all semantic segmentation experiments we used a network architecture305

inspired by Farabet et al.[27] for outdoor scene labeling and improved with the

recent advances in deep neural network research. Our network is composed by

3 convolutional layers followed by 2 fully-connected layers.

The network is illustrated in Figure 2. The first two convolutional layers

are composed by a bank of filters of size 7×7 followed by ReLU [41] units, 2×2310

maximum pooling and batch normalization [42] units. The last convolutional

layer is a filter bank followed by a ReLU unit, a batch normalization unit and

dropout [43] with a drop factor of 30%. The first fully connected linear layer is

then followed by a ReLU unit and the last layer is followed by our dataset-wise

13



name kernel size output size

input - 3× 46× 46

batch-norm-0 - 3× 46× 46

conv-1 7× 7 16× 40× 40

relu-1 - 16× 40× 40

max-pooling-1 2× 2 16× 20× 20

batch-norm-1 - 16× 20× 20

conv-2 7× 7 64× 14× 14

relu-2 - 64× 14× 14

max-pooling-2 2× 2 64× 7× 7

batch-norm-2 - 64× 7× 7

conv-3 7× 7 512× 1× 1

relu-3 - 512× 1× 1

batch-norm-3 - 512× 1× 1

dropout-4 0.3 512

fully-connected-4 - 1024

relu-4 - 1024

fully-connected (output) #labels

Figure 2: The CNN network (orange boxes in Figure 1) architecture used for semantic seg-

mentation experiments

softmax unit. For the strategy illustrated in Figure 1c, an additional fully con-315

nected hidden layer is added followed by a ReLU unit and a batch normalization

unit. Our dataset-wise softmax unit is also used for this output layer.

To train the network, RGB images are converted to the YUV color space.

A training input example is composed of a patch xi of size 46x46 cropped from

an image, the dataset k from which the image comes from, and yki , the label of320

the center pixel of the patch xi. Stochastic gradient descent with a mini-batch

of size 128 was used to update the parameters. We used early stopping on a

validation set in order to stop the training step before over-fitting. The only

data augmentation strategy that we used is a horizontal flip of patches.

4.2. Datasets details325

The KITTI dataset has been partially labeled by seven research groups re-

sulting in 736 labeled images that are split into a train set, a validation set and

a test set. When the information was given by the author, we used the same

train/test set as them, otherwise we randomly split them into approximately
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He	et	al. Road Building Sky Tree Sidewalk Car Pedestrian Bicyclist Veg. Misc

Kunduet	al.	 Road Building Sky Veg. Sidewalk Car Pedestrian Cyclist Pole Sign Fence

Ladicky et	al. Road Building Sky Tree Sidewalk Car Pedestrian Bike Column Sign Fence Grass

Ros	et	al. Road Building Sky Veg. Sidewalk Car Pedestrian Cyclist Pole Sign Fence

Sengupta et	al. Road Building Sky Veg. Pavement Car Pedestrian Poles Signage Fence

Xu	et	al. Ground Infras. Sky Veg. Movable

Zhang	et	al. Road Building Sky Veg. Sidewalk Car Pedestrian Cyclist Signage Fence

Data Train Val Test Total

He [10] 32 7 12 51

Ku [11] 28 7 15 50

La [12] 24 6 30 60

Ro [13] 80 20 46 146

Se [14] 36 9 25 70

Xu [15] 56 14 37 107

Zh [16] 112 28 112 252

Total 368 91 277 736

Figure 3: The 68 labels (with the original colors) used by the different authors to an-

notate their subset of the KITTI benchmark as well as the number of images (and their

train/validation/split decomposition, see details in Section 4.2) in each subset.

70% of data for the training and validation sets and 30% data for the test set,330

ensuring that any two images from the same video sequence end up in the same

split. The labels used in the different subsets of the KITTI dataset are summa-

rized in Fig. 3. Note that Xu et al. [15] provide a complete hierarchy of very

detailed labels, but we only used the highest level of the hierarchy to obtain

a labeling more compatible (in terms of granularity) with the labels from the335

other research teams. The KITTI dataset contains over 40000 frames (180GB

of raw videos) but in this work we only rely on the labeled data. We then

sample on average 390000 patches in each video frame (depending on its size).

