
HAL Id: hal-01507079
https://hal.science/hal-01507079v1

Preprint submitted on 12 Apr 2017 (v1), last revised 16 Apr 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On large deviation probabilities for empirical
distribution of branching random walks: Schröder case

and Böttcher case
Xinxin Chen, Hui He

To cite this version:
Xinxin Chen, Hui He. On large deviation probabilities for empirical distribution of branching random
walks: Schröder case and Böttcher case. 2017. �hal-01507079v1�

https://hal.science/hal-01507079v1
https://hal.archives-ouvertes.fr


On large deviation probabilities for empirical distribution of

branching random walks: Schröder case and Böttcher case

Xinxin Chen∗ and Hui He†

April 12, 2017

Abstract: Given a super-critical branching random walk on R started from the origin, let Zn(·) be
the counting measure which counts the number of individuals at the n-th generation located in a

given set. Under some mild conditions, it is known in [5] that for any interval A ⊂ R, Zn(
√
nA)

Zn(R)

converges a.s. to ν(A), where ν is the standard Gaussian measure. In this work, we investigate
the convergence rates of

P
(
Zn(
√
nA)

Zn(R)
− ν(A) > ∆

)
,

for ∆ ∈ (0, 1− ν(A)), in both Schröder case and Böttcher case.

Mathematics Subject Classifications (2010): 60J60; 60F10.

Key words and phrases: Branching random walk; large deviation; Schröder case; Böttcher case.

1 Introduction and Main results

1.1 Branching random walk and its empirical distribution

Branching random walk, as an interesting object in probability theory, has been widely considered
and well studied these years. The recent developments can be referred to Hu-Shi [15], Shi [25].
On the other hand, this object is closely related to many other random models, for example,
multiplicative cascades, random fractals and random walk in random environment (see e.g. Hu-
Shi [14, 16], Liu [19, 20]).

Generally speaking, in a branching random walk, the point processes independently produced
by the particles, formulated by the number of children and their displacements, all follow the
so-called reproduction law. However, in this work, we consider a simpler model by assuming that
the number of children and the motions are independent. Let us construct it in the following way.

We take a Galton-Watson tree T , rooted at ρ, with offspring distribution {pk; k ≥ 0}. For any
u, v ∈ T , we write u � v if u is an ancestor of v or u = v. Moreover, to each node v ∈ T \ {ρ}, we
attach a real-valued random variable Xv and define its position by

Sv :=
∑
ρ≺u�v

Xu.

Let Sρ := 0 for convenience. Suppose that given the tree T , {Xv; v ∈ T \ {ρ}} are i.i.d. copies
of some random variable X (which is called step size). Thus, {Su;u ∈ T } is a branching random
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walk. For any n ∈ N, we introduce the following counting measure

Zn(·) =
∑

|v|=n,v∈T

1{Sv∈·},

where |v| denotes the generation of node v, i.e., the graph distance between v and ρ. Apparently,
Z0 = δ0.

In this article, we always suppose that p0 = 0, p1 < 1. Note immediately that {Zn(R);n ≥ 0} is
a supercritical Galton-Watson process with mean m :=

∑
k≥1 kpk > 1. Assume that m < ∞, the

martingale

Wn :=
Zn(R)

mn

converges almost surely to some non-degenerate limit W if and only if
∑
k log kpk < ∞ (see e.g.

[4]). Naturally, a central limit theorem on Zn(·), was conjectured by Harris [12] and was proved
by Asmussen-Kaplan [2], then was extended by Klebaner [18] and Biggins [5]. It says that if the
step size X has zero mean and finite variance σ2, for A ∈ A0 := {(−∞, x];x ∈ R},

lim
n→∞

Zn(
√
nσ2A)

mn
= ν(A)W, a.s. (1.1)

where ν is the standard Gaussian measure on R. Let Z̄n(·) := Zn(·)
Zn(R) be the corresponding empirical

distribution. Then,

lim
n→∞

Z̄n(
√
nσ2A) = ν(A), a.s. (1.2)

What interests us is the convergence rates of (1.1) and (1.2).

In the literature, Asmussen and Kaplan [2] proved that if xn = (σ
√
n)x + o(

√
n) with x ∈ R,

then
lim
n→∞

E
((
m−nZn((−∞, xn])− ν((−∞, x])W

)2)
= 0.

Recently, Chen [6], under some regular assumptions, proved that as n→∞,

Zn(
√
nσ2A)

mn
− ν(A)W =

1√
n
ξ(A) + o(

1√
n

), a.s. (1.3)

where ξ(A) is some explicitly defined random variable. Later, Gao and Liu [10] generalized this
convergence for a branching random walk in some random environment. They also, in [11], obtained
the second and third orders in this asymptotic expansion. In particular, if A = R, one can refer
to [13] and [3] for convergence rate of Wn to W . Furthermore, by taking A a singleton, the local
version of this convergence has been investigated by Révész [24], Chen [6] and Gao [9], even in
higher dimensions.

In this paper, we aim at understanding the so-called large deviation behaviour of the convergence
(1.2), by considering the decaying rate of the following probability

P
(
Z̄n(
√
nσ2A)− ν(A) ≥ ∆

)
, (1.4)

with ∆ > 0 a small constant.

In fact, this problem has been investigated by Louidor and Perkins [21] by assuming that p0 =
p1 = 0 (Böttcher case) and that X is simple random walk’s step. Recently, Louidor and Tsairi [22]
extend this result to the Böttcher case with bounded step size by allowing dependence between
the motions of children and their numbers. However, if X is not bounded, its tail distribution will
be involved in the arguments and many regimes will appear in the asymptotic behaviours of (1.4).

In what follows, we will consider (1.4) in the Böttcher case by assuming that the step size X
has either Weibull tail distribution or Gumbel tail distribution. Also, we will study this problem
in the Schöder case where p1 > 0 = p0.
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1.2 Main results

In the following of this paper, we always assume that ,

E(eθ|Z1|) =
∑
k≥0

pke
θk <∞, for some θ > 0, (1.5)

and that
X is symmetric, with E[X2] = σ2 = 1. (1.6)

Remark 1.1. The assumption of symmetry of X is not necessary, but simplifies the proof. As
long as Λ(·), defined in (1.9) below, is finite on an open interval including 0, our arguments work.
The exact value of E[X2] does not play crucial role in our arguments either, but simplifies notion.
We only need that X satisfies the classic central limit theorem.

Before stating our main results, we first introduce some notations. Let A be the algebra gener-
ated by {(−∞, x], x ∈ R}. For p ∈ (ν(A), 1) with A ∈ A \ ∅ such that ν(A) > 0, define

IA(p) = inf {|x| : ν(A− x) ≥ p} ; (1.7)

JA(p) = inf

{
y : sup

x∈R
ν((A− x)/

√
1− y) ≥ p, y ∈ [0, 1]

}
. (1.8)

We say that X fulfills Cramér’s condition if E[eκX ] < ∞, for some κ > 0. In this case, we can
define the so-called logarithmic moment generating function and its inverse: for any t ∈ R and
s ∈ R+,

Λ(t) =: logE[etX ] ∈ [0,∞] and Λ−1(s) := inf{t > 0 : Λ(t) ≥ s}, (1.9)

with the convention that inf ∅ = sup{t > 0 : Λ(t) <∞}.

Theorem 1.1 (Schröder case). Assume that p1 > p0 = 0 and X fulfills Cramér’s condition. For
p ∈ (ν(A), 1), if IA(p) <∞ and IA(p) is continuous at p, then

lim
n→∞

1√
n

logP
(
Z̄n(
√
nA) ≥ p

)
= −Λ−1(log

1

p1
)IA(p).

Remark 1.2. If we replace Cramér’s condition in above theorem by P(X > z) ∼ e−λzα as z →∞
with λ > 0 and 0 < α < 1, then using same idea of proving (1.10) below, we may have

lim
n→∞

1

nα/2
logP

(
Z̄n(
√
nA) ≥ p

)
= −λIA(p)α.

Theorem 1.2 (Schröder case). Assume that p1 > p0 = 0. For p ∈ (ν(A), 1), if IA(p) = ∞ and
JA(p) is continuous at p, then

lim
n→∞

1

n
logP

(
Z̄n(
√
nA) ≥ p

)
= (log p1)JA(p).

The next theorems concern the Böttcher case where p0 = p1 = 0. If IA(p+) = IA(p) < ∞, the
decaying rate of (1.4) depends on the tail distribution of X, and also on the tree structure. In the
following two theorems, we study two typical tail distributions of step size X: Weibull tail and
Gumbel tail. Besides, we introduce

b := min{k ≥ 1 : pk > 0} and B := sup{k ≥ 1 : pk > 0} ∈ [b,∞].

Theorem 1.3 (Böttcher case, Weibull tail). Assume that p0 = p1 = 0. Suppose P(X > z) =
Θ(1)e−λz

α
as z →∞ for some constant α > 0 and λ > 0. Take p ∈ (ν(A), 1) such that IA(p) <∞

and IA(p) is continuous at p.
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1. If α ≤ 1 and B > b, then

lim
n→∞

1

nα/2
logP

(
Z̄n(
√
nA) ≥ p

)
= −λIA(p)α. (1.10)

2. If α > 1 and B > b, then

lim
n→∞

(lnn)α−1

nα/2
logP

(
Z̄n(
√
nA) ≥ p

)
= −

(
2 log b logB

α(logB − log b)

)α−1

λIA(p)α. (1.11)

3. If B = b, then there exist Cα > cα > 0 such that

−Cα ≤ lim inf
n→∞

1

nα/2
logP

(
Z̄n(
√
nA) ≥ p

)
≤ lim sup

n→∞

1

nα/2
logP

(
Z̄n(
√
nA) ≥ p

)
≤ −cα.

(1.12)

Theorem 1.4 (Böttcher case, Gumbel tail). Assume that p0 = p1 = 0. Suppose P(X > z) =

Θ(1)e−e
zα

as z →∞ for some constant α > 0. For p ∈ (ν(A), 1) such that IA(p) <∞ and IA(p)
is continuous at p, we have

lim
n→∞

n
− α

2(α+1) log
[
− logP

(
Z̄n(
√
nA) ≥ p

)]
= (yαIA(p) log b)

α
α+1 , (1.13)

where yα := (1+α) logB
(1+α) logB−log b .

Remark 1.3. To obtain the exact decaying rates, we take advantage of the randomness of the
embedding tree in the arguments. However, if we consider a regular tree (B = b) and motions
with Weibull tail, such idea does not work any more and the situation becomes more delicate. We
believe that in this case, there is a close link between the decaying rate and the a.s. convergence
(1.3).

To accomplish this work, we also state the result when X is bounded, which is obtained by
Louidor and Tsairi in [22].

Theorem 1.5 (Böttcher case, Theorem 1.2 of [22]). Assume that p0 = p1 = 0. If ess sup X = L
for some 0 < L <∞, for p ∈ (ν(A), 1) such that IA(p) <∞ and IA(p) is continuous at p, we have

lim
n→∞

1

n1/2
log
[
− logP

(
Z̄n(
√
nA) ≥ p

)]
=
IA(p) log b

L
. (1.14)

The following result is universal, regardless of the tail distribution of X, when IA(p) =∞.

Theorem 1.6 (Böttcher case, Theorem 1.2 of [22]). Assume that p0 = p1 = 0. For p ∈ (ν(A), 1)
such that IA(p) =∞ and JA(p) is continuous at p, we have

lim
n→∞

1

n
log
[
− logP

(
Z̄n(
√
nA) ≥ p

)]
= JA(p) log b.

At the end of this section, let us say a couple of words on strategy of proofs, which is partially
inspired by that of Loudior and Perkins. To have {Z̄n(

√
nA) ≥ p}, we take an intermediate

generation tn and suppose that most individuals at this generation are positioned around x
√
n, so

that finally Z̄n(
√
nA) ≈ νn−tn(

√
n(A− x)) ≈ ν( n

n−tn (A− x)) & p. This brings out the definitions
of IA(p) and JA(p). If IA(p) <∞, we take tn = o(n); otherwise, we take tn = Θ(n). Moreover, the
effort made up to generation tn depends not only on branching but also on motions, which brings
out the different treatments in different regimes.

