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Bismut-Elworthy-Li formulae for Bessel processes

Henri Elad Altman ∗

Université Pierre et Marie Curie, LPMA, 4 Pl. Jussieu, 75005 Paris, France

Abstract

In this article we are interested in the differentiability property of the Markovian semi-
group corresponding to the Bessel processes of nonnegative dimension. More precisely,
for all δ ≥ 0 and T > 0, we compute the derivative of the function x 7→ P δ

TF (x), where
(P δ

t )t≥0 is the transition semi-group associated to the δ - dimensional Bessel process, and
F is any bounded Borel function on R+. The obtained expression shows a nice interplay
between the transition semi-groups of the δ - and the (δ+2)-dimensional Bessel processes.
As a consequence, we deduce that the Bessel processes satisfy the strong Feller property,
with a continuity modulus which is independent of the dimension. Moreover, we provide
a probabilistic interpretation of this expression as a Bismut-Elworthy-Li formula.

1 Introduction

Bessel processes are a one-parameter family of nonnegative diffusion processes with a sin-
gular drift, which present a reflecting behavior when they hit the origin. The smaller
the parameter (called dimension), the more intense the reflection. Hence, studying the
dynamics of these processes is a non-trivial problem, especially when the dimension is
small. Despite these apparent difficulties, Bessel processes have remarkably nice proper-
ties. Therefore they provide an instructive insight in the study of stochastic differential
equations (SDEs) with a singular drift, as well as the study of reflected SDEs.

For all x ≥ 0 and δ ≥ 0, the squared Bessel process of dimension δ started at x2 is the
unique strong solution of the equation:

Xt = x2 + 2

∫ t

0

√

XsdBs + δt. (1)

Such a process X is nonnegative, and the law of its square-root ρ =
√
X is, by definition,

the δ-dimensional Bessel process started at x (see [9], section XI, or Chapter 3 of [13] for
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an introduction to Bessel processes). The process ρ satisfies the following SDE before its
first hitting time T0 of 0:

∀t ∈ [0, T0), ρt = x+
δ − 1

2

∫ t

0

ds

ρs
+Bt.

This is an SDE with non-Lipschitz continuous drift term given by the function x 7→
δ−1
2

1
x on (0,+∞). Note that when δ < 1, this function is nondecreasing on R+, and as δ

decreases this ”wrong” monotonicity becomes more and more acute. As a consequence,
for δ small, the process ρ is not mean-square differentiable, so that classical criteria for
the Bismut-Elworthy-Li formula to hold (see [4], Section 1.5, and Section 2 below) do not
apply here. Hence, one would not even expect such a formula to hold for δ < 1. For
instance, even continuity of the flow is not known in this regime, see Remark 10 below.

The aim of the present paper is to study the derivative in space of the family of
transition kernels (P δ

T )T≥0 of the δ-dimensional Bessel process. In a first part, we show
that this derivative can be expressed in terms of the transition kernels of the δ - and
the (δ + 2)-dimensional Bessel processes. More precisely, we prove that, for all function
F : R+ → R bounded and Borel, all T > 0 and all x ≥ 0, we have:

d

dx
P δ
TF (x) =

x

T

(

P δ+2
T F (x)− P δ

TF (x)
)

. (2)

As a consequence, the Bessel processes satisfy the strong Feller property uniformly in
δ. In a second part, we interpret the above result probabilistically as a Bismut-Elworthy-
Li formula. More precisely, given a realization ρ of the Bessel process through the SDE
(1), we introduce the derivative ηt of ρt with respect to the initial condition x, and show
that when δ > 0, the stochastic integral

∫ t
0 ηsdBs is well-defined as an Lp martingale, for

some p > 1 depending on δ. Moreover, it turns out that
∫ T
0 ηsdBs is (up to a constant)

the Radon-Nikodym derivative of the (δ+2)-dimensional Bessel process over the interval
[0, T ] w.r.t. the δ-dimensional one. As a consequence, we deduce that the above equation
can be rewritten:

d

dx
P δ
TF (x) =

1

T
E

[

F (ρt(x))

(∫ t

0
ηs(x)dBs

)]

(3)

which is an apparition, in an unexpected context, of the well-known Bismut-Elworthy-Li
formula (see [7] for a precise statement and proof of the Bismut-Elworthy-Li formula in
the case of diffusions with smooth coefficients).

One surprising feature is that, while (2) is very easy to prove whatever the value of
δ ≥ 0, on the other hand, the process (

∫ t
0 ηs(x)dBs)t≥0 has less and less finite moments

as δ decreases, which makes the proof of (3) more involved for small δ. In particular, this
process is not in L2 for δ < 2(

√
2− 1), and when δ = 0, we do not even know whether the

stochastic integral
∫ t
0 ηs(x)dBs is well-defined as a local martingale.

This article was originally motivated by the hope to prove the strong Feller property
for some singular reflected SDEs or SPDEs. Recently, several works have brought about
new techniques to prove the strong Feller property for singular SPDEs. Thus, in [10],
the authors established this property for the P (Φ)2 equation, and in [8], the authors
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established it for a large class of singular semilinear SPDEs. The fact, mentioned above,
that blowup of η does not affect the strong Feller property of Bessel processes is reminiscent
of the latter article, where the setting used to prove the strong Feller property allows
blowup in finite time of the solution. Also, we hope that the techniques used in the
present article might give inspiration to treat more general cases. Note that, even in
the present context, where many computations can be performed explicitly, we still have
an open problem concerning the Strong Feller bounds for Bessel processes of dimension
δ ≤ 2(

√
2− 1) (see Remark 14 below).

The plan of our paper is as follows. In Section 2 we recall the classical Bismut-
Elworthy-Li formula for diffusions in R with a dissipative drift, and show how this implies
the strong Feller property. In Section 3 we recall the definition of Bessel processes and
their basic properties. In Section 4 we compute the derivative of the Bessel semi-group. In
section 5 we establish the differentiability of the Bessel flow at any given point in R∗

+, and
we give an expression for (some modification of) the derivative. In Section 6, we show that
this derivative is not bounded in time when δ < 1. We prove, however, that it is linked to
an interesting martingale corresponding to the family of Radon-Nikodym derivatives of
the (δ +2)-dimensional Bessel process w.r.t.the δ-dimensional one. In Section 7 we prove
the Bismut-Elworthy-Li formula for the Bessel processes of dimension δ > 0 .

2 Classical Bismut-Elworthy-Li formula for one-

dimensional diffusions

In this section we recall very briefly the Bismut-Elworthy-Li fomula in the case of one-
dimensional diffusions, and the way this formula implies the strong Feller property.

Consider an SDE on R of the form :

dXt = b(Xt)dt+ dBt, X0 = x (4)

where b : R → R is smooth and satisfies:

|b(x)− b(y)| ≤ C|x− y|, x, y ∈ R

b′(x) ≤ L, x ∈ R (5)

where C > 0, L ∈ R are some constants. By the classical theory of SDEs, for all x ∈
R, there exists a unique continuous, square-integrable process (Xt(x))t≥0 satisfying (4).
Actually, by the Lipschitz assumption on b, there even exists a bi-continuous process
(Xt(x))t≥0,x∈R such that, for all x ∈ R, (Xt(x))t≥0 solves (4).

Let x ∈ R. Consider the solution (ηt(x))t≥0 to the variation equation obtained by
formally differentiating (4) with respect to x:

dηt(x) = b′(Xt)ηt(x)dt, η0(x) = 1

Note that this is a (random) linear ODE with explicit solution given by:
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ηt(x) = exp

(∫ t

0
b′(Xs)ds

)

It is easy to prove that, for all t ≥ 0 and x ∈ R, the map y → Xt(y) is a.s. differentiable
at x and:

dXt

dx
a.s.
= ηt(x) (6)

Remark 1. Note that ηt(x) > 0 for all t ≥ 0 and x ∈ R. This reflects the fact that, for
all x ≤ y, by a comparison theorem for SDEs (see Theorem 3.7 in Chapter IX in [9]), one
has Xt(x) ≤ Xt(y) .

Recall that a Markovian semi-group (Pt)t≥0 on a Polish space E is said to satisfy the
strong Feller property if, for all t > 0 and ϕ : E → R bounded and Borel, the function
Ptϕ : E → R defined by:

Ptϕ(x) =

∫

ϕ(y)Pt(x, dy), x ∈ R

is continuous.
The strong Feller property is very useful in the study of SDEs and SPDEs, namely for

the proof of ergodicity (see, e.g., the monographs [4], [5] and [13], as well as the recent
articles [8] and [10], for applications of the strong Feller property in the context of SPDEs).