This results into a dataset of about 280 million patches suitable to train a deep

learning architecture. As mentioned in Section 2, the different labels provided340

by the different teams are not always consistent. As illustration in Fig. 3, we

can see that the granularity and the semantics of the labels may be very dif-

ferent from one labeling to another. For example, Ladicky et al. separate the

Trees from the Grass. However, this might correspond to the Vegetation labels

15



(a) (b) (c) 

(d) (e) (f) 

Figure 4: Example of pixel classification results given by the JTSC strategy (see Figure 1).

(a) is the ground truth from the Ros et al. labelset. (b) is the result obtained with our

strategy for the same labelset and (c) is the result obtained for the Kundu et al. labelset.

(d) is a ground truth image from He et al.. (e) is the result obtained with our strategy for

the same labelset and (f) is the result obtained for the Xu et al. labelset.

in the subset from Xu et al. but might also correspond (in the case of Grass) to345

the labels Ground. He et al. [10] have not used the labels Pole, Sign or Fence

used in most other labelings. These labels are likely to overlap with the label

Building of He et al. but then, this Building class cannot be consistent anymore

with the other labelings that contain the label Building in other subsets. Some

groups have used the label Bike and some others have used the label Cyclist.350

Those two labels are likely to overlap but in one case a team has focused on the

entire entity ”cyclist on a bike” whereas another has only focused on the bike

device.