The rest of this paper is organised as follows. In Sect. 2, we present some basic facts on random
walks and branching random walks which will be used frequently in our proofs of main results. We
study the Schröder case in Sect. 3, where Theorems 1.1 and 1.2 are proved. In Sect. 4, Böttcher
case is treated. Theorems 1.3 and 1.4 will be proved. Let C1, C2, · · · and c1, c2, · · · denote positive
constants which might change from line to line.
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2 Preliminary results

In this section, we present some well-known facts and useful lemmas, which will be applied fre-
quently in the next sections. Denote by νn := PX ∗ · · · ∗ PX︸ ︷︷ ︸

n times

, the distribution of a X-random walk

at the n-th step. Recall that ν represents the standard normal distribution on the real line. The
following lemma states some basic facts about ν and νn.

Lemma 2.1. Let A ∈ A \ ∅ and p ∈ (0, 1).

1. The mapping (a, b) 7→ ν(aA+ b) ∈ C∞(R2). Moreover, it is Lipschitz on b and is uniformly
continuous on K × R for any compact set K.

2. If 0 < IA(p) <∞, then there exists x ∈ R with |x| = IA(p) such that ν(A− x) ≥ p.

3. 0 ≤ JA(p) < 1 and there exists x ∈ R and r ∈ (0, 1) with r = JA(p) such that ν((A −
x)/
√

1− r) ≥ p.

4. If p > ν(A), then either 0 < IA(p) <∞ or IA(p) =∞, JA(p) ∈ (0, 1).

5. (i) Let A−ε := {x ∈ A : B(x, ε) ⊂ A} be the ε-interior of A, and A+
ε := ∪x∈AB(x, ε) be the

ε-neighbourhood of A. Then

A−ε ⊂ ∩y∈[−ε/2,ε/2](A− y) and A \A−ε ⊂ (∂A)+
ε

and
∪y∈[−ε/2,ε/2](A− y) ⊂ A+

ε and A+
ε \A ⊂ (∂A)+

ε ,

where (∂A)+
ε is the ε-neighbourhood of ∂A and limε↓0 ν((∂A)+

ε ) = ν(∂A) = 0.

(ii) Moreover,

sup
x∈R
|ν(A+

ε − x)− ν(A− x)| = sup
x∈R
|ν(A+

ε \A− x)| ≤ sup
x
ν((∂A− x)+

ε ).

If Leb(·) is the Lebesgue measure on R, we have Leb(∂A) = ν(∂A) = 0, and

sup
x
ν((∂A− x)+

ε ) ≤ Leb((∂A)+
ε )→ 0, as ε ↓ 0.

6. As ν(∂A) = 0, for any l > 1, we have the following uniform convergence,

lim
n→∞

sup
a∈[l−1,l]

sup
b∈R

∣∣νn(
√
n(aA+ b))− ν(aA+ b)

∣∣ = 0.

In fact, (1)-(4) and (6) can be found in Lemmas 2.1, 2.2 and 2.4 of [21], (5) is a basic property.
So we feel free to omit its proof.

LetM be the collection of locally finite counting measures on R. For any ζ ∈M which is finite,
we can write it as

ζ =

|ζ|∑
i=1

δxi

with xi ∈ R and |ζ| < ∞ the total mass. For convenience, we write x ∈ ζ if ζ{x} ≥ 1. Let {Zζn}
be the branching random walk started from Zζ0 = ζ. Similarly, let Z̄ζn(·) be the corresponding
empirical distribution. Because of (1.5), we have the following lemma, borrowed from [21].
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Lemma 2.2. There exists C1, C2 > 0 such that for all ∆ > 0 sufficiently small and n ≥ 1, for any
finite ζ ∈M,

P

Z̄ζn(A) >
1

|ζ|
∑
x∈ζ

νn(A− x) + ∆

 ≤ C1e
−C2∆2|ζ|, (2.1)

The same holds if >,+∆ are replaced by <,−∆, respectively.

The next two lemmas are slightly stronger versions of (1.2).

Lemma 2.3. Let A ∈ A \ ∅. Let {an : n ≥ 1} and {bn : n ≥ 1} be two deterministic sequences
such that an → 1 and bn → 0. Then as n→∞,

Z̄n(
√
n(anA+ bn))

a.s.−→ ν(A). (2.2)

Lemma 2.4. Take the same assumptions as in Lemma 2.3. Then for any finite ζ ∈M, as n→∞,

Z̄
√
nζ

n (
√
n(anA+ bn))

a.s.−→
∑

x∈ζ ν(A− x)W x∑
x∈ζW

x
, (2.3)

where
√
nζ =

∑
x∈ζ δx

√
n and {W x : x ∈ ζ} are i.i.d. random variables distributed as W .

Proof. For any A ∈ A and x ∈ R, as n→∞,

Z
δx
√
n

n (
√
nA)

mn
−Wν(A− x)

a.s.−→ 0.

This convergence, together with the branching property of Galton-Watson process, gives

Z̄
√
nζ

n (
√
nA)

a.s.−→
∑

x∈ζ ν(A− x)W x∑
x∈ζW

x
. (2.4)

We thus conclude by Lemma 2.3. �

When p1 > 0, denote by χ the so-called Schröder constant with

m−χ = p1. (2.5)

We also recall here a result from Lemma 13 in [8]. Note that Zn(R) = |Zn| for the counting
measure Zn.

Lemma 2.5. If p1 > 0, then there exists a constant C3 > 0 such that

P (|Zn| = k) ≤ C3

(
1

k
∧
(
kχ−1pn1

))
, ∀k, n ≥ 1. (2.6)

The next lemma is the well-known Cramér theorem; see Theorem 3.7.4 in [7]. Recall that νn
the distribution of a X-random walk at n-th step.

Lemma 2.6. If E[eκX ] <∞ for some κ > 0, for any a > 0 and ε > 0, as n→∞,

lim
n→∞

1

n
log νn((−(a+ ε)n,−an]) = −γ(a) := − sup

t>0
{at− Λ(t)}. (2.7)

For a < 0, we have a similar result with γ(a) = γ(−a). This result follows immediately from
Cramér’s theorem, which says that for any a > 0,

lim
n→∞

1

n
log νn((−∞,−an]) = −γ(a),

where the rate function γ(a) ≥ 0 and convex.
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3 Schröder case

3.1 Proof of Theorem 1.1: IA(p) <∞ and IA is continuous at p

In this section, we are going to demonstrate Theorem 1.1.

For the lower bound, we will make a single branch up to some generation O(
√
n), and the

random walk along this branch moves to the level x
√
n so that the descendants at the n-th

generation behave like Z̄n(
√
nA) ≈ ν(A − x) ≥ p with high probability. For the upper bound,

we will begin with a rough bound. Then an iteration method will be applied to improve the bound
and to obtain the exact limit.

3.1.1 Lower bound

Recall Λ(t) = logE[etX ], (1.9) and (2.7). Define

Λ̄(p1) := inf
a>0

log 1
p1

+ γ(a)

a
.

One could check that

Λ̄(p1) = Λ−1(log
1

p1
) ∈ (0,∞). (3.1)

Lemma 3.1. (Lower bound) If all assumptions in Theorem 1.1 hold, then for any ε > 0,

lim inf
n→∞

1√
n

logP
(
Z̄n(
√
nA) ≥ p

)
≥ −(IA(p) + ε)Λ−1(log

1

p1
). (3.2)

Proof. Since IA(p) is continuous at p, by (2) of Lemma 2.1, there exist x ∈ R, δ > 0 such that

ν(A− x) ≥ p+ δ and |x| = IA(p) + ε.

We only consider the case where x < 0. The case where x > 0 can be treated similarly. For any
a > 0, let Ca := IA(p)+ε

a and tn := bCa
√
nc. Note that −aCa = x. Observe that for any η > 0,

P(Z̄n(
√
nA) ≥ p) ≥ P

(
Z̄n(
√
nA) ≥ p, Ztn(R) = Ztn((−a(1 + η)tn,−atn]) = 1

)
which by Markov property at time tn implies that,

P(Z̄n(
√
nA) ≥ p)

≥ P (Ztn(R) = Ztn((−a(1 + η)tn,−atn]) = 1) inf
y∈(−a(1+η)tn,−atn]

P
(
Z̄
δy
n−tn(

√
nA) ≥ p

)
= ptn1 νtn(−(a(1 + η)tn,−atn]) inf

y∈((1+η)x
√
n,x
√
n]
P
(
Z̄n−tn(

√
nA− y) ≥ p

)
. (3.3)

It remains to treat the probability on the right hand side. Let A(x, η) := ∩y0∈((1+η)x,x](A − y0).
Observe that for any y ∈ (−a(1 + η)Ca

√
n,−aCa

√
n],

Z̄n−tn(
√
nA− y) ≥ Z̄n−tn(

√
nA(x, η)) = Z̄n−tn

(√
n− tn

( √
n√

n− tn
A(x, η)

))
.

On the other hand, by (5) of Lemma 2.1, for η > 0 small enough,

ν(A(x, η)) ≥ ν(A− x)− δ/2 ≥ p+ δ/2.
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It follows that

inf
y∈((1+η)x

√
n,x
√
n]
P
(
Z̄n−tn(

√
nA− y) ≥ p

)
≥ P

(
Z̄n−tn

(√
n− tn

( √
n√

n− tn
A(x, η)

))
≥ p
)

≥ P
(
Z̄n−tn

(√
n− tn

( √
n√

n− tn
A(x, η)

))
≥ ν(A(x, η))− δ/2

)
,

which, as n→∞, converges to 1 in view of Lemma 2.3. Going back to (3.3), this means that for
η > 0 small enough and n large enough,

P(Z̄n(
√
nA) ≥ p) ≥ 1

2
ptn1 νtn

(
(−a(1 + η)tn,−atn]

)
.

This yields that

lim inf
n→∞

1√
n

logP
(
Z̄n(
√
nA) ≥ p

)
≥ Ca log p1 + lim inf

n→∞

Ca
tn

log νtn

(
(−a(1 + η)tn,−atn]

)
,

which, by (2.7), implies

lim inf
n→∞

1√
n

logP
(
Z̄n(
√
nA) ≥ p

)
≥ −Ca

(
log

1

p1
+ γ(a)

)
.

As the limit on the right hand side does not depend on a, we obtain that

lim inf
n→∞

1√
n

logP
(
Z̄n(
√
nA) ≥ p

)
≥ −(IA(p) + ε) inf

a>0

log 1
p1

+ γ(a)

a
= −(IA(p) + ε)Λ̄(p1),

which implies the lower bound. �

Remark 3.1. If X is a simple random walk, then we have

Λ̄(p1) = log

(
1 +

√
1− p2

1

)
− log p1 ∈ (0,∞).

3.1.2 Upper bound

In this subsection, we are going to show that

lim sup
n→∞

1√
n

logP
(
Z̄n(
√
nA) ≥ p

)
≤ −IA(p)Λ̄(p1). (3.4)

We believe that the strategy of lower bound is somehow optimal. For the upper bound, we
consider also some intermediate generation of order O(

√
n), where, to get {Z̄n(

√
nA) ≥ p}, the

population size should be atypically small and the extreme positions should be close to ±IA(p)
√
n.

For ε ∈ (0, 1/2) small, a ∈ R+, define

N(a) = [a(1− ε)
√
n] and Bn := [−IA(p)(1− ε)

√
n, IA(p)(1− ε)

√
n].