Let (Pt)t≥0 be the Markovian semi-group associated to the SDE (9). We are interested
in proving the strong Feller property for (Pt)t≥0. Note that, by assumption (5), ηt(x) ≤ eLt

for all t ≥ 0 and x ∈ R. Therefore, by (6) and the dominated convergence theorem, for
all ϕ : R → R differentiable with a bounded derivative, one has:

d

dx
(Ptϕ) (x) =

d

dx
E [ϕ(Xt(x))] = E [ϕ(Xt(x))ηt(x)]

As a consequence, for all t ≥ 0, Pt preserves the space C1
b (R) of bounded, continuously

differentiable functions on R with a bounded derivative. It turns out that, actually, for
all t > 0, Pt maps the space Cb(R) of bounded and continuous functions into C1

b (R). This
is a consequence of the following, nowadays well-known, result:

Theorem 1 (Bismut-Elworthy-Li formula). For all T > 0 and ϕ ∈ Cb(R), the function

PTϕ is differentiable and we have:

d

dx
PTϕ(x) =

1

T
E

[

ϕ(XT (x))

∫ T

0
ηs(x)dBs

]

(7)

Proof. See [7], Theorem 2.1, or [13], Lemma 5.17 for a proof.

Corollary 1. The semi-group (Pt)t≥0 satisfies the strong Feller property and, for all

T > 0 and ϕ : R → R bounded and Borel, one has:

∀x, y ∈ R, |PTϕ(x)− PTϕ(y)| ≤ eL
||ϕ||∞√
T ∧ 1

|x− y|, (8)

where || · ||∞ denotes the supremum norm.
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The following remark is crucial.

Remark 2. Inequality (8) involves only the dissipativity constant L, not the Lipschitz
constant C. This makes the Bismut-Elworthy-Li formula very useful in the study of
SPDEs with a dissipative drift.

Proof of Corollary 1. By approximation, it suffices to prove (8) for ϕ ∈ Cb(R). For such
a ϕ and for all T > 0, by the Bismut-Elworthy-Li formula, one has:

∣
∣
∣
∣

d

dx
PTϕ(x)

∣
∣
∣
∣
≤ ||ϕ||∞

T
E

[∣
∣
∣
∣

∫ T

0
ηs(x)dBs

∣
∣
∣
∣

]

Remark that the process (ηt(x))t≥0 is locally bounded since it is dominated by (eLt)t≥0, so

that the stochastic integral
(∫ t

0 ηs(x)dBs

)

t≥0
is an L2 martingale. Hence using Jensen’s

inequality as well as Itô’s isometry formula, we obtain:

E

[

|
∫ T

0
ηs(x)dBs|

]

≤
√

E

[∫ T

0
ηs(x)2ds|

]

≤

√
∫ T

0
e2Ls ds

and the last quantity is bounded by
√
e2LT = eL

√
T for all T ∈ (0, 1]. Therefore, we

deduce that:

∀x ∈ R,

∣
∣
∣
∣

d

dx
PTϕ(x)

∣
∣
∣
∣
≤ eL

||ϕ||∞√
T

so that:

∀x, y ∈ R, |PTϕ(x)− PTϕ(y)| ≤ eL
||ϕ||∞√

T
|x− y|

for all ϕ ∈ Cb(R) and T ∈ (0, 1]. The case T > 1 follows at once by using the semi-group
property of (Pt)t≥0:

|PTϕ(x)− PTϕ(y)| = |P1 (PT−1ϕ) (x)− P1 (PT−1ϕ) (y)|

≤ eL
||PT−1ϕ||∞√

1
|x− y|

≤ eL||ϕ||∞|x− y|

The claim follows.

Remark 3 (A brief history of the Bismut-Elworthy-Li formula). A particular form of
this formula had originally been derived by J.M. Bismut in [2] using Malliavin calculus in
the framework of the study of the logarithmic derivative of the fundamental solution of
the heat equation on a compact manifold. In [7], K.D. Elworthy and X.-M. Li generalized
this formula to a large class of diffusion processes on manifolds with smooth coefficients,
and gave also variants of this formula to higher-order derivatives.
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The key property allowing the analysis performed in this section is the dissipativity
property (5). Without this property being true, one would not even expect the Bismut-
Elworthy-Li formula to hold. However, in the sequel, we shall prove that results such as
Theorem 1 and Corollary 1 above can also be obtained for a family of diffusions with a
non-dissipative drift (informally L = +∞) , namely for the Bessel processes of dimension
smaller than 1.

3 Bessel processes: notations and basic facts

In the sequel, for any subinterval I of R+, C(I) will denote the set of continuous functions
I → R. We shall consider this set endowed with the topology of uniform convergence on
compact sets, and will denote by B(C(I)) the corresponding Borel σ-algebra.

Consider the canonical measurable space (C(R+),B(C(I))) endowed with the canon-
ical filtration (Ft)t≥0. Let (Bt)t≥0 be a standard linear (Ft)t≥0-Brownian motion. For
all x ≥ 0 and δ ≥ 0, there exists a unique continuous, predictable, nonnegative process
(Xδ

t (x))t≥0 satisfying:

Xt = x2 + 2

∫ t

0

√

XsdBs + δt. (9)

(Xδ
t (x))t≥0 is a squared Bessel process of dimension δ started at x2, and the process

ρδt (x) :=
√

Xδ
t (x) is a δ-dimensional Bessel process started at x. In the sequel, we will

also write the latter process as (ρt(x))t≥0, or ρ, when there is no risk of ambiguity.
We recall the following monotonicity property of the family of Bessel processes:

Lemma 1. For all couples (δ, δ′), (x, x′) ∈ R+ such that δ ≤ δ′ and x ≤ x′, we have, a.s.:

∀t ≥ 0, ρδt (x) ≤ ρδ
′

t (x
′).

Proof. By Theorem (3.7) in [9], Section IX, applied to the equation (9), the following
property holds a.s.:

∀t ≥ 0, Xδ
t (x) ≤ Xδ′

t (x′).

Taking the square root on both sides above, we deduce the result.

For all a ≥ 0, let Ta(x) denote the (Ft)t≥0 stopping time defined by:

Ta(x) := inf{t > 0, ρt(x) ≤ a}
(we shall also write Ta). We recall the following fact, (see e.g. Proposition 3.6 of [13]):

Proposition 1. The following dichotomy holds:

• T0(x) = +∞ a.s., if δ ≥ 2,

• T0(x) < +∞ a.s., if 0 ≤ δ < 2.

Applying Itô’s lemma to ρt =
√

Xδ
t (x), we see that ρ satisfies the following relation

on the interval [0, T0):

∀t ∈ [0, T0), ρt = x+
δ − 1

2

∫ t

0

ds

ρs
+Bt. (10)
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4 Derivative in space of the Bessel semi-group

Let δ ≥ 0. We denote by P δ
x the law, on (C(R+),B(C(R+))), of the δ-dimensional Bessel

process started at x, and we write Eδ
x for the corresponding expectation operator. We

also denote by (P δ
t )t≥0 the family of transition kernels associated with the δ-dimensional

Bessel process, defined by
P δ
t F (x) := Eδ

x(F (ρt))

for all t ≥ 0 and all F : R+ → R bounded and Borel. The aim of this section is to prove
the following:

Theorem 2. For all T > 0 and all F : R+ → R bounded and Borel, the function

x → P δ
t F (x) is differentiable on R+, and for all x ≥ 0:

d

dx
P δ
TF (x) =

x

T

(

P δ+2
T F (x)− P δ

TF (x)
)

. (11)

In particular, the function x → P δ
t F (x) satisfies the Neumann boundary condition at 0:

d

dx
P δ
TF (x)

∣
∣
∣
x=0

= 0.

Remark 4. By Theorem 2, the derivative of the function x 7→ P δ
TF (x) is a smooth

function of P δ+2
T F (x) and P δ

TF (x). Hence, reasoning by induction, we deduce that the
function x 7→ P δ

TF (x) is actually smooth on R+.

Proof. The proof we propose here relies on the explicit formula for the transition semi-
group of the Bessel processes. We first treat the case δ > 0.

Given δ > 0, let ν := δ
2 − 1, and denote by Iν the modified Bessel function of index ν.

We have (see, e.g., Chap. XI.1 in [9]) :

P δ
t F (x) =

∫ ∞

0
pδT (x, y)F (y)dy

where, for all y ≥ 0:

pδt (x, y) =
1

T

(y

x

)ν
y exp

(

−x2 + y2

2T

)

Iν

(xy

T

)

, if x > 0,

pδt (0, y) =
2−νT−(ν+1)

Γ(ν + 1)
y2ν+1 exp

(

− y2

2T

)

where Γ denotes the gamma function. By the power series expansion of the function Iν
we have, for all x, y ≥ 0:

pδT (x, y) =
1

T
exp

(

−x2 + y2

2T

)

p̃δT (x, y) (12)

with:

p̃δT (x, y) :=
∞∑

k=0

y2k+2ν+1 x2k (1/2T )2k+ν

k! Γ(k + ν + 1)
.
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Note that p̃δT (x, y) is the sum of a series with infinite radius of convergence in x, hence
we can compute its derivative by differentiating under the sum. We have:

∂

∂x
p̃δT (x, y) =

∂

∂x

(
∞∑

k=0

x2k y2k+2ν+1 (1/2T )2k+ν

k! Γ(k + ν + 1)

)

=

∞∑

k=0

2k x2k−1 y2k+2ν+1 (1/2T )2k+ν

k! Γ(k + ν + 1)

=
x

T

∞∑

k=1

x2k−2 y2k+2ν+1 (1/2T )2k+ν−1

(k − 1)! Γ(k + ν + 1)
.