In addition to the KITTI dataset, our approach has been tested on two

scene labeling datasets: Stanford Background [8] and SIFTFlow [9]. The355

Stanford Background dataset contains 715 images of outdoor scenes having 9

classes. Each image has a resolution of 320×240 pixels. We randomly split the

images to keep 80% of them for training and 20% for testing. From these images,

we extract a total of 40 millions patches. The SIFTFlow dataset contains 2688

manually labeled images of 256×256. The dataset has 2488 training and 200360

test images containing 33 classes of objects. From this we extract 160 millions

patches.
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7 KITTI

Methods Global Avg. IoU

NoFusion 77.35 54.51 41.99

JT 80.71 58.62 46.21

JT + DE 80.84 58.89 46.32

JTSC 81.75 59.67 47.10

Learning with Stanford + SIFTFlow

Stanford SIFTFlow Accuracy on both

Methods Glob. Avg. IoU Glob. Avg. IoU Glob. Avg. IoU

No Fusion 74.80 64.35 51.41 69.79 24.95 19.02 72.66 33.24 25.84

JT 75.79 67.22 54.43 71.55 28.34 21.35 73.99 36.52 28.31

JT+GR 75.07 67.76 53.80 70.82 25.08 19.06 73.26 34.07 26.37

JT+DE 75.28 67.37 52.93 71.11 29.01 22.25 73.51 37.08 28.71

JT+GR+DE 76.04 67.71 54.05 71.65 27.40 20.54 74.17 35.89 27.60

JTSC+GR+DE 75.45 68.33 53.83 71.39 28.03 21.09 73.73 36.51 27.98

Learning with 7 KITTI + Stanford

7 KITTI Stanford Accuracy on both

Methods Glob. Avg. IoU Glob. Avg. IoU Glob. Avg. IoU

No fusion 77.35 54.51 41.99 74.80 64.35 51.41 77.09 55.64 43.10

JT 80.40 58.42 45.93 73.38 63.42 50.51 79.64 58.97 46.43

JT+GR 80.73 58.33 46.08 72.42 62.79 49.31 79.82 58.82 46.43

JT+DE 80.76 58.65 46.24 73.93 63.87 51.19 80.02 59.23 46.78

JT+GR+DE 81.20 58.25 46.28 74.39 65.31 52.04 80.46 59.02 46.91

JTSC+GR+DE 81.26 60.24 47.92 74.70 63.44 50.88 81.08 60.59 48.24

Learning with 7 KITTI + SIFTFlow

7 KITTI SIFTFlow Accuracy on both

Methods Glob. Avg. IoU Glob. Avg. IoU Glob. Avg. IoU

No fusion 77.35 54.51 41.99 69.79 24.95 19.02 76.72 45.18 34.73

JT 79.86 57.05 44.94 70.67 28.65 21.44 79.1 48.08 37.52

JT+GR 80.47 57.10 45.31 70.60 28.56 21.39 79.65 48.08 37.76

JT+DE 78.93 53.94 42.63 72.15 27.24 21.12 78.37 45.51 35.84

JT+GR+DE 80.44 58.12 45.56 70.88 27.11 20.4 79.65 48.33 37.62

JTSC+GR+DE 82.07 54.68 44.87 70.89 23.11 17.76 81.15 44.71 36.31

Table 1: Pixel (Global) and Class (Average) accuracy and Intersection over Union (IoU)

results for the 7 used subsets of the KITTI dataset (7 KITTI) and combinations of each

pair of datasets: SIFTFlow + Stanford; 7 KITTI + Stanford; 7 KITTI + SIFTFlow with

different training strategies: NF=No Fusion (see Fig. 1a) ; JT= Joint training (see Fig. 1b);

DE=Dataset Equilibrium; GR=Gradient Reversal; JTSC=Joint training with shared context

(see Fig. 1c). Best results are highlighted in bold. For clarity we give only the global results

of the 7 sub-datasets of KITTI. Tables 2,3 and 4 give the detailed results for respectively 7

KITTI (blue table), 7 KITTI + Stanford (orange table) and 7 KITTI + SIFTFlow (green

table)
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4.3. Segmentation results with different training strategies

Table 1 shows the results obtained for all our training strategies (Tables 2,3

and 4 give detailed results for the 7 sub-datasets of KITTI). We report the global365

accuracy, the average accuracy and the Intersection over Union(IoU) measures.

Global is the number of correctly classified pixels (True Positive) over the total

number of pixels (also called recall or pixel accuracy), Average is the average

of this recall per class (also called the class accuracy) and IoU is the ratio

TP/(TP + FP + FN) where TP is the number of True Positive and FP , FN370

are respectively the False Positive and False Negative averaged across all classes

(this is the Jaccard Index, commonly known as the PASCAL VOC Intersection-

over-Union measure). Note that the last column (accuracy on both) gives the

global, average and IoU accuracies for all datasets together so that the totals

take into account the relative number of labeled pixels in each dataset instead375

of being the average of all elements in the corresponding row.

No Fusion. The first learning implemented strategy consists in learning one

network per dataset with the architecture described in Section 4 and illustrated

in Figure 1a. This is our baseline, and the results for this strategy are shown

in the rows described as No Fusion. State-of-the-art performance for the dif-380

ferent KITTI sub datasets are (respectively for global and average accuracies):

(92.77, 68.65) for He et al. [10]; (97.20, non reported) for Kundu et al. [11];

(82.4, 72.2) for Ladicky et. al. [12]; (51.2, 61.6) for Ros et al. [13]; (90.9, 92.10)

for Sengupta et al. [14]; (non reported, 61.6) for Xu et al. [15]; and (89.3, 65.4)

for Zhang et al. [16]. For Stanford with 8 classes (resp. SIFTFlow), [31] reports385

a global accuracy of 82.3 (resp. 80.9), a pixel accuracy of 79.1 (resp. 39.1) and

an IoU of 64.5 (resp. 30.8). These results are better (except for Ros et al. in

Table 1) than those reported in our tables. This can be explained by the fact

that either [11, 14, 12, 13, 31] only show results computed from a subset of their

labels (e.g., the label pedestrian is ignored in [14, 12, 13]) and/or the features390

used by all methods on KITTI are richer (e.g., depth and time) and/or the

proposed methods always combine multiple classifiers tuned on one particular
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sub-dataset. To be able to assess our contributions, we believe that the No

Fusion baseline is the fairest baseline.