Moreover, there exists δ ∈ (0, p− ν(A)) small enough such that

sup
z∈Bn/

√
n

ν(A− z) ≤ p− δ. (3.5)

The following lemma states the idea presented at the beginning of this section. It gives also a
rough upper bound. Let MB be the collection of all locally finite counting measures on R which
vanish outside B; i.e., MB = {ζ ∈M : ζ(Bc) = 0}. Recall that |ζ| is the total mass of ζ ∈M.
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Lemma 3.2. Suppose that all assumptions in Theorem 1.1 hold. Then there exists α > 0, such
that for a = IA(p)α and n large enough,

P(ZN(a)(B
c
n) ≥ 1) = on(1)P(Z̄n(

√
nA) ≥ p) (3.6)

Moreover, we have

P(Z̄n(
√
nA) ≥ p) = (1 + on(1))P(ZN(a) ∈MBn , |ZN(a)| ≤ n, Z̄n(

√
nA) ≥ p). (3.7)

Consequently, there exists some constant C4 > 0 such that for all n ≥ 1,

P(Z̄n(
√
nA) ≥ p) ≤ C4p

αIA(p)(1−ε)
√
n

1 (3.8)

Proof. The proof will be divided into two subparts.
Subpart 1: We shall prove (3.6). Observe that by symmetry of νN and Markov inequality,

P(ZN(a)(B
c
n) ≥ 1) ≤ 2P

(
ZN(a)

(
[IA(p)(1− ε)

√
n,+∞)

)
≥ 1
)

≤ 2E
[
ZN(a)

(
[IA(p)(1− ε)

√
n,+∞)

)]
= 2mN(a)νN(a)

(
[IA(p)(1− ε)

√
n,+∞)

)
.

By Chernoff bound of Cramér’s theorem, one sees that

νN(a)

(
[IA(p)(1− ε)

√
n,+∞)

)
= νN(a)

([IA(p)

a
N(a),+∞

))
≤ exp

{
−N(a)γ

(
IA(p)

a

)}
,

which implies that

P(ZN(a)(B
c
n) ≥ 1) ≤2e−N(a)(γ(

IA(p)

a
)−logm)

=2e−
√
n(1−ε)(aγ(

IA(p)

a
)−a logm). (3.9)

Meanwhile,

lim
a↓0

a(γ(IA(p)/a)− logm) = IA(p) lim
a→+∞

γ(a)− logm

a

= IA(p) lim
a→+∞

γ(a) + log 1
p1

a
> IA(p)Λ̄(p1).

where the inequality follows from the definition of Λ̄(p1). Therefore, for any α ∈ (0, 1) small enough
and any ε > 0 small enough, with a = IA(p)α, we have

lim sup
n

1√
n

logP(ZN(a)(B
c
n) ≥ 1) ≤ −(1 + ε)IA(p)Λ̄(p1).

Therefore, in view of the lower bounded obtained in Lemma 3.1, one could choose α > 0 and
ε0 > 0 sufficiently small such that for ε ∈ (0, ε0),

P(ZN(a)(B
c
n) ≥ 1) = on(1)P(Z̄n(

√
nA) ≥ p),

which is just (3.6).
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Subpart 2: We turn to prove (3.7) and (3.8). According to (3.6), to bound P(Z̄n(
√
nA) ≥ p),

we only need to consider P(ZN(a) ∈ MBn , Z̄n(
√
nA) ≥ p). Note that by Markov property at time

N(a),

P(ZN(a) ∈MBn , Z̄n(
√
nA) ≥ p) =

∑
ζ∈MBn

P(ZN(a) = ζ, Z̄n(
√
nA) ≥ p)

=
∑

ζ∈MBn

P(ZN(a) = ζ)P
(
Z̄ζn−N(a)(

√
nA) ≥ p

)
. (3.10)

By (1) and (6) of Lemma 2.1, we have

sup
z∈Bn

|νn−N(a)(
√
nA− z)− ν(A− z√

n
)| = on(1).

So, by (3.5), for n large enough and any ζ ∈MBn , one has

p ≥ sup
z∈Bn

ν(A− z√
n

) + δ ≥ 1

|ζ|
∑
z∈ζ

νn−N(a)(
√
nA− z) + δ/2.

Therefore, (3.10) becomes

P(ZN(a) ∈MBn , Z̄n(
√
nA) ≥ p)

≤
∑

ζ∈MBn

P(ZN(a) = ζ)P

Z̄ζn−N(a)(
√
nA) ≥ 1

|ζ|
∑
z∈ζ

νn−N(a)(
√
nA− z) + δ/2

 ,

which, by Lemma 2.2, is bounded by C1
∑

ζ∈MBn
P(ZN(a) = ζ)e−C2|ζ|δ2/4. This gives that

P(ZN(a) ∈MBn , Z̄n(
√
nA) ≥ p) ≤ C1

∞∑
k=1

P(|ZN(a)| = k)e−c1k. (3.11)

As a consequence of (2.6),

P(ZN(a) ∈MBn , Z̄n(
√
nA) ≥ p) ≤ c2p

N(a)
1 . (3.12)

Furthermore, following the same arguments to get (3.11), we have

P(ZN(a) ∈MBn , |ZN(a)| ≥ n, Z̄n(
√
nA) ≥ p) ≤ C1

∞∑
k=n

P(|ZN(a)| = k)e−c1k

≤ C1e
−c1n

= on(1)P(Z̄n(
√
nA) ≥ p), (3.13)

where the last equality follows from Lemma 3.1. Then (3.6) and (3.13) yield that

P(Z̄n(
√
nA) ≥ p)

≤ P
(
ZN(a) /∈MBn

)
+ P

(
ZN(a) ∈MBn , Z̄n(

√
nA) ≥ p

)
= on(1)P

(
Z̄n(
√
nA) ≥ p

)
+ P(ZN(a) ∈MBn , |ZN(a)| < n, Z̄n(

√
nA) ≥ p), (3.14)

which, together with (3.12), gives (3.7) and (3.8). �
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More generally, for ρn = 1 + on(1), we also have

P(Z̄n(
√
n(ρnA)) ≥ p) ≤ C5e

− log 1
p1
IA(p)α(1−ε)

√
n
.

The arguments above still work by remarking (1) of Lemma 2.1 which says that

sup
A∈A
|ν(ρnA)− ν(A)| = O(|ρn − 1|) = on(1)

and that
sup
A∈A
|ν(A− z)− ν(A− y)| = O(|y − z|).

In what follows, we fix α > 0, the real number taken in the previous lemma and take ε ∈ (0, ε0).
Here is the key lemma for the iteration of the upper bound.

Lemma 3.3. Suppose that all assumptions in Theorem 1.1 hold. Take ρn = 1 + on(1). If we have

lim sup
n

logP(Z̄n(
√
nρnA) ≥ p)√
n

≤ −LIA(p), (3.15)

for some L > 0, then

lim sup
n

logP(Z̄n(
√
nρnA) ≥ p)√
n

≤ −F (L)IA(p), (3.16)

where

F (L) := α inf
u∈R

(
log

1

p1
+ γ(u)− uL

)
+ L

with α > 0 chosen in Lemma 3.2.

Remark 3.2. By Lemma 3.2, we could take L = α log 1
p1

. One can see that F (L) ≤ Λ̄(p1) for

L ≤ Λ̄(p1) in Lemma A.1.

Proof. Recall that a = αIA(p) is fixed here. By (3.7), it suffices to consider P(ZN(a) ∈MBn , |ZN(a)| <
n, Z̄n(

√
nρnA) ≥ p) with N(a) = [a(1 − ε)

√
n]. In the rest of this proof, we write N and B for

N(a) and Bn, respectively. Let ρ′n := ρn
√
n√

n−N . We observe that given {ZN = ζ},

Z̄n(
√
nρnA) = Z̄ζn−N (

√
nρnA) ≤ max

z∈ζ
Z̄zn−N (

√
n−N(ρ′nA)), (3.17)

where the last inequality follows from the elementary inequality∑k
i=1 ai∑k
i=1 bi

≤ max
i≤k

ai
bi
, ∀ai ≥ 0, bi > 0.

Then (3.17) gives

P(ZN ∈MB, |ZN | < n, Z̄n(
√
nρnA) ≥ p)

≤ P
(
ZN ∈MB, |ZN | < n, max

z∈ZN
Z̄zn−N (

√
n−N(ρ′nA)) ≥ p

)
. (3.18)

For any M > 0, let us consider a partition on B:

(1− ε)
√
nu0 < (1− ε)

√
nu1 < · · · < (1− ε)

√
nuM ,
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where ui+1 − ui = η := 2IA(p)
M with u0 = −IA(p) and uM = IA(p). Then the r.h.s of (3.18) is less

than

P

(
M−1⋃
i=0

{
ZN ∈MB, |ZN | < n, max

z∈ZN∩Ji
Z̄zn−N (

√
n−N(ρ′nA)) ≥ p

})
,

where J0 = [(1− ε)
√
nu0, (1− ε)

√
nu1] and

Ji =
(
(1− ε)

√
nui, (1− ε)

√
nui+1

]
, 1 ≤ i ≤M − 1.

It follows from Markov property that

P(ZN ∈MB, |ZN | < n, Z̄n(
√
nρnA) ≥ p)

≤
M−1∑
i=0

∑
ζ∈MB ,|ζ|≤n

P (ZN = ζ)P
(

max
z∈ζ∩Ji

Z̄zn−N (
√
n−N(ρ′nA)) ≥ p

)

≤
M−1∑
i=0

∑
ζ∈MB ,|ζ|≤n

P (ZN = ζ)
∑

z∈ζ∩Ji

P
(
Z̄n−N (

√
n−N(ρ′nA)− z) ≥ p

)

≤
M−1∑
i=0

 ∑
ζ∈MB ,|ζ|≤n

P (ZN = ζ) ζ(Ji)

P
(
Z̄n−N

(√
n−Nρ′n(A+

2η − (1− ε)ui)
)
≥ p
)
. (3.19)

The last inequality holds for η > 0 and n large enough, because that for n sufficiently large, for
any z ∈ Ji, we have √

n−N(ρ′nA)− z ⊂
√
n−Nρ′n(A+

2η − (1− ε)ui),

where A+
2η = ∪x∈AB(x, 2η) is the 2η-neighbourhood of A. Observe that for any 0 ≤ i ≤M − 1,∑

ζ∈MB ,|ζ|≤n

P (ZN = ζ) ζ(Ji) ≤ nP (|ZN | ≤ n,ZN (Ji) ≥ 1)

≤ nE [|ZN |; |ZN | ≤ n] νN (Ji) . (3.20)

Again, by (2.6),
E[|ZN |; |ZN | ≤ n] ≤ nP(|ZN | ≤ n) ≤ c3n

χ+1pN1 . (3.21)

On the other hand, by (2.7) and Chernoff bound,

νN (Ji) ≤ e−N infui≤u≤ui+1
γ(u/a). (3.22)

With (3.19) in hand, plugging (3.21) and (3.22) into (3.20) yields that

P(ZN ∈MB, |ZN | < n, Z̄n(
√
nρnA) ≥ p)

≤ c3n
χ+2pN1

M−1∑
i=0

e−N infui≤u≤ui+1
γ(u/a)P

(
Z̄n−N

(√
n−Nρ′n(A+

2η − (1− ε)ui)
)
≥ p
)
. (3.23)

It remains to bound P
(
Z̄n−N (

√
n−Nρ′n(A+

2η − (1− ε)ui)) ≥ p
)

. Here we are going to use the as-

sumption (3.15). We first consider A+
2η−(1−ε)ui and the corresponding IA+

2η−(1−ε)ui(p). According

to (5) of Lemma 2.1, we have for any x ∈ R,

λ((∂A)+
2η) + ν(A− x) ≥ ν(A+

2η − x) ≥ ν(A− x).
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We take η > 0 sufficiently small (i.e., M large enough) so that λ((∂A)2η) ≤ δ/2, which ensures
that for any u ∈ R,

IA−u(p− δ/2) ≤ IA+
2η−u

(p) ≤ IA−u(p). (3.24)

Moreover, by (3.5), supu0≤u≤uM ν(A+
2η − (1− ε)u) ≤ p− δ/2. So, we can apply (3.15) and obtain

that

lim sup
n→∞

1√
n

logP
(
Z̄n−N (

√
n−Nρ′n(A+

2η − (1− ε)ui)) ≥ p
)
≤− LIA+

2η−(1−ε)ui(p)

≤− LIA−(1−ε)ui(p− δ/2).

Let us now introduce x+(p) := inf{x ≥ 0 : ν(A− x) ≥ p} and x−(p) := inf{x ≥ 0 : ν(A+ x) ≥ p}.
Clearly IA(p) = x+(p) ∧ x−(p). For u ∈ (u0, uM ),

IA−u(p) = (x+(p)− u) ∧ (x−(p) + u).