Hence, performing the change of variable j = k− 1, and remarking that ν + 1 = δ+2
2 − 1,

we obtain:

∂

∂x
p̃δT (x, y) =

x

T

∞∑

j=0

x2(j+1)−2 y2(j+1)+2ν+1 (1/2T )2(j+1)+ν−1

j! Γ((j + 1) + ν + 1)

=
x

T

∞∑

j=0

x2j y2j+2(ν+1)+1 (1/2T )2j+(ν+1)

j! Γ(j + (ν + 1) + 1)

=
x

T
p̃δ+2
T (x, y).

As a consequence, differentiating equality (12) with respect to x, we obtain:

∂

∂x
pδT (x, y) =

(

− x

T
p̃δT (x, y) +

∂

∂x
p̃δT (x, y)

)
1

T
exp

(

−x2 + y2

2T

)

=
x

T

(

−pδT (x, y) + pδ+2
T (x, y)

)

.

Hence, we deduce that the function x 7→ P δ
TF (x) is differentiable, with a derivative given

by (11).
Now suppose that δ = 0. We have, for all x ≥ 0:

P 0
TF (x) = exp

(

− x2

2T

)

F (0) +

∫ ∞

0
pT (x, y)F (y)dy (13)

where, for all y ≥ 0:

pT (x, y) =
1

T
exp

(

−x2 + y2

2T

)

p̃T (x, y)

with:

p̃T (x, y) := x I1

(xy

T

)

=
∞∑

k=0

x2k+2 (y/2T )2k+1

k!(k + 1)!
.
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Here again, we can differentiate the sum term by term, so that, for all x, y ≥ 0:

∂

∂x
p̃T (x, y) =

x

T

∞∑

k=0

x2ky2k+1(1/2T )2k

k!2

=
x

T
p̃2T (x, y).

Therefore, for all x, y ≥ 0, we have:

∂

∂x
pT (x, y) =

(

− x

T
p̃T (x, y) +

∂

∂x
p̃T (x, y)

)
1

T
exp

(

−x2 + y2

2T

)

=
x

T

(
−p̃T (x, y) + p̃2T (x, y)

) 1

T
exp

(

−x2 + y2

2T

)

=
x

T

(
−pT (x, y) + p2T (x, y)

)

Hence, differentiating (13) with respect to x, and using the dominated convergence theo-
rem to differentiate inside the integral, we obtain:

∂

∂x
P 0
TF (x) = − x

T
exp(− x2

2T
)F (0) +

x

T

∫ ∞

0

(
−pT (x, y) + p2T (x, y)

)
F (y)dy

=
x

T

(
−P 0

TF (x) + P 2
TF (x)

)
,

which yields the claim.

Remark 5. Formula (11) can also be derived using the Laplace transform of the one-
dimensional marginals of the squared Bessel processes. Indeed, denote by (Qδ

t )t≥0 the
family of transition kernels of the δ-dimensional squared Bessel process. Then for all
δ ≥ 0, x ≥ 0, T > 0, and all function f of the form f(x) = exp(−λx) with λ ≥ 0, one has:

Qδ
T f(x) = exp

(

− λx

1 + 2λT

)

(1 + 2λT )−δ/2

(see [9], Chapter XI, Cor. (1.3)). For such test functions f , we check at once that the
following equality holds:

d

dx
Qδ

T f(x) =
1

2T

(

Qδ+2
T f(x)−Qδ

T f(x)
)

.

By linearity and by the Stone-Weierstrass theorem, we deduce that this equality holds
for all bounded, continuous functions f . Then an approximation argument enables to
deduce the equality for all functions f : R+ → R Borel and bounded. Finally, remarking
that for all bounded Borel function F on R+ we have

P δ
TF (x) = Qδ

T f(x
2)

9



with f(x) := F (
√
x), we deduce that:

d

dx
P δ
TF (x) = 2x

d

dx
(Qδ

T f)(x
2)

=
x

T

(

Qδ+2
T f(x2)−Qδ

Tf(x
2)
)

=
x

T

(

P δ+2
T F (x)− P δ

TF (x)
)

which yields the equality (11).

Corollary 2. The semi-group (P δ
t )t≥0 has the strong Feller property. More precisely, for

all T > 0, R > 0, x, y ∈ [0, R] and F : R+ → R bounded and Borel, we have:

|P δ
TF (x)− P δ

TF (y)| ≤ 2R||F ||∞
T

|y − x|. (14)

Proof. By Theorem 2, for all x, y ∈ [0, R] such that x ≤ y, we have:

|P δ
t F (x)− P δ

t F (y)| =
∣
∣
∣
∣

∫ y

x

u

T

(

P δ+2
T F (u)− P δ

TF (u)
)

du

∣
∣
∣
∣

≤ 2||F ||∞
T

∫ y

x
u du

≤ 2R||F ||∞
T

|y − x|.

Remark 6. The bound (14) is in 1/T , which is not very satisfactory for T small. However,
in the sequel, we will improve this bound by getting a better exponent on T , at least for
δ ≥ 2(

√
2− 1) (see inequality (28) below).

5 Differentiability of the flow

In the following, we are interested in finding a probabilistic interpretation of Thm 2, in
terms of the Bismut-Elworthy-Li formula. To do so we study, for all δ ≥ 0, and all couple
(t, x) ∈ R+ × R∗

+, the differentiability at x of the function:

ρt : R+ → R+

y 7→ ρδt (y).

In this endeavour, we first need to choose an appropriate modification of the process
(ρt(x))t≥0,x>0. We have the following result:

Proposition 2. Let δ ≥ 0 be fixed. There exists a modification (ρ̃δt (x))x,t≥0 of the process

(ρδt (x))x,t≥0 such that, a.s., for all x, x′ ∈ R+ with x ≤ x′ , we have:

∀t ≥ 0, ρ̃δt (x) ≤ ρ̃δt (x
′). (15)
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Proof. For all q, q′ ∈ Q+, such that q ≤ q′, by Lemma 1, the following property holds a.s.:

∀t ≥ 0, ρδt (q) ≤ ρδt (q
′).

For all x ∈ R+, we define the process ρ̃δ(x) by:

∀t ≥ 0, ρ̃δt (x) := inf
q∈Q+,q≥x

ρδt (q).

Then (ρ̃δt (x))x,t≥0 yields a modification of the process (ρδt (x))x,t≥0 with the requested
property.

Remark 7. We may not have, almost-surely, joint continuity of all the functions t 7→
ρ̃t(x), x ≥ 0. Note however that, by definition, for all x ≥ 0, x ∈ Q, we have a.s.:

∀t ≥ 0, ρ̃t(x) = ρt(x),

so that, a.s., t 7→ ρ̃t(x) is continuous and satisfies:

∀t ∈ [0, T0(x)), ρ̃t(x) = x+
δ − 1

2

∫ t

0

ds

ρ̃s
+Bt.

As a consequence, by countability of Q, there exists an almost sure event A ∈ F on which,
for all x ∈ Q+, the function t 7→ ρ̃t(x) is continuous and satisfies:

∀t ∈ [0, T0(x)), ρ̃t(x) = x+
δ − 1

2

∫ t

0

ds

ρ̃s
+Bt.

In this section, as well as the Appendix, we always work with the modification ρ̃.
Similarly, we work with :

T̃0(x) := inf{t > 0, ρ̃δt (x) = 0}
instead of T0(x), for all δ, x ≥ 0. We will write again ρ and T0 instead of ρ̃ and T̃0. Note
that, a.s., the function x 7→ T0(x) is non-decreasing on R+.

Proposition 3. Let δ ≥ 0, t > 0 and x > 0. Then, a.s., the function ρt is differentiable

at x, and its derivative there is given by:

dρt(y)

dy

∣
∣
∣
y=x

a.s.
= ηt(x) := 1t<T0(x) exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)

. (16)

The proof of this proposition is quite technical. Since, moreover, the result will not be
necessary in the sequel, we prefer to postpone the proof to the Appendix of the article.

Remark 8. In particular, when δ = 1, the above formula reduces to:

dρt(y)

dy

∣
∣
∣
y=x

a.s.
= 1t<T0(x) (17)

a formula which was already well-known (see e.g. [1], Lemma A.1).
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Remark 9. Note that the indicator function 1t<T0(x) in the right-hand side of (16) is
related to the behavior of the Bessel process at the boundary 0. It is reminiscent of
Theorem 1 in [6] , where a similar indicator function appears in the expression of the
spatial derivative of the flow of vector-valued solutions to SDEs with reflection.

Remark 10. Proposition 3 shows that, for all t, x > 0, the function ρt is almost-surely
differentiable at x. We may, however, ask if, a.s., the function ρt is differentiable on the
whole of R∗

+. The case where δ > 1 was treated in detail in [11], where it was shown that,
a.s., for all t ≥ 0 the function x 7→ ρt(x) is differentiable on R∗

+, and that the derivative
dρt(x)
dx is continuous in (t, x) ∈ R+ ×R∗

+. However, as δ gets smaller than 1, the regularity
of the process (ρt(x))t≥0,x>0 becomes much worse. Note that δ = 1 corresponds to the
case of the flow of reflected Brownian motion on the half-line; in that case the flow is no
longer continuously differentiable as suggested by (17). Many works have been carried
out on the study of the flow of reflected Brownian motion on domains in higher dimension
(see e.g. [3] and [12]) or on manifolds with boundary (see e.g. [1]). By contrast, the
regularity of Bessel flows of dimension δ < 1 seems to be a very open problem.