Joint Training (JT). The second alternative strategy (Joint Training) consists395

in learning one single network (illustrated in Figure 1b) with all the datasets

using the selective loss function detailed in Section 3. We can see that this

strategy gives better results than our baseline for all combination of datasets

(for example, in Table 1, learning with all the subsets of KITTI gives, on average

for all the 7 subsets, an improvement of +3.36 on the Global accuracy, of +4.11400

on the Average accuracy and of +4.22 on the IoU). These results show that this

strategy allows us to increase the number of data used to train the network even

if the labelsets of the datasets are different. This cross-task data augmentation

leads to a better generalization and so to better classification accuracies. The

only exception lies when the Stanford dataset is trained together with the 7405

subsets of KITTI (in this case, all the performance results drop of about 1 point

when using the Joint Training approach). We believe that this means that the

distribution shift from Stanford to KITTI is too big and the size of the datasets

too unbalanced (KITTI � Stanford) to really help classifying images from the

Stanford dataset. However, for the sake of completeness and to evaluate the410

contribution of the selective loss over the mere augmentation of data, we trained

our network with pairs of datasets where one dataset was used to initialize the

weights of the convolutional part of the network and the other (usually the

smaller one) was used to fine tune the network. The results reported in Table 5

consistently show that this fine-tuning approach increases all the performance415

measures but at a lower extent than when using our method.

Joint Training with Shared Context (JTSC). The possible correlations between

labels are taken into account in the Joint training with shared context strategy,

illustrated in Figure 1c and detailed in Section 3. This approach improves ac-

curacy for most sub datasets of KITTI (see Tables 2,3 and 4) when the KITTI420

subsets are used alone but gives comparable results when the learning is done

jointly with the other different datasets. This shows that the approach is es-
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Evaluation (and fine tuning) on SIFTFlow

Global Average IoU

Pre-Trained on
Stanford 70.86 23.52 18.05

7 KITTI 70.33 27.07 19.87

Our methods
No Fusion 69.79 24.95 19.02

Best method 71.11 29.01 22.25

Evaluation (and fine tuning) on Stanford

Global Average IoU

Pre-Trained on
SIFTFlow 74.50 65.65 52.52

7 KITTI 73.57 63.82 50.81

Our methods
No Fusion 74.80 64.35 51.41

Best method 76.04 67.71 54.05

Table 5: Results obtained on the SIFTFlow (top table) and Standford (bottom table) datasets

when we pretrained the network on one dataset and fine tune it on an other in comparison to

training it directly using pairs of dataset with our selective loss function.
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pecially relevant when the labels between datasets are highly correlated. We

studied the confusion matrices for the KITTI dataset: they show that errors

made by the first network were reduced by better (i.e., correct) predictions with425

the JTSC strategy. For example, in most KITTI sub datasets, an important

amount of cars were labeled as buildings by the baseline (No Fusion) whereas

they are properly labeled with our JTSC approach. To a lesser extent, the same

is also observed for sidewalks and grounds.

Gradient Reversal (GR) and Dataset Equilibrium (DE). As explained in Sec-430

tion 3, to make the best of datasets with different distributions, taking the

correlations between labels into account might not be enough to obtain better

results (compared to our baseline). We have thus combined gradient reversal

techniques with the joint training approaches presented before to force the net-

work to learn features that are invariant to the dataset. Using gradient reversal435

for the KITTI dataset does not make sense since the sub-datasets all come from

the same distribution. The results of Table 1 shows that adding this gradi-

ent reversal does not always improve the performance (e.g., when learning with

SIFTFlow and Stanford, the performance measures are worse for the JT+GR

row than for the JT row). The issue tends to happen when one dataset is sig-440

nificantly bigger than the other (7 KITTI > SIFTFlow > Stanford). We thus

weighted the contribution of each patch on the gradient computation depending

on the size of the dataset this patch come from. The results show the impor-

tance of this Dataset Equilibrium step even for the KITTI dataset alone. The

best results are obtained when the joint training approach is combined both445

with Dataset Equilibrium and with Gradient Reversal.