By (1) of Lemma 2.1, we can choose δ > 0 sufficiently small such that x±(p − δ/2) ∈ [x±(p)(1 −
ε), x±(p)). This brings that

IA−(1−ε)ui(p− δ/2) ≥ (1− ε)((x+(p)− ui) ∧ (x−(p) + ui)).

It implies that

lim sup
n→∞

1√
n

logP
(
Z̄n−N (

√
n−Nρ′n(A+

2η − ui)) ≥ p
)
≤ −L(1− ε)((x+(p)− ui) ∧ (x−(p) + ui)).

As a result, (3.23) entails that

lim sup
n→∞

1√
n

logP(ZN ∈MB, |ZN | < n, Z̄n(
√
nρnA) ≥ p)

≤− (1− ε) min
0≤i≤M−1

{
a log

1

p1
+ a inf

ui≤u≤ui+1

γ(u/a) + L((x+(p)− ui) ∧ (x−(p) + ui))

}
≤− (1− ε) inf

u0≤u≤uM

{
a log

1

p1
+ aγ(u/a) + L((x+(p)− u) ∧ (x−(p) + u))

}
+ ηL, (3.25)

as ui+1 − ui = η. Observe that for any u0 ≤ u ≤ uM ,

a log
1

p1
+ aγ(u/a) + L(x+(p)− u) ≥ inf

u∈R

{
a log

1

p1
+ aγ(u/a) + L(x+(p)− u)

}
,

and

a log
1

p1
+ aγ(u/a) + L(x−(p) + u) ≥ inf

u∈R

{
a log

1

p1
+ aγ(u/a) + L(x−(p) + u)

}
.

Recall that a = αIA(p) and that the symmetry of the distribution of step size implies that γ(u) =
γ(−u). Therefore,

inf
u0≤u≤uM

{
a log

1

p1
+ aγ(u/a) + L((x+(p)− u) ∧ (x−(p) + u))

}
≥ inf

u∈R

{
a log

1

p1
+ aγ(u/a) + L(x+(p)− u)

}
∧ inf
u∈R

{
a log

1

p1
+ aγ(u/a) + L(x−(p) + u)

}
= inf

u∈R

{
a log

1

p1
+ aγ(u/a) + Lu

}
+ L(x+(p) ∧ x−(p))

= F (L)IA(p),

which, together with (3.7)and (3.25), implies (3.16), by letting η ↓ 0 and ε ↓ 0 in (3.25). We
complete the proof. �
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Now we are prepared to prove (3.4).

Proof of (3.4). We begin with the rough bound in (3.8). Let L0 = −α log p1 and

Lk := F (Lk−1), ∀k ≥ 1.

In view of Lemma (3.3), by iteration, we get that for any k ≥ 0,

lim sup
n→∞

1√
n

logP
(
Z̄n(
√
nA) ≥ p

)
≤ −IA(p)Lk.

By Lemma A.1, limk→∞ Lk = Λ̄(p1). We thus conclude (3.4).

�

3.2 Proof of Theorem 1.2: IA(p) =∞

The idea of the proof is mainly borrowed from Louidor and Perkins [21, Section 2.3.2]. Recall that
JA(p) = inf

{
y : supx∈R ν((A− x)/

√
1− y) ≥ p, y ∈ [0, 1]

}
.

Lemma 3.4. Suppose that all assumptions in Theorem 1.2 hold. Then

lim inf
n→∞

1

n
logP

(
Z̄n(
√
nA) ≥ p

)
≥ JA(p) log p1. (3.26)

Proof. Since JA(p) is continuous at p, then by (3) in Lemma 2.1, for any ε > 0 small enough, we
may find r ∈ (0, 1), x ∈ R and δ > 0, η > 0, such that

JA(p)− ε < r < JA(p) + ε and ν(∩y∈[x−η,x+η](A− y)/
√

1− r) ≥ p+ δ.

Set
tn = rn+ x

√
n; m = n− tn; Bn := [(x− η)

√
n, (x+ η)

√
n].

Observe that
P(Z̄n(

√
nA) ≥ p) ≥ P(Z̄n(

√
nA) ≥ p, Ztn ∈MBn , |Ztn | = 1).

Applying Markov property at time tn implies that

P(Z̄n(
√
nA) ≥ p) ≥P(Ztn ∈MBn , |Ztn | = 1) inf

y∈Bn
P(Z̄

δy
n−tn(

√
nA) ≥ p)

=ptn1 νtn(Bn) inf
y∈[(x−η)

√
n,(x+η)

√
n]
P(Z̄m(

√
nA− y) ≥ p)

≥ptn1 νtn(Bn)P
(
Z̄m(
√
mρn ∩y∈[x−η,x+η]

(A− y)√
1− r

) ≥ p
)

where ρn =

√
n(1−r)√
m

→ 1. By Lemma 2.1,∣∣∣∣νm(√mρn ∩y∈[x−η,x+η]
(A− y)√

1− r

)
− ν

(
∩y∈[x−η,x+η]

(A− y)√
1− r

)∣∣∣∣ = on(1).

So for n large enough,

νm

(√
mρn ∩y∈[x−η,x+η]

(A− y)√
1− r

)
≥ ν

(
∩y∈[x−η,x+η]

(A− y)√
1− r

)
− δ/2 ≥ p+ δ/2.
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This, together with Lemma 2.1 entails that

P(Z̄n(
√
nA) ≥ p)

≥ptn1 νtn(Bn)P
(
Z̄m

(√
mρn ∩y∈[x−η,x+η]

(A− y)√
1− r

)
≥ νm

(√
mρn ∩y∈[x−η,x+η]

(A− y)√
1− r

)
− δ/2

)
≥ptn1 νtn(

√
n[x− η, x+ η])(1 + on(1)).

Note that νtn(
√
n[x− η, x+ η]) = Θ(1) by classical central limit theorem. As a consequence,

lim inf
n→∞

1

n
logP

(
Z̄n(
√
nA) ≥ p

)
≥ r log p1 ≥ (JA(p) + ε) log p1.

We obtain (3.26) by letting ε ↓ 0. �

Lemma 3.5. Suppose that all assumptions in Theorem 1.2 hold. Then for any ε > 0 small enough,

lim sup
n→∞

1

n
logP

(
Z̄n(
√
nA) ≥ p

)
≤ (JA(p)− ε) log p1. (3.27)

Proof. For ε ∈ (0, JA(p)) small enough, set tn = b(JA(p)− ε)nc. Then

P(Z̄n(
√
nA) ≥ p) =

∑
ζ∈M

P(Z̄ζn−tn(
√
nA) ≥ p)P(Ztn = ζ). (3.28)

By the definition of JA(p), there exists δ > 0 such that for ε′ ∈ [ε, 2ε],

sup
y∈R

ν

(
A− y√

1− JA(p) + ε′

)
≤ p− δ. (3.29)

(1) and (5) of Lemma 2.1 show that for n large enough,

1

|ζ|
∑
y∈ζ

νn−tn(
√
nA− y) ≤ 1

|ζ|
∑
y∈ζ

ν(

√
n√

n− tn
A− y√

n− tn
) + δ/2 ≤ p− δ/2.

This implies that

P
(
Z̄ζn−tn(

√
nA) ≥ p

)
≤P

Z̄ζn−tn(
√
nA) ≥ 1

|ζ|
∑
y∈ζ

νn−tn(
√
nA− y) + δ/2

 ,

which by Lemma 2.2 is less than C1e
−C2δ2|ζ|/4. Going back to (3.28) and using (2.6), we have

P(Z̄n(
√
nA) ≥ p) ≤

∑
ζ∈M

C1e
−C2δ2|ζ|/4P(Ztn = ζ)

=
∞∑
k=1

C1P(|Ztn | = k)e−c4k

≤c5

∞∑
k=1

ptn1 k
χ−1e−c4k ≤ c6p

tn
1 . (3.30)

This yields (3.27) immediately. �

Theorem 1.2 follows directly from the lemmas 3.4 and 3.5.
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4 Böttcher case

In this section, we suppose that p0 = p1 = 0. As we claimed in the introduction, different tail
distributions of step size bring out different regimes. To obtain Theorems 1.3 and 1.4, we need to
treat the sub-exponential and the super-exponential decaying tails differently.

4.1 Proof of Theorem 1.3: step size has Weibull tail distribution

4.1.1 Proof when step size has (sub)-exponential decay

In this section, we assume that 2 ≤ b < B ≤ ∞, P(X > z) ∼ e−λz
α

as z → ∞ with α ∈ (0, 1],
λ > 0 and also that IA(p) < ∞ and IA(·) is continuous at p = ν(A) + ∆. We are devoted to
proving

lim
n→∞

1

nα/2
logP(Z̄n(

√
nA)− ν(A) ≥ ∆) = −λIA(p)α. (4.1)

Lower bound of (4.1): Suppose that at the first generation, the root gives birth to exactly b
children, denoted by ρ1, · · · , ρb. Moreover, suppose that their positions are Sρ1 ∈ [(x− η)

√
n, (x+

η)
√
n], Sρi ∈ [−M,M ] for 2 ≤ i ≤ b. Here we take M > 0 such that

P(|X| ≤M) ≥ 1/2.

As IA(·) is continuous and finite at p, for any ε > 0 small enough, there exist x ∈ R and η > 0, δ > 0
such that

inf
y∈[x−η,x+η]

ν(A− y) ≥ p+ δ, |x| = IA(p) + ε.

By Lemma (2.4), given E := {|Z1| = b, Sρ1 ∈ [(x− η)
√
n, (x+ η)

√
n], Sρi ∈ [−M,M ],∀i = 2, · · · , b},

lim inf
n→∞

Z̄n(
√
nA) ≥

(p+ δ)W1 +
∑b

i=2 ν(A)Wi∑b
i=1Wi

,

where Wi, i = 1, 2, · · · , b are i.i.d. copies of W . This shows that

lim inf
n→∞

P(Z̄n(
√
nA) ≥ p|E) ≥P

(
lim inf
n→∞

Z̄n(
√
nA) ≥ p+ δ/2

∣∣E)
≥P

(
(p+ δ)W1 +

∑b
i=2 ν(A)Wi∑b

i=1Wi

≥ p+ δ/2

)
=:CA,p,δ,b.

Since B > b, W has a continuous positive density on (0,∞); see Athreya and Ney [4, Chapter II,
Lemma 2]. So CA,p,δ,b is a positive real number. Consequently,

P(Z̄n(
√
nA)− ν(A) ≥ ∆) ≥P

(
Z̄n(
√
nA) ≥ p|E

)
P(E)

≥Θ(1)pbe
−λ(|x|−η)αnα/2(1 + on(1))

(
1

2

)b−1

.

Taking limits yields that

lim inf
n→∞

1

nα/2
logP(Z̄n(

√
nA)− ν(A) ≥ ∆) ≥ −λ(IA(p) + ε− η)α.

Letting ε ↓ 0 and η ↓ 0 gives that

lim inf
n→∞

1

nα/2
logP(Z̄n(

√
nA)− ν(A) ≥ ∆) ≥ −λIA(p)α.
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Upper bound of (4.1): Take an intermediate generation tn = bt log nc with some t > 0. Let
Bn = [(−IA(p) + ε)

√
n, (IA(p)− ε)

√
n] with ε > 0 small enough. Note that there exists δ > 0 such

that
sup

x∈[−IA(p)+ε,IA(p)−ε]
ν(A− x) ≤ p− δ. (4.2)

Observe that

P
(
Z̄n(
√
nA) ≥ p

)
≤ P(Ztn(Bc

n) ≥ 1) + P(Ztn ∈MBn , Z̄n(
√
nA) ≥ p)

≤ 2P(Ztn((IA(p)− ε)
√
n,∞) ≥ 1) +

∑
ζ∈MBn

P(Ztn = ζ)P(Z̄ζn−tn(
√
nA) ≥ p). (4.3)

On the one hand, by Markov inequality,

P(Ztn((IA(p)− ε)
√
n,∞) ≥ 1) ≤ E[Ztn((IA(p)− ε)

√
n,∞)] = mtnνtn((IA(p)− ε)

√
n,∞). (4.4)

It is known (see [23]) that

νtn((IA(p)− ε)
√
n,∞)

{
= e−λ(IA(p)−ε)αnα/2+o(nα/2), α < 1;

≤ e−(λ−ε)(IA(p)−ε)
√
nE[e(λ−ε)X ]tn , α = 1,

(4.5)

where for α = 1, we use Markov inequality again by noting that E[e−(λ−ε)X ] < ∞ for ε ∈ (0, λ).
On the other hand, for any ζ ∈MBn , because of (4.2), one has

1

|ζ|
∑
x∈ζ

ν(A− x√
n

) ≤ p− δ.