In the remainder of the article, however, we shall not need any regularity results on
the Bessel flow. Instead, for all fixed x > 0, we shall study the process (ηt(x))t≥0 defined
above as a process in itself.

6 Properties of η

In the sequel, for all x ≥ 0, we shall consider the process (ηt(x))t≥0 defined as above:

ηt(x) := 1t<T0(x) exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)

. (18)

When there is no ambiguity we shall drop the x from our notation and denote this process
by η.

6.1 Regularity of the sample paths of η

We are interested in the continuity property of the process η. It turns out that, as δ
decreases, η becomes more and more singular, as shown by the following result.

Proposition 4. If δ > 1, then a.s. η is bounded and continuous on R+.

If δ = 1, then a.s. η is constant on [0, T0) and [T0,+∞), but has a discontinuity at T0.

If δ ∈ [0, 1), then a.s. η is continuous away from T0, but it diverges to +∞ as t ↑ T0.

Proof. When δ ≥ 2, T0 = ∞ almost-surely, so that, by (18), the following equality of
processes holds:

ηt = exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)

.

Hence, a.s., η takes values in [0, 1] and is continuous on R+. To treat the case δ < 2 we
need a lemma:

12



Lemma 2. Let δ < 2 and x > 0. Then the integral:

∫ T0

0

ds

(ρs(x))2

is infinite a.s.

We admit this result for the moment. Then, when δ ∈ (1, 2), η takes values in [0, 1],
is continuous away from T0 and, almost-surely, as t ↑ T0:

ηt = exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)

−→ 0.

Since, ηt = 0 for all t ≥ T0, η is continuous and the claim follows. When δ = 1,

ηt(x) := 1t<T0(x)

so the claim follows at once. Finally, if δ ∈ [0, 1), then η is continuous away from T0, but
by the above lemma, a.s., as t ↑ T0:

ηt = exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)

−→ +∞

so the claim follows.

We now prove Lemma 2

Proof of Lemma 2. The proof is in two steps. In a first step we prove the lemma when ρ
is replaced with a Brownian motion started at some positive point, and in a second step
we invoke a representation theorem of Bessel processes as time-changes of some power of
the Brownian motion to conclude.

First step: Let (βt) be a Brownian motion started from some y > 0, and let T0 denote
its hitting time of the origin. Then the integral :

∫ T0

0

ds

(βs(y))2

is a.s. infinite. Indeed, denote by h : [0,∞) → R+ the function given by:

h(t) :=

{√

t| log(1/t)|, if t > 0,

0, if t = 0.

Let A > 0. By Levy’s modulus of continuity (see Theorem (2.7), Chapter I, in [9]), there
exists a κ > 0, such that the event

M := { ∀s, t ∈ [0, 1], |βt − βs| ≤ κ h(|s − t|) }
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has probability one. Therefore, by scale invariance of Brownian motion, setting κA :=√
Aκ, one deduces that the event

MA := { ∀s, t ∈ [0, A], |βt − βs| ≤ κA h(|s − t|) }

also has probability one. Moreover, under the event {T0 < A} ∩MA, we have, for small
h > 0.

β2
T0−h = |βT0−h − βT0 |2 ≤ κA

2 h log(1/h).

Since 1
h log(1/h) is not integrable as h → 0+, we deduce that, under the event

{T0 < A} ∩MA, we have
∫ T0

0
ds

(βs)2
= +∞. Therefore:

P[T0 < A] = P[{T0 < A} ∩MA] ≤ P

(∫ T0

0

ds

(βs)2
= +∞

)

.

Since T0 < +∞ a.s., we have lim
A→∞

P[T0 < A] = 1. Hence, letting A → ∞ in the above, we

deduce that:

P

(∫ T0

0

ds

(βs)2
= +∞

)

= 1

as claimed.
Second step: Now consider the original Bessel process (ρt(x))t≥0. Suppose that δ ∈

(0, 2). Then, by Thm 3.5 in [13], the process (ρt(x))t≥0 is equal in law to (|βγ(t)|
1

2−δ )t≥0,

where β is a Brownian motion started from y := x2−δ, and γ : R+ → R+ is the inverse of
the increasing function A : R+ → R+ given by:

∀u ≥ 0, A(u) =
1

(2− δ)2

∫ u

0
|βs|

2(δ−1)
2−δ ds.

Therefore, denoting by T β
0 the hitting time of 0 by the Brownian motion β, we have:

∫ T0

0

ds

(ρs(x))2
(d)
=

∫ A(Tβ
0 )

0

ds

|βγ(s)|
2

2−δ

=

∫ Tβ
0

0

1

|βu|
2

2−δ

1

(2− δ)2
|βu|

2(δ−1)
2−δ du

=
1

(2− δ)2

∫ Tβ
0

0

du

βu
2

where we have used the change of variable u = γ(s) to get from the first line to the second
one. By the first step, the last integral is infinite a.s., so the claim follows.

There still remains to treat the case δ = 0. By Thm 3.5 in [13], in that case, the

process (ρt(x))t≥0 is equal in law to

((

β
γ(t)∧Tβ

0

)1/2
)

t≥0

, where β is a Brownian motion

14



started from y := x2, T β
0 is its hitting time of 0 and γ : R+ → R+ is the inverse of the

increasing function A : R+ → R+ given by:

∀u ≥ 0, A(u) =
1

4

∫ u∧Tβ
0

0
β−1
s ds.

Then, the same computations as above yield the equality in law:

∫ T0

0

ds

(ρs(x))2
(d)
=

1

4

∫ Tβ
0

0

du

βu
2

so the result follows as well.

6.2 Study of a martingale related to η

Let δ ∈ [0, 2) and x > 0 be fixed. In the previous section, we have shown that, a.s. :

∫ t

0

ds

ρs(x)2
−→

t→T0(x)
+∞

As a consequence, for δ ∈ [0, 1), a.s., the modification ηt of the derivative at x of the
stochastic flow ρt diverges at T0(x):

ηt(x) = 1t<T0(x) exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)

−→
t↑T0(x)

+∞.

However, since ρt(x) −→ 0 as t → T0(x), this does not exclude the possibility that the
product ρt(x)ηt(x) converges as t → T0(x). This motivates to study the process :

Dt := ρt(x)ηt(x) = 1t<T0(x)ρt(x) exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)

. (19)

As a matter of fact, we will show that (Dt)t≥0 is an Lp continuous martingale for some
p ≥ 1.

Remark 11. The process (Dt)t≥0 appears as (one half times) the derivative of the stochas-
tic flow associated with the squared Bessel process Xt(x) = (ρt(x))

2. Indeed, by applying
formally the chain rule, we have, for all t ≥ 0 and x > 0:

dXt(x)

dx
= 2ρt(x)ηt(x).

6.3 Continuity of (Dt)t≥0

In this subsection we show that the process (Dt)t≥0 has a.s. continuous sample paths. By
the expression (19), continuity holds as soon as T0(x) = ∞ a.s., i.e. as soon as δ ≥ 2. On
the other hand, if δ ∈ [0, 2) it suffices to prove that, a.s., Dt → 0 as t ↑ T0(x). This is the
content of the following proposition.
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Proposition 5. For all δ ∈ [0, 2) and x > 0, with probability one:

ρt(x) exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)

−→
t→T0(x)

0.

Proof. If δ ∈ [1, 2), then exp
(
1−δ
2

∫ t
0

ds
ρs(x)2

)

≤ 1 for all t ≥ 0. Since ρt −→ 0 as t → T0(x),

the claim follows at once.
If δ ∈ [0, 1), on the other hand, exp

(
1−δ
2

∫ t
0

ds
ρs(x)2

)

−−−−→
t↑T0(x)

+∞ whereas ρt −−−−→
t→T0(x)

0 so

a finer analysis is needed. We have:

log

[
ρt
x
exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)]

= log
ρt
x

+
1− δ

2

∫ t

0

ds

ρ2s

Now, recall that a.s., for all t < T0, we have:

ρt = x+
δ − 1

2

∫ t

0

ds

ρs
+Bt

Hence, defining for all integer n ≥ 1 the (Ft)t≥0-stopping time τn as:

τn := inf{t > 0, ρt ≤ 1/n} ∧ n,

we have:

ρt∧τn = x+
δ − 1

2

∫ t∧τn

0

ds

ρs
+Bt∧τn .

Hence, by Itô’s lemma, we deduce that:

log
ρt∧τn
x

=
δ − 1

2

∫ t∧τn

0

ds

ρ2s
+

∫ t∧τn

0

dBs

ρs
− 1

2

∫ t∧τn

0

ds

ρ2s

so that:

log
ρt∧τn
x

+
1− δ

2

∫ t∧τn

0

ds

ρ2s
=

∫ t∧τn

0

dBs

ρs
− 1

2

∫ t∧τn

0

ds

ρ2s
. (20)

Consider now the random time change:

A : [0, T0) → R+

t 7→ At :=

∫ t

0

ds

ρ2s
.