4.4. Application to Hand Pose Estimation

To assess the generality of our approach, we have also applied it to a re-

gression problem, namely hand pose estimation from depth images. In this

configuration, the coordinates of a set of hand joints must be estimated for each450

input image, where the number of joints and their geometric position can dif-

fer. We used the NYU Hand Pose Dataset [44] and the ICVL Hand Posture
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———Input images: ICVL ——— ——— Input images: NYU ———

Pred. for ICVL Pred. for NYU Pred. for ICVL Pred. for NYU

Figure 5: Results of our JTSC strategy applied to the Hand Pose estimation task. The left

two columns are taken from ICVL dataset [6], the right two columns are taken from the NYU

dataset [44].

Dataset [6]. The first one contains 180k images from 10 subjects, the second

one 70k images from a single subject (captured from 3 different view points).

The ICVL dataset is annotated with 16 key points in half-VGA images corre-455

sponding to centers of hand segments (so, strictly speaking not joints), while

the NYU dataset is typically used for estimating positions of 14 joint positions

in VGA images. The semantic meaning of the labels (and so the task) is there-

fore different, as the geometric positions of the keypoints on the hand surface

are different (16 finger centers vs. 14 finger joints).460

Inspired from [45], we used three convolutional layers with 32× 3× 3 filters

(where the first and second layers are followed by a 2×2 max pooling) and three

fully connected layers with 1200 hidden units each. The network is trained to

minimize the L2 error using a Stochastic Gradient Descent and batches of 100

samples composed of 50 NYU and 50 ICVL samples. We added dropout with a465
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No Fusion Joint Training JTSC

2D, px 3D, mm 2D, px 3D, mm 2D, px 3D, mm

NYU 8.49 17.75 8.16(-3.81%) 17.11(-3.63%) 8.02(-5.47%) 16.80(-5.37%)

ICVL 4.76 9.53 4.62(-2.82%) 9.38(-2.57%) 4.56(-4.13%) 9.16(-3.92%)

Both N/A 16.42 N/A 15.85(-3.43%) N/A 15.56(-5.23%)

Table 6: Results on regression for a hand pose estimation task on 2 datasets: NYU Dataset [44]

and ICVL Dataset [6]. We report the 2D pixel error and the 3D error in mm. Smaller values

are better, negative percentage means improvement. Combining pixel error over datasets is

not meaningful, as resolutions are different.

drop factor of 10% for all fully connected layers. The JTSC model features add

an additional layer with 300 hidden units.

As we can see from Table 6, the selective loss is also helpful in the regression

case. Without context, the more complex dataset (NYU) benefits from the

additional data, the overall error being smaller. Adding shared context makes470

training beneficial for both tasks. The gradient reversal was not helpful on

this application. We believe that this is due to the similarity of depth images

between tasks compared to RGB images.

Table 7 gives the performance of this task compared to the state-of-the-art.

We can see that the 3D error of our method is very competitive, giving the best475

performance apart from the method in [45], which uses additional synthetic

data. We explain the good performance of our method with additional time we

spent on careful optimization of the baselines by tuning the architecture and the

training regime. This appeared to be crucial, in particular the choice of batch

normalization [47] and Adam optimization [48]. Before that, we were unable to480

reproduce the results in [46].

Figure 5 visually illustrates the performances of the methods on images from

the two datasets and using predictions targeting the two different datasets. We

can see that the label definition (number and geometric positions of the hand

keypoints) differ significantly between the two sets.485
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Method NYU (3D, mm) ICVL (3D, mm)

Ours, no fusion 17.76 9.54

Ours, joint training 17.11 9.39

Ours, JTSC 16.80 9.16

Neverova et al. [45] 14.94 -

DeepPrior, Oberweger et al. [46] 19.8† 9.6†

Tompson et al. [44] 21.0†? -

Multi-Scale, Oberweger et al. [46] 27.5† 11.7†

Deep, Oberweger et al. [46] 30.5† 11.8†

Shallow, Oberweger et al. [46] 34.5† 11.7†

Tang et al. [6] - 12.6†?