Again by (6) of Lemma 2.1, for n large enough,

1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x) ≤ p− δ/2.

This, combined with Lemma 2.2, implies that

P(Z̄ζn−tn(
√
nA) ≥ p) ≤P

Z̄ζn−tn(
√
nA) ≥ 1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x) + δ/2


≤C1e

−C2|ζ|δ2/4. (4.6)

In view of (4.4), (4.5) and (4.6), (4.3) becomes

P
(
Z̄n(
√
nA) ≥ p

)
≤ 2mtne−(λ−ε)(IA(p)−ε)αnα/2+o(nα/2) + C1

∑
ζ∈MBn

P(Ztn = ζ)e−C2|ζ|δ2/4

≤ 2mtne−(λ−ε)(IA(p)−ε)αnα/2+o(nα/2) + C1e
−c7btn ,

as |Ztn | ≥ btn . We take t > α
2 log b so that btn � nα/2 and hence

P(Z̄ζn−tn(
√
nA) ≥ p) ≤ e−(λ−ε)(IA(p)−ε)αnα/2+o(nα/2).

We thus obtain that

lim sup
n→∞

1

nα/2
logP(Z̄ζn−tn(

√
nA) ≥ p) ≤ −(λ− ε)(IA(p)− ε)α,

which, together with the lower bound above, concludes (4.1).
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4.1.2 Proof when step size has super-exponential decay

In this section, we assume that the tail distribution of step size is P(X > x) ∼ e−λx
α

with α > 1.
The embedding tree is assumed to be random with 2 ≤ b < B ≤ +∞. We are going to prove the
following convergence: for p ∈ (ν(A), 1) such that IA(p) is continuous and finite, we have

lim
n→∞

(lnn)α−1

nα/2
logP

(
Z̄n(
√
nA) ≥ p

)
= −

(
2 log b logB

α(logB − log b)

)α−1

λIA(p)α, (4.7)

with the convention that 2 log b logB
α(logB−log b) = 2 log b

α if B =∞.

Lower bound of (4.7): According to the definition of IA(p), for any δ > 0 small enough, there
exist x0 ∈ R, ε > 0 and η > 0 such that

IA(p) < |x0| ≤ IA(p) + ε, inf
y∈[x0−η,x0+η]

ν(A− y) ≥ p+ δ.

Take an integer d > b such that pd > 0. (If B <∞, then we choose d = B. If B =∞, we will let
d→∞ later.) Let tn = bt1 log n− t2 log log nc with some t1, t2 > 0. Then for sufficiently large n,
let

sn =

⌊
log logn+ tn log b

log d

⌋
, Υ =

2 log b log d

α(log d− log b)
.

Let us construct a tree t of height tn in the following way. First, ttn−sn := {v ∈ t : |v| ≤ ts− sn} is
a b-regular tree. Using Neveu’s notation, let U := ∪n≥1Nn+∪{ρ} be the infinite Ulam-Harris tree, to
code the vertices. Here denote u∗ = (1, · · · , 1) to be the first individual of the (tn−sn)-th generation
in the lexicographic order. Next, t(u∗) is a d-regular tree and {t(u) : u 6= u∗, |u| = tn − sn} are
all b-regular trees, where for any u ∈ t, t(u) := {v ∈ t : u � v} is the subtree of t rooted at u.
Recall from the very beginning of this paper that T is the embedded Galton-Watson tree. Let
Ttn = {u ∈ T : |u| ≤ tn}. Define the following event

Etn,b,d = {Ttn = t, Su ∈ [(x0 − η)
√
n, (x0 + η)

√
n], for all |u| = tn s.t. u ∈ t(u∗)}, (4.8)

which means that all the descendants of u∗ at the tn-th generation are positioned in the interval
[(x0 − η)

√
n, (x0 + η)

√
n]. It follows immediately that

P
(
Z̄n(
√
nA) ≥ p

)
≥ P

(
Z̄n(
√
nA) ≥ p|Etn,b,d

)
P(Etn,b,d) (4.9)

and that

P(Etn,b,d) ≥ pb
tn

b pd
sn

d Pt(Su ∈ [(x0 − η)
√
n, (x0 + η)

√
n], ∀u ∈ t(u∗), |u| = tn), (4.10)

where Pt = P(·|Ttn = t). To bound the probability on the RHS of (4.10), let us take the following
labels (step sizes):

Xv ∈
[
(x0 −

η

2
)

√
n

tn − sn
, (x0 +

η

2
)

√
n

tn − sn

]
, ∀ ρ ≺ v � u∗;

and
Xv ∈ [−M,M ], ∀ v ∈ t(u∗) and |v| ≤ tn,

where M is a fixed real number such that P(X ∈ [−M,M ]) ≥ 1/2. Observe that for n large
enough, for any u ∈ t(u∗) s.t. |u| = tn,

Su ∈
[
(x0 −

η

2
)
√
n−Msn, (x0 +

η

2
)
√
n+Msn

]
⊂ [(x0 − η)

√
n, (x0 + η)

√
n].
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As a consequence,

Pt(Su ∈ (x0 − η)
√
n, (x0 + η)

√
n], ∀u ∈ t(u∗), |u| = tn)

≥P
(
X ∈

[
(x0 −

η

2
)

√
n

tn − sn
, (x0 +

η

2
)

√
n

tn − sn

])tn−sn
×

∏
1<k≤sn

P(X ∈ [−M,M ])d
k

≥
(

1

2

)2dsn

ctn−sn8 exp
{
−λ(tn − sn)1−α

(
|x0| −

η

2

)α
nα/2

}
.

Here we take t1 = α
2 log b and t2 = 2α

log b so that

nα/2

(tn − sn)α−1
= (1 + on(1))Υα−1 nα/2

(log n)α−1
� dsn � btn .

Therefore, by (4.10),

P(Etn,b,d) ≥ exp

{
−λ
(
|x0| −

η

2

)α
Υα−1 nα/2

(log n)α−1 + o

(
nα/2

(log n)α−1

)}
. (4.11)

It remains to bound P
(
Z̄n(
√
nA) ≥ p|Etn,b,d

)
. Define

M0 =
{
ζ ∈M : |ζ| = dsn + btn − bsn , ζ([(x0 − η)

√
n, (x0 + η)

√
n]) ≥ dsn

}
.

For any ζ ∈M0, by considering only the particles in [(x0 − η)
√
n, (x0 + η)

√
n],

1

|ζ|
∑
x∈ζ

ν(
√
nA− x) ≥ dsn

dsn + btn − bsn
inf

y∈[x0−η,x0+η]
ν(A− y)

≥ log n

log n+ 1
(p+ δ),

which, combining with (5) of Lemma 2.1, implies that for n large enough,

1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x) ≥ p+ δ/2.

This means that for any ζ ∈M0,Z̄ζn−tn(
√
nA) ≥ 1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x)− δ/2

 ⊂ {Z̄ζn−tn(
√
nA) ≥ p},

as p = ν(A) + ∆. Note that Ztn ∈M0 given Etn,b,d. Then by Lemma 2.2, we have

P(Z̄n(
√
nA) ≥ p|Etn,b,d)

≥ P

Z̄ζn−tn(
√
nA) ≥ 1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x)− δ/2

∣∣∣∣∣
ζ=Ztn∈M0

≥ 1− C1e
−C2dsnδ2/4 ≥ 1

2
,

for all n large enough. This implies that

P(Z̄n(
√
nA) ≥ p) ≥ 1

2
P(Etn,b,d),

which, together with (4.11), gives

lim inf
n→∞

(log n)α−1

nα/2
logP(Z̄n(

√
nA) ≥ p) ≥ −λ

(
|x0| −

η

2

)α
Υα−1. (4.12)

Then we get the lower bound by letting δ ↓ 0 and d ↑ B.
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Upper bound of (4.7): Again, by the definition of IA(p), for any δ > 0 small enough, there
exist η > 0 such that

sup
|y|≤IA(p)−η

ν(A− y) ≤ p− δ.

Let Bn := [(−IA(p) + η)
√
n, (IA(p)− η)

√
n], tn = bα log b

2 log nc. Observe that for any ζ ∈M,

1

|ζ|
∑
x∈ζ

ν(A− x√
n

) =
1

|ζ|
∑

x∈ζ∩Bn

ν(A− x√
n

) +
1

|ζ|
∑

x∈ζ∩Bcn

ν(A− x√
n

)

≤p− δ +
ζ(Bc

n)

|ζ|
,

which is less than p − δ/2 as soon as ζ(Bcn)
|ζ| ≤ δ/2. Further, by (5) of Lemma 2.1, for all n large

enough,

M1 :=

{
ζ ∈M :

ζ(Bc
n)

|ζ|
≤ δ/2

}
⊂

ζ ∈M :
1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x) ≤ p− δ/4

 . (4.13)

By conditioning on {Ztn = ζ} for any ζ ∈M1, we observe that

P(Z̄n(
√
nA) ≥ p) ≤P(Z̄tn(Bc

n) > δ/2) + P(Z̄n(
√
nA) ≥ p, Z̄tn(Bc

n) ≤ δ/2)

=P(Z̄tn(Bc
n) > δ/2) +

∑
ζ∈M1

P(Ztn = ζ)P
(
Z̄ζn−tn(

√
nA) ≥ p

)
,

which, by (4.13), is bounded by

P(Z̄tn(Bc
n) > δ/2) +

∑
ζ∈M

P(Ztn = ζ)P

Z̄ζn−tn(
√
nA) ≥ 1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x) + δ/4

 .

Note that |Ztn | ≥ btn . In view of Lemma 2.2,

∑
ζ∈M

P(Ztn = ζ)P

Z̄ζn−tn(
√
nA) ≥ 1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x) + δ/4

 ≤ C1e
−c9btn .

Since P(Z̄tn(Bc
n) > δ/2) ≤ P(Ztn(Bc

n) ≥ δbtn/2), then

P(Z̄n(
√
nA) ≥ p) ≤ P(Ztn(Bc

n) ≥ δbtn/2) + C1e
−c9btn . (4.14)

It remains to bound P(Ztn(Bc
n) ≥ δbtn/2), which will be investigated separately in two cases:

B =∞ and B <∞.

First case: B =∞. Note that by Markov inequality and symmetry of X,

P(Ztn(Bc
n) ≥ δbtn/2) ≤P(Ztn(Bc

n) ≥ 1)

≤mtnνtn(Bc
n) ≤ 2mtnνtn

([
(IA(p)− η)

√
n,∞

))
.

Then (1) of Lemma A.2 implies that

lim sup
n→∞

(log n)α−1

nα/2
logP(Ztn(Bc

n) ≥ δbtn/2) ≤ −λ
(

2 log b

α

)α−1

(IA(p)− η)α.

As btn ≥ nα/2

b �
nα/2

tα−1
n

, in view of (4.14), we get

lim sup
n→∞

(log n)α−1

nα/2
logP(Z̄n(

√
nA) ≥ p) ≤ −λ

(
2 log b

α

)α−1

(IA(p)− η)α,

which, with the help of (4.12), proves (4.7) in the case of B =∞ by letting η ↓ 0.
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Second case: b < B <∞. The proof will be divided into three subparts.

Subpart 1: Recall that tn =
⌊

α
2 log b log n

⌋
. Let sn =

⌊
tn log b−2α log logn

logB

⌋
. For n large enough, we

have δbtn/4 ≥ Bsn . Observe that

P(Ztn(Bc
n) ≥ δbtn/2) ≤ 2P

(
Ztn((IA(p)− η)

√
n,∞) ≥ Bsn

)
.

Recall that up to the tn-th generation, the genealogical tree Ttn is Galton-Watson. Set I(n) =
(IA(p)− η)

√
n. Then

P(Ztn((IA(p)− η)
√
n,∞) ≥ Bsn) =

∑
t

P(Ttn = t)Pt

 ∑
|u|=tn, u∈t

1{Su>I(n)} ≥ Bsn

 .