Note that A is differentiable with strictly positive derivative. Moreover, since At −→
t→T0

+∞
a.s. by Lemma 2, we deduce that A is a.s. onto. Hence, a.s., A is a diffeomorphism
[0, T0) → R+, the inverse of which we denote by

C : R+ → [0, T0)

u 7→ Cu.
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Let βu :=
∫ Cu

0
dBr

ρr
, u ≥ 0. Then β is a local martingale started at 0 with quadratic

variation 〈β, β〉u = u, so by Lévy’s theorem it is a Brownian motion. The equality (20)
can now be rewritten:

log
ρt∧τn
x

+
1− δ

2

∫ t∧τn

0

ds

ρ2s
= βAt∧τn

− 1

2
At∧τn .

Letting n → ∞, we obtain, for all t < T0:

log
ρt
x

+
1− δ

2

∫ t

0

ds

ρ2s
= βAt −

1

2
At.

By the asymptotic properties of Brownian motion (see Corollary (1.12), Chapter II in [9]),
we know that, a.s.:

lim sup
s→+∞

βs
h(s)

= 1

where h(s) :=
√
2s log log s. In particular, a.s., there exists T > 0 such that, for all t ≥ T ,

we have βt ≤ 2h(t). Since, a.s., At −→
t→T0

+∞, we deduce that:

lim sup
t→+∞

(

βAt −
1

2
At

)

≤ lim sup
t→+∞

(

2h(At)−
1

2
At

)

= −∞.

Hence, a.s. :

log

[
ρt
x
exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)]

−→
t↑T0(x)

−∞

i.e.

ρt exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)

−→
t↑T0(x)

0

as claimed.

6.4 Martingale property of (Dt)t≥0

Let δ ≥ 0 and x > 0 be fixed. We show in this section that (Dt)t≥0 is an (Ft)t≥0 martingale
which, up to a positive constant, corresponds to a Girsanov-type change of probability
measure.

Recall that, by definition:

Dt = 1t<T0(x)ρt(x) exp

(

−δ − 1

2

∫ t

0

ds

ρ2s

)

. (21)

Notation 1. For all a ≥ 0 and t ≥ 0, we denote by P a
x

∣
∣
Ft

the image of the probability
measure P a

x under the restriction map:

(C(R+),B(C(R+)) → (C([0, t]),Ft)

w 7→ w|[0,t]
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Proposition 6. Let δ ≥ 0 and x > 0. Then, for all t ≥ 0, the law P δ+2
x |Ft

is absolutely

continuous w.r.t. the law P δ
x |Ft

, and the corresponding Radon-Nikodym derivative is given

by:

dP δ+2
x

dP δ
x

∣
∣
∣
∣
Ft

(ρ)
a.s.
= 1t<T0(x)

ρt(x)

x
exp

(

−δ − 1

2

∫ t

0

ds

ρ2s

)

.

Proof. Fix ǫ > 0. Under P δ
x |Ft

, the canonical process ρ stopped at Tǫ satisfies the following
SDE on [0, t]:

ρs∧Tǫ = x+
δ − 1

2

∫ s∧Tǫ

0

ds

ρs
+Bs∧Tǫ .

Consider the process M ǫ defined on [0, t] by:

M ǫ
s :=

∫ s∧Tǫ

0

dBu

ρu

M ǫ is an L2 martingale on [0, t]. The exponential local martingale thereto associated is:

E(M ǫ)s = exp

(∫ s∧Tǫ

0

dBu

ρu
− 1

2

∫ s∧Tǫ

0

du

ρ2u

)

.

Since, by Itô’s lemma:

log
(ρs∧Tǫ

x

)

=

∫ s∧Tǫ

0

dBu

ρu
+

(
δ

2
− 1

)∫ s∧Tǫ

0

du

ρ2u
,

we have:

E(M ǫ)s = exp

[

log
(ρs∧Tǫ

x

)

− δ − 1

2

∫ s∧Tǫ

0

du

ρ2u

]

=
ρs∧Tǫ

x
exp

[

−δ − 1

2

∫ s∧Tǫ

0

du

ρ2u

]

.

Note that

E

[

exp

(
1

2
〈M ǫ,M ǫ〉t

)]

≤ exp

(
t

2ǫ

)

< ∞

so that, by Novikov’s criterion, E(M ǫ) is a uniformly integrable martingale on [0, t]. So
we may consider the probability measure E(M ǫ)P δ

x

∣
∣
Ft
.

Note also that:

〈M ǫ, B〉t =
∫ s∧Tǫ

0

du

ρu
.

Hence, by Girsanov’s theorem, under the probability measure E(M ǫ)P δ
x

∣
∣
Ft
, the process :

ρs∧Tǫ − x− δ + 1

2

∫ s∧Tǫ

0

du

ρu
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is a local martingale, with quadratic variation given by s ∧ Tǫ. Therefore, by Theorem
(1.7) in Chapter V of [9], there exists, on some enlarged probability space, a Brownian
motion β such that, a.s.:

∀s ∈ [0, t], ρs∧Tǫ = x+
δ + 1

2

∫ s∧Tǫ

0

du

ρu
+ βs∧Tǫ .

Denote by ρ̄ the unique strong solution on [0, t] of the SDE:

ρ̄s = x+
δ + 1

2

∫ s

0

du

ρ̄u
+ βs.

Then, by strong uniqueness of the solution to this SDE, we deduce that, under E(M ǫ)P δ
x

∣
∣
Ft
,

a.s.:
∀s ∈ [0, t], s < Tǫ =⇒ ρs = ρ̄s.

Since ρ̄ has the law of a δ+2-dimensional Bessel process started at x, we deduce that, for
all F : C([0, T ],R+) → R+ Borel, we have:

Eδ
x [E(M ǫ)F (ρ)1t<Tǫ ] = Eδ+2

x [F (ρ)1t<Tǫ ]

i.e.:

Eδ
x

[
ρt
x
exp

(

−δ − 1

2

∫ t

0

ds

ρ2s

)

F (ρ)1t<Tǫ

]

= Eδ+2
x [F (ρ)1t<Tǫ ].

Letting ǫ → 0, by the monotone convergence theorem, we obtain:

Eδ
x

[
ρt
x
exp

(

−δ − 1

2

∫ t

0

ds

ρ2s

)

F (ρ)1t<T0

]

= Eδ+2
x [F (ρ)1t<T0 ].

But, since P δ+2
x [T0 < +∞] = 0, this yields:

Eδ
x

[
ρt
x
exp

(

−δ − 1

2

∫ t

0

ds

ρ2s

)

F (ρ)1t<T0

]

= Eδ+2
x [F (ρ)]

as stated.

Remark 12. Proposition 6 is actually a particular case of a more general result. Indeed,
for all x > 0, t ≥ 0, and δ′ ≥ δ ≥ 0, such that δ′ ≥ 2, P δ′

x |Ft
is absolutely continuous w.r.t.

the law P δ
x |Ft

, and the corresponding Radon-Nikodym derivative is given by:

dP δ′
x

dP δ
x

∣
∣
∣
∣
Ft

(ρ)
a.s.
= 1t<T0(x)

(
ρt(x)

x

) δ′−δ
2

exp

[

−δ′ − δ

2

(
δ′ + δ

4
− 1

)∫ t

0

ds

ρ2s

]

. (22)

The proof of this fact is in all respect similar to that of Proposition 6 above.

Corollary 3. (Dt)t≥0 is an (Ft)t≥0 continuous martingale

Proof. The process (Dt)t≥0 is continuous. Moreover, for all t ≥ 0, 1
xDt is the Radon-

Nikodym derivative of P δ+2
x |Ft

w.r.t. P δ
x |Ft

. Therefore ( 1xDt)t≥0 is an (Ft)t≥0 martingale,
so (Dt)t≥0 is a martingale as well, and the claim follows.
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6.5 Moment estimates for the martingale (Dt)t≥0

In this section, we prove that the martingale (Dt)t≥0 is actually in Lp for some p ≥ 1. We
first recall the following fact:

Lemma 3. For all a ≥ 0, t ≥ 0, and m ≥ 0, we have:

Ea
x(ρ

m
t ) < ∞.

Proof. Denote by d any integer such that d ≥ a. By Lemma 1, we have:

Ea
x(ρ

m
t ) ≤ Ed

x(ρ
m
t )

Since P d
x is the law of (||Bs||)s≥0, where (Bs)s≥0 is a d-dimensional Brownian motion and

|| · || is the Euclidean norm in Rd (see [9], Chapter 11), this inequality can be rewritten
as:

Ea
x(ρ

m
t ) ≤ E (||Bt||m)

Since Bt is a Gaussian random variable, E (||Bt||m) is finite, and the result follows.

Proposition 7. (Dt)t≥0 is an Lp martingale for all finite positive number p such that

p ≤ p(δ), where p(δ) ∈ [1,+∞] is given by:

p(δ) :=

{
(2−δ)2

4(1−δ) if δ < 1,

+∞ if δ ≥ 1.
(23)

Moreover the above statement is sharp: for δ < 1 and t > 0, the random variable Dt is

not in Lp for p > p(δ).