Table 7: Comparison with state-of-the-art methods of joint position estimation on NYU and

ICVL datasets. † values were estimated from plots if authors do not provide numerical values;

? performance was reported in [46].

Figure 6: Empirical Label cor-

relation matrix. Each line

corresponds to the average of

the predictions of the net-

work for a given target class

(among the 68 labels given in

Fig. 3). Darker cells indi-

cate higher probabilities. Non-

diagonal red cells correspond

to labels highly correlated with

the target (main diagonal) la-

bel.

4.5. Detailed analysis on correlations across tasks

Directly leveraging the correlations of the different labelsets over tasks is

beneficial, which we showed on both applications, semantic segmentation and

pose regression. For the classification problem, we show that these correlations
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are indeed meaningful. We computed a label correlation matrix for all sub-490

datasets of the KITTI dataset, shown in Figure 6, by averaging the predictions

made by the network for each target class label (from one of the 7 possible

labelings). The (full) diagonal of the matrix gives the correlation rates between

the expected target labels. In each line, the other non-zero values correspond

to the labels correlated with the target label yki . We can see that a diagonal495

is visible inside each block, including the off-diagonal blocks, in particular for

the first 5 labels of each block. This means that, as expected, these first 5

labels are all correlated across datasets. For instance, the label Road from He

et al. is correlated with the label Road from Kundu et al. with the Road from

Ladicky et al. etc. A second observation is that the correlation matrix is not500

symmetric. For example, the classes Building, Poles, Signage and Fence from

Sengupta et al. have (as already discussed in Section 4.2) a high correlation with

the class Infrastructure from Xu et al., meaning that these classes overlap. On

the contrary, the class Infrastructure from Xu et al. has a very high correlation

with the class Building from Sengupta et al. and a limited one with the classes505

Poles, Signage and Fence. This is due to the label distributions: the Building

class from Sengupta et al. is more represented than the three other classes, so

Infrastructure from Xu et al. is more correlated to Building. These observations

mostly confirm the expectations we discussed in Section 4.2, they show that our

method can also be used to automatically discover correlations between labels.510

5. Conclusion

In this paper, we considered the problem of multi-task multi-domain learn-

ing: we want to exploit multiple datasets that have related inputs (e.g., images)

but that have been annotated for different tasks (here labels). This problem is

important in two major situations: to fuse existing (small) datasets and to reuse515

existing dataset(s) for a related custom (new) task. We introduced a new selec-

tive loss function for deep networks that makes it possible to learn jointly across

different tasks. For more correlated tasks, we propose to use an auto-context
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approach that further exploits the task correlations. We provided experimental

results on two computer vision tasks (semantic segmentation and hand pose es-520

timation) with a total of 11 datasets (7 subsets of the KITTI Vision benchmark

suite and 4 other datasets). The results show that our approach allows to jointly

learn from multiple datasets and to outperform per-task learning and classical

fine-tuning based approaches. We also show that the domain adaptation meth-

ods (gradient reversal) can be applied for multi-task multi-domain learning but525

needs to be used with care and requires to balance the different datasets.

Acknowledgment

Authors acknowledge the support from the ANR project SoLStiCe (ANR-

13-BS02-0002-01) and the ANR project LIVES (ANR-15-CE23-0026-03). They

also want to thank Nvidia for providing two Titan X GPU.530

References

[1] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, B. Schiele, The cityscapes dataset for semantic urban

scene understanding, in: Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.535

[2] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, A. Lopez, SYNTHIA: A

large collection of synthetic images for semantic segmentation of urban

scenes, 2016.

[3] A. Gaidon, Q. Wang, Y. Cabon, E. Vig, Virtual worlds as proxy for multi-

object tracking analysis, in: CVPR, 2016.540

[4] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, M. S. Lew, Deep learning

for visual understanding: A review, Neurocomputing 187 (2016) 27–48.

[5] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,

A. Kipman, A. Blake, Real-time human pose recognition in parts from

single depth images, in: CVPR, 2011.545

29



[6] D. Tang, T. Yu, T.-K. Kim, Real-time articulated hand pose estimation

using semi-supervised transductive regression forests, in: ICCV, 2013.