Observe that ∑
|u|=tn, u∈t

1{Su>I(n)} ≥ Bsn

 ⊂
 ⋃
J⊂ttn , |J |=Bsn

⋂
u∈J
{Su > I(n)}

 , (4.15)

where ttn = {u ∈ t : |u| = tn}. This yields that

P(Ztn((IA(p)− η)
√
n,∞) ≥ Bsn) ≤

∑
t

P(T = t)
∑

J⊂ttn , |J |=Bsn
Pt

(⋂
u∈J
{Su > I(n)}

)
(4.16)

We claim that for any t and J ⊂ ttn with |J | = Bsn ,

Pt

(⋂
u∈J
{Su > I(n)}

)
≤ c10tnB

sne−λn
α

+ (c10n)tnB
sn

exp

− λ ((IA(p)− η)
√
n− tn)

α(
tn − sn + 1

B1/(α−1)−1

)α−1

 .

(4.17)
(4.17) will be proved in Subpart 2. Notice that

# {J ⊂ ttn , |J | = Bsn} =

(
|ttn |
Bsn

)
≤
(
Btn

Bsn

)
,

which, together with (4.17) and (4.16), gives

P(Ztn(Bc
n) ≥ δbtn/2) ≤

(
Btn

Bsn

)
×

c10tnB
sne−λn

α
+ (c10n)tnB

sn
exp

− λ ((IA(p)− η)
√
n− tn)

α(
tn − sn + 1

B1/(α−1)−1

)α−1


 .

Note that Bsn ≤ nα/2

(logn)2α and(
Btn

Bsn

)
=

(Btn)!

(Bsn)!(Btn −Bsn)!
≤ BtnBsn

(Bsn)!
≤ BtnBsn .

Then

tnB
sn log n =O(1)

nα/2

(log n)2α−2
� nα/2

(log n)α−1
,

((IA(p)− η)
√
n− tn)

α(
tn − sn + 1

B1/(α−1)−1

)α−1 =
nα/2

(log n)α−1

(
Υα−1(IA(p)− η)α + on(1)

)
,
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where Υ = 2 log b logB
α(logB−log b) . So,

P(Ztn(Bc
n) ≥ δbtn/2) ≤ exp

{
− λnα/2

(log n)α−1

(
Υα−1(IA(p)− η)α + on(1)

)}
.

In view of (4.14), we conclude that

lim sup
n→∞

(log n)α−1

nα/2
logP(Z̄n(

√
nA) ≥ p) ≤ −λΥα−1(IA(p)− η)a,

which, by letting η → 0, gives what we need. .

Subpart 2: This subpart is devoted to demonstrating (4.17). For any J , define tJ = {v ∈ t :
ρ ≺ v � u, u ∈ J }. One sees that

L.H.S of (4.17) ≤ Pt

 ∑
ρ≺v�u

|Xv| ≥ I(n), ∀u ∈ J


≤Pt

(
sup
v∈tJ

|Xv| ≥ n

)
+ Pt

 sup
v∈tJ

|Xv| ≤ n;
∑
ρ≺v�u

|Xv| ≥ I(n), ∀u ∈ J

 . (4.18)

It follows from the tail distribution of X that there exists c11 ≥ 1 such that

P(|X| ≥ x) ≤ c11e
−λxα , ∀x ≥ 0.

As a consequence, we have

Pt

(
sup
v∈tJ

|Xv| ≥ n

)
≤ |tJ |P(|X| ≥ n) ≤ c11tnB

sne−λn
α
. (4.19)

Meanwhile,

Pt

 sup
v∈tJ

|Xv| ≤ n;
∑
ρ≺v�u

|Xv| ≥ I(n), ∀u ∈ J


≤

∑
xv∈N∩[0,n),v∈tJ

Pt

 ⋂
v∈tJ

{|Xv| ∈ [xv, xv + 1]}

 1{
min
u∈J

∑
ρ≺v�u

(xv+1)≥I(n)

}

≤
∑

xv∈N∩[0,n),v∈tJ

c11
tnBsne

−λ
∑
v∈tJ

xαv 1{
min
u∈J

∑
ρ≺v�u

xv≥I1(n)

}, (4.20)

where I1(n) = I(n) − tn. We need to bound R.H.S. of (4.20). To end this, we CLAIM that
from {xv, v ∈ tJ }, one can construct a rooted deterministic tree t∗J with labels xρ = 0 and
{x∗v, v ∈ t∗J \ {ρ}} ⊂ {xv, v ∈ tJ } such that∑

v∈tJ

xαv ≥
∑
v∈t∗J

(x∗v)
α, min

|u|=tn,u∈t∗J

∑
ρ≺v�u

x∗v ≥ min
u∈J

∑
ρ≺v�u

xv ≥ I1(n), (4.21)

and that t∗J contains a single branch up to the generation tn− sn, then it has the B-regular struc-
ture up to the generation tn. The detailed construction will be postponed to Subpart 3.
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With the help of (4.21), we get that

R.H.S. of (4.20)

≤ctnB
sn

11 n|tJ | sup
x∗v∈N,x∗v<n,v∈t∗J

e
−λ
∑
v∈t∗J

(x∗v)α

1{
min
|u|=tn

∑
ρ≺v�u

x∗v≥I1(n)

}. (4.22)

Note that min|u|=tn
∑

ρ≺v�u x
∗
v ≥ I1(n) leads to

∑
|u|=tn

∑
ρ≺v�u x

∗
v ≥ I1(n)Bsn , which means

k0∑
i=1

∑
|u|=i

x∗u +

tn∑
i=1+k0

∑
|u|=i x

∗
u

Bi−k0
≥ I1(n),

with k0 = tn − sn. Note that

#{u ∈ t∗J : |u| = i} =

{
1, i ≤ k0;

Bi−k0 , k0 < i ≤ tn.

Write x̄∗i =
∑
|u|=i x

∗
u for i ≤ k0 and x̄∗i =

∑
|u|=i x

∗
u

Bi−k0
for k0 < i ≤ tn. So we have

1{min|u|=tn
∑
ρ≺v�u x

∗
v≥I1(n)} ≤ 1{

∑tn
i=1 x̄

∗
i≥I1(n)}.

Consequently,

sup
x∗v∈N∩[0,n),v∈t∗J

e
−λ
∑
v∈t∗J

(x∗v)α

1{
min
|u|=tn

∑
ρ≺v�u

x∗v≥I1(n)

} ≤ sup
x∗v∈N∩[0,n),v∈t∗J

e
−λ
∑
v∈t∗J

(x∗v)α

1{ tn∑
i=1

x̄∗i≥I1(n)

}.
(4.23)

Moreover, as α > 1, by convexity of x 7→ xα on R+, we obtain that for k0 < i ≤ tn,

∑
|u|=i

(
x∗u

)α
≥ Bi−k0

(∑
|u|=i x

∗
u

Bi−k0

)α
= Bi−k0(x̄∗i )

α,

and
∑
|u|=i(x

∗
u)α = (x̄∗i )

α for 1 ≤ i ≤ k0. Again using convexity implies that, for any µi > 0,

∑
v∈t∗

(x∗v)
α ≥

k0∑
i=1

(x̄∗i )
α +

tn∑
i=k0+1

Bi−k0(x̄∗i )
α

=

k0∑
i=1

(x̄∗i )
α +

tn∑
i=1+k0

Bi−k0µ−αi (µix̄
∗
i )
α

≥

k0 +

tn∑
i=1+k0

Bi−k0µ−αi

(∑k0
i=1 x̄

∗
i +

∑tn
i=1+k0

Bi−k0µ1−α
i x̄∗i

k0 +
∑tn

i=1+k0
Bi−k0µ−αi

)α
.

By taking µi > 0 such that Bi−k0µ1−α
i = 1, one sees that given

∑tn
i=1 x̄

∗
i ≥ I1(n), we have

∑
v∈t∗

(x∗v)
α ≥

(
k0 +

tn∑
i=1+k0

B−
i−k0
α−1

)1−α
(

tn∑
i=1

x̄∗i

)α
≥ ((IA(p)− η)

√
n− tn)

α(
tn − sn + 1

B1/(α−1)−1

)α−1 . (4.24)
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With (4.18), (4.20) and (4.19) in hand, plugging (4.24) and (4.23) into (4.22) yields that

L.H.S. of (4.17)

≤ c11tnB
sne−λn

α
+ (c11n)tnB

sn
exp

− λ ((IA(p)− η)
√
n− tn)

α(
tn − sn + 1

B1/(α−1)−1

)α−1

 . (4.25)

We have completed the proof of (4.17).

Subpart 3: We now explain how to construct {x∗v, v ∈ t∗}. Recall that k0 = tn − sn and |Zt
k| is

the number of particles at the k-th generation in t. Then

|Zt
i+k0
| ≥ Bi,∀1 ≤ i ≤ tn − k0 = sn.

This shows that there are sufficiently many particles in t. As always, we say that su :=
∑

ρ<v≤u xv
is the position of u ∈ t and xu its displacement. For each u ∈ t and that κ(u) is the number of its
children, if it is selected to be in t∗, x∗u = xu (but its ancestor line might be changed, so might be
its position).

At the (tn − 1)-th generation, there are at least Bsn−1 particles in t. Let us rearrange them
according to their positions: su(1)

≥ su(2)
≥ · · · su(Bsn−1)

≥ · · · . We only take u(j), j = 1, · · · , Bsn−1

(together with their descedants) to be in t∗. Those particles are said to be selected. For u(j), if
κ(u(j)) = B, we jump to consider u(j+1). Otherwise, we prune B − κ(u(j)) unselected particles at
the tn-th generation and graft them to u(j). The fact that |Zt

tn | = Bsn ensures that u(j) finally has
B children for any ∀1 ≤ j ≤ Bsn−1.

Suppose that we have already got the Bi+1 particles with their descendants for the generation
k0 + i+ 1 of t∗. We are interested in their parents at the (k0 + i)-th generation in t, the number of
which is at least Bi. We rearrange them according to their positions: sw(1)

≥ sw(2)
≥ · · · sw(Bi)

≥
· · · . We select w(j), j = 1, · · · , Bi with their descendants in t∗, For w(j), if κ(w(j)) = B, we jump
to consider u(j+1). Otherwise, we prune B − κ(w(j)) unselected particles at the (k0 + i + 1)-th
generation together with their descendants and graft these subtrees to w(j).

We continue this backward construction until the k0-th generation where there is only one
particle in t∗. We then take directly all its ancestors in t to establish the single branch of t∗.

In the following figure, we give an example of this construction. The horizontal axis represents
generations and the vertical axis represents positions of particles. In FigA, from the tree t, we
choose Bsn particles in J and colour them in red. In FigB, we subtract all the ancestors of
the red particles and remove the others. In FigC, we do the pruning and grafting for the last
two generations as explained above. In FigD, we get the final labelled tree t∗ in blue while the
red particles are those chosen in J . The blue dashed lines link the particles and their added
descendants at each step.
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FigA: Original tree
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FigB: The choosen particles and their ancestors
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FigC: Reconstruct the last generations
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FigD: New labelled tree

Observe that only a part of the particles in t has been selected and that the positions at the
final generation of t∗ are all getting higher. (4.21) is satisfied.
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4.1.3 LDP when the tree is regular

Unfortunately, the arguments above do not all work when the embedding tree T is regular. We
could only get the upper and lower bound for the large deviation behaviours:

− Cα ≤ lim inf
n→∞

1

nα/2
logP

(
Z̄n(
√
nA)− ν(A) ≥ ∆

)
≤ lim sup

n→∞

1

nα/2
logP

(
Z̄n(
√
nA)− ν(A) ≥ ∆

)
≤ −cα. (4.26)

Lower bound No matter whether α < 1 or α ≥ 1, we only consider the first generation and
suppose that

Su ∈ [(x− η)
√
n, (x+ η)

√
n], ∀|u| = 1,

where |x| = IA(p) + ε with infy∈[x−η,x+η] ν(A− y) ≥ p+ δ for some δ, η, ε > 0. Given E := {Su ∈
[(x− η)

√
n, (x+ η)

√
n], ∀|u| = 1},

lim inf
n→∞

Z̄n(
√
nA) ≥ p+ δ.