Remark 13. We emphasize that p is finite in the above result. Indeed Dt is never in L∞

even if δ ≥ 1; for example, when δ = 1, Dt = ρt1t<T0(x) which is clearly not bounded a.s.
.

Proof of Prop 7. If δ ≥ 1, then, for all t ≥ 0, Dt ≤ ρt. Hence, for all p ∈ (0,+∞):

E (Dp
t ) ≤ Eδ

x(ρt
p)

which is finite by Lemma 3.
On the other hand, if δ ∈ [0, 1), then, for all t > 0 and p > 0, we have:

E (Dp
t ) = Eδ

x

[

1t<T0 ρt
p exp

(

−p
δ − 1

2

∫ t

0

ds

ρ2s

)]

.

By the absolute continuity relation (22) applied with δ′ := 2, the latter equals:

E2
x







x

2−δ
2 ρt

p+ δ−2
2 exp








(

−p
δ − 1

2
− (δ − 2)2

8

)

︸ ︷︷ ︸

:= A(p)

∫ t

0

ds

ρ2s














.
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For p = p(δ), A(p) = 0, so that:

E

[

D
p(δ)
t

]

= E2
x

[

x
2−δ
2 ρt

p(δ)+ δ−2
2

]

= x1−
δ
2 E2

x

[

ρt
p(δ)+ δ

2
−1
]

.

Since δ
2 + p(δ) − 1 ≥ 0, by Lemma 3, the last quantity is finite. Hence Dt is indeed in

Lp(δ).
Suppose now that p = p(δ) + r for some r > 0. We show that Dt /∈ Lp. We have:

E [Dp
t ] = E2

x

[

x
2−δ
2 ρt

p+ δ−2
2 exp

((

−p
δ − 1

2
− (δ − 2)2

8

)∫ t

0

ds

ρs2

)]

= x1−
δ
2E2

x

[

ρt
p+ δ

2
−1 exp

(
1− δ

2
r

∫ t

0

ds

ρs2

)]

We claim that the last quantity is infinite. Indeed, first note that by Jensen’s inequality
and Fubini, for any C > 0 we have:

E2
x

[

exp

(

C

∫ t

0

ds

ρs2

)]

≥ exp

(

C

∫ t

0
E2

x

(
ρ−2
s

)
ds

)

and the right-hand side is infinite since, for all s > 0, E2
x

(
ρ−2
s

)
= +∞ (indeed, by formula

(12), the transition density p2s(x, y) does not integrate y−2 as y → 0). Therefore:

E2
x

[

exp

(

C

∫ t

0

ds

ρs2

)]

= +∞ (24)

Consider now any c > 0 and a, b > 0 such that 1
a+

1
b = 1. By (24) and Hölder’s inequality,

we have:

+∞ = E2
x

[

exp

(
1− δ

2a
r

∫ t

0

ds

ρs2

)]

≤ E2
x

[

ρt
ac exp

(
1− δ

2
r

∫ t

0

ds

ρs2

)]1/a

E2
x

[

ρ−bc
t

]1/b

Set c =
δ
2
+p−1
δ
2
+p

, a = δ
2 + p, and b =

δ
2
+p

δ
2
+p−1

. Remark that δ
2 + p− 1 > 0 since p > p(δ) ≥ 1,

so that this choice for c, a, and b makes sense. We obtain:

E2
x

[

ρt
δ
2
+p−1 exp

(
1− δ

2
r

∫ t

0

ds

ρs2

)] 1
δ
2+p

E2
x

[
ρ−1
t

]
δ
2+p−1

δ
2+p = +∞

By the comparison lemma 1 and the expression (12) for the transition density of the Bessel
process, we have

E2
x

[
ρ−1
t

]
≤ E2

0

[
ρ−1
t

]
=

∫ ∞

0

1

t
exp

(

−y2

2t

)

dy
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so that E2
x

[
ρ−1
t

]
< +∞. Therefore, we deduce that :

E2
x

[

ρt
δ
2
+p−1 exp

(
1− δ

2
r

∫ t

0

ds

ρs2

)]

= +∞

as claimed. Hence Dt /∈ Lp for p > p(δ).

7 A Bismut-Elworthy-Li formula for the Bessel

processes

We are now in position to provide a probabilistic interpretation of the right-hand-side of
equation (11) in Theorem 2.

Let δ > 0, and x > 0. As we saw in the previous section, the process (ηt(x))t≥0 may
blow up at time T0, so that the stochastic integral

∫ t
0 ηs(x)dBs is a priori ill-defined, at

least for δ ∈ (0, 1). However, it turns out that we can define the latter process rigorously
as a local martingale.

Proposition 8. Suppose that δ > 0. Then the stochastic integral process
∫ t
0 ηsdBs is

well-defined as a local martingale and is indistinguishable from the continuous martingale

Dt − x.

Proof. We first treat the case δ ≥ 2, which is much easier to handle. In that case,
ηt ∈ [0, 1] for all t ≥ 0, so that the stochastic integral

∫ t
0 ηsdBs is clearly well-defined as

an L2 martingale. Moreover, since T0 = +∞ a.s., by Itô’s lemma we have:

Dt = ρtηt = x+

∫ t

0
ηs dρs +

∫ t

0
ρs dηs

= x+

∫ t

0
ηs

(
δ − 1

2

ds

ρs
+ dBs

)

−
∫ t

0
ρs

δ − 1

2

ηs
ρs2

ds

= x+

∫ t

0
ηsdBs

so the claim follows.
Now suppose that δ ∈ (0, 2) and fix an ǫ > 0. Recall that Tǫ(x) := inf{t ≥ 0, ρt(x) ≤ ǫ}

and note that, since Tǫ < T0, the stopped process ηTǫ is continuous on R+, so that the

stochastic integral
∫ t∧Tǫ(x)
0 ηs(x)dBs is well-defined as a local martingale. Using as above

Itô’s lemma, but this time with the stopped processes ρTǫ and ηTǫ , we have:

∫ t∧Tǫ

0
ηsdBs = Dt∧Tǫ − x. (25)

Our aim would be to pass to the limit ǫ → 0 in this equality. By continuity of D, as ǫ → 0,
Dt∧Tǫ converges to Dt∧T0 = Dt almost-surely. So the right-hand side of (25) converges to
Dt − x almost-surely.
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The convergence of the left-hand side to a stochastic integral is more involved, since
we first have to prove that the stochastic integral

∫ t
0 ηsdBs is indeed well-defined as a local

martingale. For this, it suffices to prove that, almost-surely:

∀t ≥ 0,

∫ t

0
η2s ds < ∞.

We actually prove the following stronger fact. For all t ≥ 0

E

[(∫ t

0
η2sds

)p/2
]

< ∞ (26)

for all finite positive number p such that p ∈ (1, p(δ)]. Indeed, applying successively
the Burkholder-Davis-Gundy (BDG) inequality and Doob’s inequality to the martingale
∫ Tǫ∧·
0 ηsdBs , we have:

E

[(∫ t∧Tǫ

0
η2sds

)p/2
]

≤ Cp E

[

sup
s≤t∧Tǫ

∣
∣
∣
∣

∫ s

0
ηudBu

∣
∣
∣
∣

p
]

= Cp E

[

sup
s≤t∧Tǫ

|Ds − x|p
]

≤ Cp

(
p

p− 1

)p

E [|Dt∧Tǫ − x|p]

where Cp is a constant depending only on p. Now, since (Dt − x)t≥0 is a continuous
martingale, by the optional stopping theorem and Jensen’s inequality, we have:

E [|Dt∧Tǫ − x|p] ≤ E(|Dt − x|p)

and the right-hand side is finite because Dt is in Lp . Hence, letting ǫ → 0 in the above,
by the monotone convergence theorem we deduce that :

E

[(∫ t∧T0

0
η2sds

)p/2
]

< ∞

But since ηt = 0 for all t ≥ T0, this implies the bound (26), and hence the stochastic
integral

∫ t
0 ηsdBs is well-defined as a local martingale. Moreover, for all t ≥ 0, by the

BDG inequality, we have:

E

[(∫ t

0
ηsdBs −

∫ t∧Tǫ

0
ηsdBs

)p
]

= E

[(∫ t∧T0

t∧Tǫ

ηsdBs

)p
]

≤ cp E

[(∫ t∧T0

t∧Tǫ

η2sds

)p/2
]
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where cp is some constant depending only on p. Now, by the dominated convergence
theorem, the last quantity above goes to 0 as ǫ → 0 , and hence:

∫ t∧Tǫ

0
ηsdBs −→

ǫ→0

∫ t

0
ηsdBs

in Lp. Hence, the left-hand side of equality (25) converges in Lp to the stochastic integral
∫ t
0 ηsdBs. Letting ǫ → 0 in that equality, we thus obtain :

∫ t

0
ηsdBs = Dt − x

as claimed.

Using the above proposition, Theorem 2 can now be interpreted probabilistically as a
Bismut-Elworthy-Li formula.