[7] N. Neverova, C. Wolf, G. Taylor, F. Nebout, Hand segmentation with struc-

tured convolutional learning, in: ACCV, 2014.

[8] S. Gould, R. Fulton, D. Koller, Decomposing a scene into geometric and550

semantically consistent regions, in: ICCV, 2009.

[9] C. Liu, J. Yuen, A. Torralba, Nonparametric scene parsing via label trans-

fer, IEEE TPAMI (12).

[10] H. He, B. Upcroft, Nonparametric semantic segmentation for 3d street

scenes, in: Intelligent Robots and Systems (IROS), 2013.555

[11] A. Kundu, Y. Li, F. Dellaert, F. Li, J. M. Rehg, Joint semantic segmenta-

tion and 3d reconstruction from monocular video, in: ECCV, 2014.

[12] L. Ladicky, J. Shi, M. Pollefeys, Pulling things out of perspective, in:

CVPR, 2014.

[13] G. Ros, S. Ramos, M. Granados, A. Bakhtiary, D. Vazquez, A. M. Lopez,560

Vision-based offline-online perception paradigm for autonomous driving, in:

Winter Conference on Applications of Computer Vision (WACV), 2015.

[14] S. Sengupta, E. Greveson, A. Shahrokni, P. H. Torr, Urban 3d semantic

modelling using stereo vision, in: IEEE ICRA, 2013.

[15] P. Xu, F. Davoine, J.-B. Bordes, H. Zhao, T. Denoeux, Information fusion565

on oversegmented images: An application for urban scene understanding,

in: IAPR MVA, 2013.

[16] R. Zhang, S. A. Candra, K. Vetter, A. Zakhor, Sensor fusion for semantic

segmentation of urban scenes, in: IEEE ICRA, 2015.

[17] J. Fritsch, J. T. Kuhnl, A. Geiger, A new performance measure and evalu-570

ation benchmark for road detection algorithms, in: Intelligent Transporta-

tion Systems-(ITSC), 2013.

30



[18] A. Geiger, P. Lenz, C. Stiller, R. Urtasun, Vision meets robotics: The kitti

dataset, The International Journal of Robotics Research.

[19] Y. Ganin, V. Lempitsky, Unsupervised domain adaptation by backpropa-575

gation, in: ICML, 2015.

[20] E. Tzeng, J. Hoffman, T. Darrell, K. Saenko, Simultaneous deep transfer

across domains and tasks, in: IEEE International Conference on Computer

Vision, ICCV 2015, Santiago, Chile, 2015, pp. 4068–4076.

[21] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural net-580

work, in: NIPS Deep Learning Workshop, 2014.

[22] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features

in deep neural networks?, in: NIPS, 2014.

[23] X. Zhang, F. X. Yu, S. Chang, S. Wang, Deep transfer network: Unsuper-

vised domain adaptation, arXiv.585

URL http://arxiv.org/abs/1503.00591

[24] H. Nam, B. Han, Learning multi-domain convolutional neural networks for

visual tracking, in: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[25] Y. Yang, T. M. Hospedales, A unified perspective on multi-domain and590

multi-task learning, in: ICLR, 2015.

[26] P. Kontschieder, S. Bulo, M. Pelillo, H. Bischof, Structured labels in ran-

dom forests for semantic labelling and object detection, ICCV.

[27] C. Farabet, C. Couprie, L. Najman, Y. LeCun, Learning hierarchical fea-

tures for scene labeling, IEEE TPAMI (8).595

[28] P. Pinheiro, R. Collobert, Recurrent convolutional neural networks for

scene labeling, in: ICML, 2014.

31

http://arxiv.org/abs/1503.00591
http://arxiv.org/abs/1503.00591
http://arxiv.org/abs/1503.00591
http://arxiv.org/abs/1503.00591


[29] T. Kekec, R. Emonet, E. Fromont, A. Trémeau, C. Wolf, Contextually
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