Then

P
(
Z̄n(
√
nA)− ν(A) ≥ ∆

)
≥P(Su ∈ [(x− η)

√
n, (x+ η)

√
n],∀|u| = 1; Z̄n(

√
nA) ≥ p)

≥P(Z̄n(
√
nA) ≥ p|E)P(E),

where
lim inf
n→∞

P(Z̄n(
√
nA ≥ p|E) ≥ P(lim inf

n→∞
Z̄n(
√
nA) ≥ p|E) = 1.

On the other hand,

P(E) = P(X ∈ [(x− η)
√
n, (x+ η)

√
n])b = (1 + on(1))e−λb(x−η)αnα/2 .

We thus deduce that

lim inf
n→∞

1

nα/2
logP

(
Z̄n(
√
nA)− ν(A) ≥ ∆

)
≥ −λb(x− η)α.

We obtain the lower bound in (4.26) with Cα = λb(IA(p))α.

Upper bound When α ≤ 1, the arguments in Section 4.1.1 still work for regular tree. So the
upper bound is obtained with cα = λ(IA(p))α in the case of α ≤ 1.

When α > 1, (4.14) still holds. So, for Bn = [−(IA(p) − η)
√
n, (IA(p) − η)

√
n] and tn =⌊

α log b
2 log n

⌋
,

P(Z̄n(
√
nA)− ν(A) ≥ ∆) ≤ P(Ztn(Bc

n) ≥ δbtn/2) + C1e
−c9btn .

Observe that

Ztn(Bc
n)

btn
=
∑
|u|=tn

1|Su|≥(IA(p)−η)
√
n

btn
≤ 1

(IA(p)− η)
√
n

∑
|u|=tn

|Su|
btn

.

Moreover, |Su| ≤
∑

ρ≺v�u |Xu| implies that

Ztn(Bc
n)

btn
≤ 1

(IA(p)− η)
√
n

∑
|u|=tn

|Su|
btn
≤ 1

(IA(p)− η)
√
n

tn∑
k=1

∑
|u|=k

|Xu|
bk

.
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It follows that

P(Z̄n(
√
nA)− ν(A) ≥ ∆) ≤P

 tn∑
k=1

∑
|u|=k

|Xu|
bk
≥ δ(IA(p)− η)

√
n

+ C1e
−c9nα/2

=P

 tn∑
k=1

∑
|u|=k

|Xu|
bk

α

≥ [δ(IA(p)− η)
√
n]α

+ C1e
−c9nα/2 .

By convexity of x 7→ xα, for any µk > 0, one sees that tn∑
k=1

∑
|u|=k

|Xu|
bk

α

=

 tn∑
k=1

∑
|u|=k

µk
bk

(µ−1
k |Xu|)

α

≤(

tn∑
k=1

µk)
α

∑tn
k=1

∑
|u|=k µkb

−k(µ−1
k |Xu|)α∑tn

k=1 µk

≤µα−1
tn∑
k=1

∑
|u|=k

b−kµ1−α
k |Xu|α,

where µ =
∑∞

k=1 µk. We are going to take a decreasing sequence µk = k−2 so that µ < ∞.
Therefore, for any θ > 0,

P(Z̄n(
√
nA)− ν(A) ≥ ∆)

≤P

µα−1
tn∑
k=1

∑
|u|=k

b−kµ1−α
k |Xu|α ≥ [δ(IA(p)− η)

√
n]α

+ C1e
−c9nα/2

≤e−
θ

µα−1 δ
α(IA(p)−η)αnα/2E

exp{θ
tn∑
k=1

∑
|u|=k

b−kµ1−α
k |Xu|α}

+ C1e
−c9nα/2 . (4.27)

We then show that for θ > 0 sufficiently small such that supk≥1 θb
−kk2(α−1) ≤ λ/2, there exists

cλ > 0 such that

E

exp{θ
tn∑
k=1

∑
|u|=k

b−kµ1−α
k |Xu|α}

 ≤ ecλθt2α−1
n .

In fact, by independence,

E

exp{θ
tn∑
k=1

∑
|u|=k

b−kµ1−α
k |Xu|α}

 =

tn∏
k=1

∏
|u|=k

E
[
exp{θb−kk2(α−1)|Xu|α}

]

=

tn∏
k=1

∏
|u|=k

(
1 +

∫ ∞
0

θb−kk2(α−1)eθb
−kk2(α−1)xP(|Xu|α ≥ x)dx

)
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The tail distribution of X shows that P(|X| ≥ x) ≤ c11e
−λxα for any x ≥ 0. It follows that

E

exp{θ
tn∑
k=1

∑
|u|=k

b−kk2(α−1)|Xu|α}

 ≤ tn∏
k=1

∏
|u|=k

(
1 + c11

∫ ∞
0

θb−kk2(α−1)eθb
−kk2(α−1)x−λxdx

)

=

tn∏
k=1

∏
|u|=k

(
1 + c11

θb−kk2(α−1)

λ− θb−kk2(α−1)

)

≤ exp


tn∑
k=1

∑
|u|=k

c11
θb−kk2(α−1)

λ− θb−kk2(α−1)

 < ecλθt
2α−1
n .

Plugging it into (4.27) yields that

P(Z̄n(
√
nA)− ν(A) ≥ ∆) ≤ e−

θ
µα−1 δ

α(IA(p)−η)αnα/2+cλθt
2α−1
n + C1e

−c9nα/2 .

Recall that tn = O(log n). We have

lim sup
n→∞

1

nα/2
logP(Z̄n(

√
nA)− ν(A) ≥ ∆) ≤ −cα.

4.2 Proof of Theorem 1.4: step size has Gumbel tail distribution

In this section, we assume that the tail distribution of step size is of Gumbel’s type, in other words,

P(X ≥ x) ∼ e−ex
α

with α > 0, for x→∞. In what follows, we are devoted to demonstrating that
if IA is finite and continuous at p = ν(A) + ∆, then

lim
n→∞

n
− α

2(α+1) log
[
− logP

(
Z̄n(
√
nA)− ν(A) > ∆

)]
= (yαIA(p) log b)

α
α+1 , (4.28)

where yα = (1+α) logB
(1+α) logB−log b .

The ideas of proof are similar to that used in Section 4.1.2. However, we do not need to assume
B > b.

4.2.1 Lower bound of (4.28)

As stated in Section 4.1.2, for any sufficiently small δ > 0, there exist x0 ∈ R, ε, η > 0 such that

inf
|y−x0|≤η

ν(A− x) ≥ p+ δ, IA(p) < x0 − η < x0 ≤ IA(p) + ε.

Take d ≥ b an integer such that pd > 0. (Again, if B < ∞, then we choose d = B. If B = ∞, we
will let d→∞ later.) Let

tn =

⌊
tn

α
2(α+1) − 2 log n

log b

⌋
, sn =

⌊
log n+ tn log b

log d

⌋
∧ tn, yα(d) =

(1 + α) log d

(1 + α) log d− log b

where t > 0 will be determined later on. With these d, tn, sn, recall event Etn,d,b from (4.8). It
follows that

P(Z̄n(
√
nA)− ν(A) ≥ ∆) ≥ P(Z̄n(

√
nA)− ν(A) ≥ ∆; Etn,d,b). (4.29)

Define
M2 =

{
ζ ∈M : |ζ| = dsn + btn − bsn , ζ([(x0 − η)

√
n, (x0 + η)

√
n]) ≥ dsn

}
.
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We have for any ζ ∈M2,

1

|ζ|
∑
x∈ζ

ν(A− x√
n

) ≥ dsn

btn − bsn + dsn
inf

y∈[x0−η,x0+η]
ν(A− y) ≥ n

n+ 1
(p+ δ),

which, together with (5) of Lemmma 2.1, implies that for all n sufficiently large,

1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x) ≥ p+ δ/2.

Note that, Ztn ∈M2, given Etn,d,b. Consequently,

P(Z̄n(
√
nA) ≥ p; Etn,d,b)

≥
∑
ζ∈M2

P(Ztn = ζ; Etn,d,b)P
(
Z̄ζn−tn(

√
nA) ≥ p

)

≥
∑
ζ∈M2

P(Ztn = ζ; Etn,d,b)P

Z̄ζn−tn(
√
nA) ≥ 1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x)− δ/2


≥ P(Etn,d,b)(1− C1e

−C2|ζ|δ2/4),

where the last inequality follows from Lemma 2.2. As |ζ| ≥ btn , for n large enough,

P(Z̄n(
√
nA)− ν(A) ≥ ∆) ≥ 1

2
P(Etn,d,b). (4.30)

Recall that u∗ = (1, · · · , 1) with |u∗| = tn− sn. It remains to consider P(Etn,d,b), which by (4.10) is

P(Etn,d,b) ≥ pb
tn

b pd
sn

d Pt(Su ∈ [(x0 − η)
√
n, (x0 + η)

√
n], ∀u > u∗, |u| = tn). (4.31)

Let X = (x0yα(d) log b)
1

α+1 and t = Xα
log b . We suppose that for any ancestor of u∗: u � u∗,

Xu ∈
[
Xn

1
2(α+1) , Xn

1
2(α+1) +

η

2t
n

1
2(α+1)

]
,

and that for any descendant of u∗: u∗ ≺ u s.t. |u| ≤ tn,

Xu ∈
[(
Xαn

α
2(α+1) − (|u|+ sn − tn) log d

) 1
α
,
(
Xαn

α
2(α+1) − (|u|+ sn − tn) log d

) 1
α

+
η

2t
n

1
2(α+1)

]
.

This ensures that for any descendant u of u∗ at the tn-th generation, its position Su satisfies∣∣∣∣∣Su −
[

(tn − sn)Xn
1

2(α+1) +

sn∑
k=1

(
Xα − kn−

α
2(α+1) log d

) 1
α
n

1
2(α+1)

] ∣∣∣∣∣ ≤ η√n/2,
where as n→∞, tn ≈ tn

α
2(α+1) , sn ≈ log b

log d tn and

(tn − sn)Xn
1

2(α+1) +

sn∑
k=1

(
Xα − kn−

α
2(α+1) log d

) 1
α
n

1
2(α+1)

=
√
n

[(
1− log b

log d

)
tX +

∫ log b
log d

t

0
(Xα − x log d)

1
αdx+ on(1)

]
=
√
n(x0 + on(1)).
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So for all n large enough, we have

Su ∈ [(x0 − η)
√
n, (x0 + η)

√
n], ∀u∗ ≺ u, |u| = tn.

As a result,

Pt(Su ∈ [(x0 − η)
√
n, (x0 + η)

√
n], ∀u∗ ≺ u, |u| = tn)

≥P
(
X ∈ [Xn

1
2(α+1) ,Xn

1
2(α+1) +

η

2t
n

1
2(α+1) ]

)tn−sn
×

sn∏
k=1

P
(
X ∈

[(
Xαn

α
2(α+1) − k log d

) 1
α
,
(
Xαn

α
2(α+1) − k log d

) 1
α

+
η

2t
n

1
2(α+1)

])dk

≥
(

1

2

)dsn+1

ctn−sn12 exp

{
−(tn − sn)eX

αn
α

2(α+1) −
sn∑
k=1

dkeX
αn

α
2(α+1)−k log d

}
.

Plugging it into (4.31) implies that

P(Etn,d,b) ≥ pb
tn

b pnb
tn

d

(
1

2

)dbtn
ctn12 exp

{
−tneX

αn
α

2(α+1)

}
= exp

{
−(1 + on(1))tne

Xαn
α

2(α+1)

}
.

Going back to (4.30), we hence conclude the lower bound by letting d ↑ B.

4.2.2 Upper bound

Let Bn := [(−IA(p) + η)
√
n, (IA(p)− η)

√
n], tn =

⌊
tn

α
2(α+1)

⌋
with some t > 0. Recall (4.13). One

sees that for any ζ ∈M and n large enough,{
ζ(Bc

n)

|ζ|
≤ δ/2

}
⊂

 1

|ζ|
∑
x∈ζ

νn−tn(
√
nA− x) ≤ p− δ/4

 .