Theorem 3 (Bismut-Elworthy-Li formula). Let δ > 0. Then, for all T > 0, and all

F : R+ → R bounded and Borel, the function x → P δ
t F (x) is differentiable on R+, and

for all x > 0:
d

dx
P δ
TF (x) =

1

T
E

[

F (ρt(x))

(∫ T

0
ηs(x)dBs

)]

. (27)

Proof. By Theorem 2, the differentiablity property holds, and we have:

d

dx
P δ
TF (x) =

x

T

[

P δ+2
T F (x)− P δ

TF (x)
]

.

Moreover, by Proposition 6, for all x > 0:

P δ+2
T F (x)− P δ

TF (x) = Eδ
x

[

F (ρT )

(
DT

x
− 1

)]

and, by Proposition 8, we have:

Eδ
x

[

F (ρT )

(
DT

x
− 1

)]

=
1

x
E

[

F (ρT (x))

(∫ T

0
ηs(x)dBs

)]

so equality (27) follows.

Using the Bismut-Elworthy-Li formula, we are now able to sharpen the Strong Feller
estimate obtained in equation (14) above.

Corollary 4. Let T > 0 and δ ≥ 2(
√
2− 1). Then, for all R > 0, there exists a constant

C > 0 such that, for all x, y ∈ [0, R] and F : R+ → R bounded and Borel, we have:

|P δ
TF (x)− P δ

TF (y)| ≤ C||F ||∞
Tα(δ)

|y − x| (28)

where the exponent α(δ) ∈ [12 , 1) is given by:

α(δ) :=

{
1
2 + 1−δ

2−δ if δ ∈ [2(
√
2− 1), 1],

1/2 if δ ≥ 1.
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Proof. Let x > 0. By Theorem 3, we have :

d

dx
P δ
TF (x) =

1

T
E

[

F (ρt(x))

(∫ T

0
ηs(x)dBs

)]

.

so that: ∣
∣
∣
∣

d

dx
P δ
TF (x)

∣
∣
∣
∣
≤ ||F ||∞

T
E

[∣
∣
∣
∣

∫ T

0
ηs(x)dBs

∣
∣
∣
∣

]

.

We now bound the quantity E

[∣
∣
∣

∫ T
0 ηs(x)dBs

∣
∣
∣

]

. If δ ≥ 1, then the process (ηs(x))s≥0 takes

values in [0, 1], so that, using the Cauchy-Schwarz inequality and Itô’s isometry formula,
we have :

E

[∣
∣
∣
∣

∫ T

0
ηs(x)dBs

∣
∣
∣
∣

]

≤
√

E

(∫ T

0
ηs(x)2ds

)

≤
√
T .

Therefore: ∣
∣
∣
∣

d

dx
P δ
TF (x)

∣
∣
∣
∣
≤ ||F ||∞√

T

and the claim follows with C = 1.
Suppose now that δ ∈ [2(

√
2−1), 1). Letting p := p(δ) as in (23), we have, by Jensen’s

inequality:

E

[∣
∣
∣
∣

∫ T

0
ηs(x)dBs

∣
∣
∣
∣

]

≤
(

E

∣
∣
∣
∣

∫ T

0
ηs(x)dBs

∣
∣
∣
∣

p
)1/p

Now, applying successively the BDG inequality, Jensen’s inequality and the absolute
continuity relation (22) between P 2

x and P δ
x , we have, for some constant cp depending

only on p:

E

[∣
∣
∣
∣

∫ T

0
ηs(x)dBs

∣
∣
∣
∣

p
]

≤ cp E

[(∫ T

0
ηs(x)

2ds

)p/2
]

≤ cp T p/2−1 E

(∫ T

0
ηs(x)

p ds

)

≤ cp T p/2−1

∫ T

0
Eδ

x(η
p
s ) ds

= cp T p/2−1

∫ T

0
E2

x

[(ρs
x

) δ−2
2

exp

((
1− δ

2
p− (2− δ)2

8

)∫ s

0

du

ρ2u

)]

ds

= cp T p/2−1

∫ T

0
E2

x

[(ρs
x

) δ−2
2

]

ds

where the last equality follows from the fact that 1−δ
2 p − (2−δ)2

8 = 0 for p = p(δ). Now,

since δ−2
2 ≤ 0, by the comparison lemma 1, as well as the scaling property of the Bessel

processes (see, e.g., Remark 3.7 in [13]), for all s ∈ [0, T ], we have:

E2
x

[

ρ
δ−2
2

s

]

≤ E2
0

[

ρ
δ−2
2

s

]

= s
δ−2
4 E2

0

[

ρ
δ−2
2

1

]

.
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Let c := E2
0

[

ρ
δ−2
2

1

]

. Using formula (12), we have:

c =

∫ ∞

0
yδ/2 exp

(

−y2

2

)

dy < ∞.

Hence:

∫ T

0
E2

x

[(ρs
x

) δ
2
−1
]

ds ≤ c x1−
δ
2

∫ T

0
s

δ−2
4 ds

≤ 4 c

δ + 2
x1−

δ
2 T

δ+2
4 .

Therefore, we obtain:

E

[∣
∣
∣
∣

∫ T

0
ηs(x)dBs

∣
∣
∣
∣

p
]

≤ K x1−
δ
2 T

p

2
−1 T

δ+2
4

≤ K x1−
δ
2 T

p

2
+ δ−2

4

where K is a constant depending only on δ. Hence

E

[∣
∣
∣
∣

∫ T

0
ηs(x)dBs

∣
∣
∣
∣

]

≤ K1/p x
1
p
(1− δ

2
) T

1
2
+ δ−2

4p .

Note that, since p = p(δ), we have 1
p(1 − δ

2) = 2(1−δ)
2−δ , and δ−2

4p = −1−δ
2−δ . Therefore, we

obtain: ∣
∣
∣
∣

d

dx
P δ
TF (x)

∣
∣
∣
∣
≤ K1/p x2

1−δ
2−δ ||F ||∞ T− 1

2
− 1−δ

2−δ .

Therefore, given R > 0, one has for all x ∈ [0, R]:

∣
∣
∣
∣

d

dx
P δ
TF (x)

∣
∣
∣
∣
≤ C

||F ||∞
Tα(δ)

with C := K1/p R2 1−δ
2−δ . This yields the claim.

Remark 14. In the above proposition, the value 2(
√
2− 1) that appears is the smallest

value of δ for which η is in L2. For δ < 2(
√
2 − 1), η is no longer in L2 but only in

Lp for p = p(δ) < 2, so that we cannot apply Jensen’s inequality to bound the quantity

E

(∫ T
0 ηs(x)

2ds
)p/2

anymore. It seems reasonable to expect that the bound (28) holds

also for δ < 2(
√
2− 1), although we do not have a proof of this fact.
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8 Appendix

In this Appendix, we prove Proposition 3. Recall that we still denote by (ρt(x))t,x≥0 the
process (ρ̃δt (x))t,x≥0 constructed in Proposition 2.

Lemma 4. For all rational numbers ǫ, γ > 0, let:

U ǫ
γ := [0, Tǫ(γ))× (γ,+∞)

and set:

U :=
⋃

ǫ,γ∈Q∗

+

U ǫ
γ .

Then, a.s., the function (t, x) 7→ ρt(x) is continuous on the open set U .

Proof. By patching, it suffices to prove that, a.s., the function (t, x) 7→ ρt(x) is continuous
on each U ǫ

γ , where ǫ, γ ∈ Q∗
+.

Fix ǫ, γ ∈ Q∗
+, and let x, y ∈ (γ,+∞) ∩ Q. We proceed to show that, a.s., for all

t ≤ s < Tǫ(γ) the following inequality holds:

|ρt(x)− ρs(y)| ≤ |x− y| exp
( |δ − 1|

2ǫ2
t

)

+
|δ − 1|
2ǫ

|s− t|+ |Bs −Bt|. (29)

Since Tǫ(γ) < T0(γ), a.s., for all t ≤ s ≤ Tǫ(γ), we have:

∀τ ∈ [0, t], ρτ (x) = x+
δ − 1

2

∫ τ

0

du

ρu(x)
+Bτ

as well as

∀τ ∈ [0, s], ρτ (y) = y +
δ − 1

2

∫ τ

0

du

ρu(y)
+Bτ

and hence :

∀τ ∈ [0, t], |ρτ (x)− ρτ (y)| ≤ |x− y|+ |δ − 1|
2

∫ τ

0

|ρu(x)− ρu(y)|
ρu(x)ρu(y)

du.