Again, similar to (4.14), we thus have

P(Z̄n(
√
nA)− ν(A) ≥ ∆) ≤ P(Ztn(Bc

n) ≥ δbtn/2) + C1e
−c9btn . (4.32)

Here we need to treat P(Ztn(Bc
n) ≥ δbtn/2) separately in the two following cases.

Upper bound: B =∞ In this case, yα = 1. By Markov inequality, we have

P(Ztn(Bc
n) ≥ δbtn/2) ≤2

δ
b−tnE[Ztn(Bc

n)]

=
4

δ
b−tnmtnνtn((IA(p)− η)

√
n,∞).

In view of (2) of Lemma A.2, one has immediately,

lim inf
n→∞

1

n
α

2(α+1)

log
[
− logP(Ztn(Bc

n) ≥ δbtn/2)
]
≥
(
IA(p)− η

t

)α
.

In (4.32), btn = exp{t log bn
α

2(α+1) }. We choose t = (IA(p)−η)
α
α+1

(log b)
1

α+1
so that t log b =

(
IA(p)−η

t

)α
. We

thus conclude that

lim inf
n→∞

1

n
α

2(α+1)

log
[
− logP(Z̄n(

√
nA)− ν(A) ≥ ∆)

]
≥ ((IA(p)− η)yα log b)

α
2(α+1)) .
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Upper bound: b ≤ B <∞ Following the same idea applied in (4.16), we take

sn = b tn log b− log n

logB
c, k0 = tn − sn,

and reconstruct the special subtree t∗J . It follows from the Gumbel tail distribution of X that
there exists c13 ≥ 1 such that

P(|X| ≥ x) ≤ c13e
−exα , and ∀x ≥ 0.

Similarly to (4.16), (4.18), (4.20) and (4.19), one sees that

P(Ztn(Bc
n) ≥ δbtn/2)

≤ 2BtnBsn

c13tnB
sne−e

nα

+ ctnB
sn

13 ntnB
sn

max
x∗u≥0,u∈t∗J∑tn
k=1

x̄∗
k
≥I1(n)

exp

−∑
u∈t∗J

e(x∗u)α


 . (4.33)

Note that

∑
u∈t∗J

e(x∗u)α ≥
tn−sn∑
k=1

∑
|u|=k

e(x∗u)α +

sn∑
k=1

∑
|u|=k+tn−sn

e(x∗u∨M)α −
sn∑
k=1

BkeM
α
.

whereM ≥ 0 is chosen so that x 7→ ex
α

is convex on [M,∞). Immediately,
∑
|u|=k+tn−sn e

(x∗u∨M)α ≥

Bke
(
∑
x∗u∨M
Bk

)α
. So,

∑
u∈t∗J

e(x∗u)α ≥
tn−sn∑
k=1

e(x̄∗k)α +

sn∑
k=1

Bke(x̄∗k+tn−sn )α −
sn∑
k=1

BkeM
α
.

where x̄∗k =
∑
|u|=k x

∗
u

B(k−tn+sn)+
. Let Ξn := max{(x̄∗k)α + (k − tn + sn)+ logB; 1 ≤ k ≤ tn}. Then,∑

u∈t∗J

e(x∗u)α ≥ eΞn −Bsn+1eM
α
.

Plugging it into (4.33) implies that

P(Ztn(Bc
n) ≥ δbtn/2) ≤ e−(1+on(1))nα + 2(c13Bn)tnB

sn
max

x∗u≥0,u∈t∗J∑tn
k=1

x̄∗
i
≥I(n)

exp{−eΞn +Bsn+1eM
α}. (4.34)

Note that {
∑tn

k=1 x̄
∗
k ≥ I1(n)} implies

I1(n) ≤
tn∑
k=1

x̄∗k ≤ (tn − sn)Ξ1/α
n +

sn∑
k=1

(
Ξn − k logB

)1/α
,

and Ξn ≥ sn logB = (t log b+ on(1))n
α

2(α+1) . Let Kn := Ξnn
− α

2(α+1) . Then,

(IA(p)− η) + on(1) ≤
(

1− log b

logB
+ on(1)

)
tK1/α

n +

∫ t log b/ logB

0

(
Kn − x logB

)1/α

+
dx

≤
(

1− log b

logB
+ on(1)

)
tK1/α

n +
αK

1+1/α
n

(1 + α) logB
.
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In view of the right hand side of (4.34) where tnB
sn ≤ tn

n b
tn , we take t such that tn log b ≤ Ξn. In

other words, t ≤ Kn/ log b. This choice entails that

K1+1/α
n

(
logB − log b

logB log b
+ on(1) +

α

(1 + α) logB

)
≥ IA(p)− η + on(1).

Thus, setting X = [(IA(p)− η)yα log b]
α
α+1 and t = X

log b , we have

Kn ≥ X (1 + on(1)), btn ≤ eXn
α

2(α+1)
and tnB

sn log n� eXn
α

2(α+1)
.

As Ξn = Knn
α

2(α+1) , applying this to (4.34) yields that for sufficiently large n,

P(Ztn(Bc
n) ≥ δbtn/2) ≤e−(1+on(1))nα + 2(c13Bn)tnB

sn
exp

{
−eX (1+on(1))n

α
2(α+1)

+ c14tnB
sn

}
≤e−(1+on(1))en

α

+ exp

{
−(1 + on(1))e[(IA(p)−η)yα log b]

α
α+1 n

α
2(α+1)

}
.

Therefore,

lim inf
1

n
α

2(α+1)

log[− logP(Ztn(Bc
n) ≥ δbtn/2)] ≥ [(IA(p)− η)yα log b]

α
α+1 .

Going back to (4.32), as btn = eXn
α

2(α+1)
, we conclude that

lim inf
1

n
α

2(α+1)

log[− logP(Z̄n(
√
nA)− ν(A) ≥ ∆)] ≥ [(IA(p)− η)yα log b]

α
α+1 ,

which ends the proof of the upper bound of Theorem 1.4 by letting η ↓ 0. �
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A Appendix

Lemma A.1. If L0 < Λ̄(p1) and Lk+1 = F (Lk) = α infu∈R(− log p1 + γ(u) − uLk) + Lk for any
k ≥ 0, then the sequence (Lk)k≥0 is non-decreasing and

lim
k→∞

Lk = Λ̄(p1) = inf
a>0

γ(a)− log p1

a
.

Proof. This sequence (Lk)k≥1 is non-decreasing, so its limit exists. In fact, if L ∈ (0,Λ−1(log 1
p1

)),
we have F (L) ≥ L, in other words,

inf
u∈R
{γ(u/a)− Lu/a}+ log

1

p1
= inf

u∈R
{γ(u)− Lu}+ log

1

p1
≥ 0.

Note that the rate function γ is convex, so we only need that γ′(u) = L and the infimum is
log 1

p1
− Λ(L) ≥ 0.

Note that if Lk ≤ θ := Λ̄(p1), log 1
p1

= Λ(θ), and

Lk+1 = α(Λ(θ)− Λ(Lk)) + Lk ≤ αΛ′(θ)(θ − Lk) + Lk ≤ θ.
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Hence, limk→∞ Lk = L∞ ≤ θ. Here αΛ′(θ) ≤ 1 because we need to take α > 0 small so that

αγ(1/α)− α logm ≥ inf
a>0

γ(a)− log p1

a
= θ.

In fact, either 1/α ≥ supt∈R+
Λ′(t) ≥ Λ′(θ), or there exists t1/α > 0 such that 1/α = Λ′(t1/α) and

then γ(1/α) =
tt/α
α − Λ(t1/α). This follows that

αγ(1/α)− α logm = t1/α − α(Λ(t1/α) + logm) ≥ θ.

As Λ(t) ≥ 0, we have t1/α > θ. Consequently, Λ′(θ) ≤ Λ′(t1/α) = 1/α.

On the other hand, as L0 ≤ Lk ≤ θ,

Lk+1 − Lk = α(Λ(θ)− Λ(Lk)) ≥ αΛ′(Lk)(θ − Lk) ≥ αΛ′(L0)(θ − Lk) ≥ 0.

This shows that θ − Lk → 0. �

The following lemma concerns large deviation probabilities of sums of independent random
variables. The results are possibly well-known to some experts or implicitly contained in some
articles.

Lemma A.2. Suppose that {Xi}i≥1 is a sequence of i.i.d. random variables, having the same
distribution as X. X is symmetric.

(1) If P(X ≥ x) = Θ(1)e−λx
α

as x→∞ with some λ > 0 and α > 1, then for a > 0, and for a

sequence of integers (tn) such that tn = o(n
1
3 ) and tn →∞, we have

lim sup
n→∞

tα−1
n

nα/2
logP

(
tn∑
i=1

Xi ≥ a
√
n

)
≤ −λaα.

(2) If P(X ≥ x) = Θ(1)e−e
xα

as x→∞ with some α > 0, then for any a > 0 and any sequence

tn ↑ ∞ such that tn = o
( √

n

(logn)2/α+1

)
,

lim inf
n→∞

tαn
nα/2

log

[
− logP

(
tn∑
i=1

Xi ≥ a
√
n

)]
≥ aα.

Proof. It suffices to consider P
(∑tn

i=1 |Xi| ≥ a
√
n
)
. Observe that

P

(
tn∑
i=1

|Xi| ≥ a
√
n

)
≤ P

(
sup

1≤i≤tn
|Xi| ≥ n

)
+ P

(
tn∑
i=1

|Xi| ≥ a
√
n, sup

1≤i≤tn
|Xi| < n

)
. (A.1)

Proof of (1): Note that there exists c15 > 0 such that for any x ≥ 0,

P(|X| ≥ x) ≤ c15e
−λxα .

Apparently,

P
(

sup
1≤i≤tn

|Xi| ≥ n
)
≤ tnP(|X| ≥ n) ≤ c14tne

−λnα . (A.2)
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Meanwhile,

P

(
tn∑
i=1

|Xi| ≥ a
√
n, sup

1≤i≤tn
|Xi| < n

)

=
∑

xi∈[0,n)∩N,i=1,··· ,tn

P

(
tn∑
i=1

|Xi| ≥ a
√
n, sup

1≤i≤tn
|Xi| < n, |Xi| ∈ [xi, xi + 1)

)
≤

∑
∑tn
i=1

xi≥a
√
n−tn;

xi∈[0,n)∩N,i=1,··· ,tn

P (|Xi| ∈ [xi, xi + 1], ∀1 ≤ i ≤ tn)

≤
∑

∑tn
i=1

xi≥a
√
n−tn;

xi∈[0,n)∩N,i=1,··· ,tn

ctn15 exp

{
−λ

tn∑
i=1

xαi

}

≤
∑

∑tn
i=1

xi≥a
√
n−tn;

xi∈[0,n)∩N,i=1,··· ,tn

ctn15 exp

{
−λ(a

√
n− tn)α

tα−1
n

}

≤ (nc15)tn exp

{
−λ(a

√
n− tn)α

tα−1
n

}
, (A.3)

where in the last inequality we use the fact that the convexity of mapping x 7→ xα for α > 1
implies

tn∑
i=1

xαi ≥ tn

(∑tn
i=1 xi
tn

)α
≥ (a

√
n− tn)α

tα−1
n

.

Plugging (A.2) and (A.3) into (A.1), we obtain that

lim sup
n→∞

tα−1
n

nα/2
logP

(
tn∑
i=1

|Xi| ≥ a
√
n

)
≤ −λaα,

which suffices to conclude (1) of Lemma A.2.
Proof of (2): Similarly, for any ε > 0 there exists some constant c16 ≥ 1 such that

P

(
tn∑
i=1

|Xi| ≥ a
√
n

)
≤ c15tne

−enα + P

(
tn∑
i=1

|Xi| ≥ a
√
n, sup

1≤i≤tn
|Xi| < n

)
≤ c15tne

−enα + (c16n)tn exp

{
−(1− ε)e

(
a
√
n

tn

)α}
, (A.4)

where we use the fact

tn∑
i=1

ex
α
i ≥ exp

{
max

1≤i≤tn
xαi

}
≥ exp

{(∑tn
i=1 xi
tn

)α}
.

Consequently,

lim inf
n→∞

tαn
nα/2

log

[
− logP

(
tn∑
i=1

|Xi| ≥ a
√
n

)]
≥ aα.

We have completed the proof. �
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