By the monotonicity property of ρ, we have, a.s., for all t, s as above and u ∈ [0, s]:

ρu(x) ∧ ρu(y) ≥ ρu(γ) ≥ ǫ (30)

so that:

∀τ ∈ [0, t], |ρτ (x)− ρτ (y)| ≤ |x− y|+ |δ − 1|
2

∫ τ

0

|ρu(x)− ρu(y)|
ǫ2

du,

which, by Grönwall’s inequality, implies that:

|ρt(x)− ρt(y)| ≤ |x− y| exp
( |δ − 1|

2ǫ2
t

)

. (31)
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Moreover, we have:

ρs(y)− ρt(y) =
δ − 1

2

∫ s

t

du

ρu(y)
+Bs −Bt

which, by (30), entails the inequality:

|ρs(y)− ρt(y)| ≤
|δ − 1|
2ǫ

|s− t|+ |Bs −Bt|. (32)

Putting inequalities (31) and (32) together yields the claimed inequality (29). Hence, we
have, a.s., for all rationals x, y > γ and all t ≤ s < Tǫ(γ):

|ρt(x)− ρs(y)| ≤ |x− y| exp
( |δ − 1|

2ǫ2
t

)

+
δ − 1

2
|s− t|+ |Bs −Bt|

and, by density of Q ∩ (γ,+∞) in (γ,+∞), this inequality remains true for all x, y > γ.
Since, a.s., t 7→ Bt is continuous on R+, the continuity of ρ on U ǫ

γ is proved.

Corollary 5. Almost-surely, we have:

∀x ≥ 0, ∀t ∈ [0, T0(x)), ρt(x) = x+
δ − 1

2

∫ t

0

du

ρu(x)
+Bt. (33)

Remark 15. We have already remarked in Section 3 that, for all fixed x ≥ 0, the process
(ρt(x))t≥0 satisfies the SDE (10). By contrast, the above Corollary shows the stronger
fact that, considering the modification ρ̃ of the Bessel flow constructed in Proposition 2
above, a.s., for each x ≥ 0, the path (ρ̃t(x))t≥0 still satisfies relation (10).

Proof. Consider an almost-sure event A ∈ F as in Remark 7. On the event A, for all
r ∈ Q+, we have:

∀t ∈ [0, T0(r)), ρt(r) = r +
δ − 1

2

∫ t

0

du

ρu(r)
+Bt.

Denote by B ∈ F any almost-sure event on which ρ satisfies the monotonicity property
(15). We show that, on the event A ∩ B, the property (33) is satisfied.

Suppose A∩B is fulfilled, and let x ≥ 0. Then for all r ∈ Q such that r ≥ x, we have:

∀t ≥ 0, ρt(x) ≤ ρt(r)

so that T0(r) ≥ T0(x). Hence, for all t ∈ [0, T0(x)), we have in particular t ∈ [0, T0(r)), so
that:

ρt(r) = r +
δ − 1

2

∫ t

0

du

ρu(r)
+Bt.

Since, for all u ∈ [0, t], ρu(r) ↓ ρu(x) as r ↓ x with r ∈ Q, by the monotone convergence
theorem, we deduce that:

∫ t

0

du

ρu(r)
−→

∫ t

0

du

ρu(x)
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as r ↓ x with r ∈ Q. Hence, letting r ↓ x with r ∈ Q in the above equation, we obtain:

ρt(x) = x+
δ − 1

2

∫ t

0

du

ρu(x)
+Bt.

This yields the claim.

One of the main difficulties for proving Proposition 3 arises from the behavior of ρt(x)
at t = T0(x). However we will circumvent this problem by working away from the event
t = T0(x). To do so, we will make use of the following property.

Lemma 5. Let δ < 2 and x ≥ 0. Then the function y 7→ T0(y) is a.s. continuous at x.

Proof. The function y 7→ T0(y) is nondecreasing over R+. Hence, if x > 0, it has left- and
right-sided limits at x, T0(x

−) and T0(x
+), satisfying:

T0(x
−) ≤ T0(x) ≤ T0(x

+). (34)

Similarly, if x = 0, there exists a right-sided limit T0(0
+) satisfying T0(0) ≤ T0(0

+).
Suppose, e.g., that x > 0. Then we have:

E

(

e−T0(x+)
)

≤ E

(

e−T0(x)
)

≤ E

(

e−T0(x−)
)

. (35)

Now, by the scaling property of the Bessel processes (see, e.g., Remark 3.7 in [13]), for all
y ≥ 0, the following holds:

(yρt(1))t≥0
(d)
= (ρy2t(y))t≥0,

so that T0(y)
(d)
= y2T0(1). Therefore, using the dominated convergence theorem, we have:

E

(

e−T0(x+)
)

= lim
y↓x

E

(

e−T0(y)
)

= lim
y↓x

E

(

e−y2T0(1)
)

= E

(

e−x2T0(1)
)

= E

(

e−T0(x)
)

.

Similarly, we have E

(

e−T0(x−)
)

= E
(
e−T0(x)

)
. Hence the inequalities (35) are actually

equalities; recalling the original inequality (34), we deduce that T0(x
−) = T0(x) = T0(x

+)
a.s.. Similarly, if x = 0, we have T0(0) = T0(0

+) a.s.

Before proving Proposition 3, we need a coalescence lemma, which will help us prove
that the derivative of ρt at x is 0 if t > T0(x):

Lemma 6. Let x, y ≥ 0, and let τ be a nonnegative (Ft)t≥0-stopping time. Then, almost-

surely:

ρτ (x) = ρτ (y) ⇒ ∀s ≥ τ, ρs(x) = ρs(y).
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Proof. On the event {ρτ (x) = ρτ (y)}, the processes (Xδ
t (x))t≥0 := (ρt(x)

2)t≥0 and (Xδ
t (y))t≥0 :=

(ρt(y)
2)t≥0 both satisfy, on [τ,+∞), the SDE:

Xt = ρτ (x)
2 + 2

∫ t

τ

√

XsdBs + δ(t− τ).

By pathwise uniqueness of this SDE (see [9], Theorem (3.5), Chapter IX), we deduce that,
a.s. on the event {ρτ (x) = ρτ (y)}, Xt(x) = Xt(y), hence ρt(x) = ρt(y) for all t ≥ τ .

Now we are able to prove Prop. 3.

Proof of Proposition 3. Let t > 0 and x > 0 be fixed. First remark that:

P(T0(x) = t) = 0.

Indeed, if δ > 0, then :
P(T0(x) = t) ≤ P(ρt(x) = 0)

and the RHS is zero since the law of ρt(x) has no atom on R+ (it has density pδt (x, ·)
w.r.t. Lebesgue measure on R+, where pδt was defined in equation (12) above). On the
other hand, if δ = 0, then 0 is an absorbing state for the process ρ, so that, for all s ≥ 0:

P(T0(x) ≤ s) = P(ρs(x) = 0)

and the RHS is continuous in s on R+, since it is given by exp(−x2

2s ) (see [9], Chapter XI,
Corrolary 1.4). Hence, also in the case δ = 0 the law of T0(x) has no atom on R+. Hence,
a.s., either t < T0(x) or t > T0(x).

First suppose that t < T0(x). A.s., the function y 7→ T0(y) is continuous at x, so there
exists a rational number y ∈ [0, x) such that t < T0(y); since, by Remark (7), t 7→ ρt(y) is
continuous, there exists ǫ ∈ Q∗

+ such that t < Tǫ(y). By monotonicity of z 7→ ρ(z), for all
s ∈ [0, t] and z ≥ y, we have:

ρs(z) ≥ ρs(y) ≥ ǫ.

Hence, recalling Corollary 5, for all s ∈ [0, t] and h ∈ R such that |h| < |x− y|:

ρs(x+ h) = x+ h+

∫ s

0

δ − 1

2

du

ρu(x+ h)
+Bs.

Hence, setting ηhs (x) :=
ρs(x+h)−ρs(x)

h ,we have:

∀s ∈ [0, t], ηhs (x) = 1− δ − 1

2

∫ t

0

ηhu(x)

ρu(x)ρu(x+ h)
du

so that :

ηht (x) = exp

(
1− δ

2

∫ t

0

ds

ρs(x)ρs(x+ h)

)

.
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Note that, for all s ∈ [0, t] and h ∈ R such that |h| < |x − y|, we have (s, x + h) ∈
[0, Tǫ(y))× (y,+∞) ⊂ U . Hence, by Lemma 4, we have, for all s ∈ [0, t]

ρs(x+ h) −→
h→0

ρs(x)

with the domination property:

1

ρs(x)ρs(x+ h)
≤ ǫ−2

valid for all |h| < |x− y|. Hence, by the dominated convergence theorem, we deduce that:

ηht (x) −→
h→0

exp

(
1− δ

2

∫ t

0

ds

ρs(x)2

)

which yields the claimed differentiability of ρt at x.
We now suppose that t > T0(x). Since the function y 7→ T0(y) is a.s. continuous at

x, a.s. there exists y > x, y ∈ Q, such that t > T0(y). By Remark (7), the function
t 7→ ρt(y) is continuous, so that ρT0(y)(y) = 0. By monotonicity of z 7→ ρ(z), we deduce
that, for all z ∈ [0, y], we have :

ρT0(y)(z) = 0.

By Lemma 6, we deduce that, leaving aside some event of proability zero, all the trajec-
tories (ρt(z))t≥0 for z ∈ [0, y] ∩ Q coincide from time T0(y) onwards. In particular, we
have:

∀z ∈ [0, y] ∩Q, ρt(z) = ρt(x).

Since, moreover, the function z 7→ ρt(z) is nondecreasing, we deduce that it is constant
on the whole interval [0, y]:

∀z ∈ [0, y], ρt(z) = ρt(x).

In particular, the function z 7→ ρt(z) has derivative 0 at x. This concludes the proof.
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