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1École Normale Supérieure, CNRS, PSL Research University 2Inria 3UC Berkeley 4Carnegie Mellon University

Abstract

The rational camera model recently introduced in [19]
provides a general methodology for studying abstract non-
linear imaging systems and their multi-view geometry. This
paper builds on this framework to study “physical realiza-
tions” of rational cameras. More precisely, we give an ex-
plicit account of the mapping between between physical vi-
sual rays and image points (missing in the original descrip-
tion), which allows us to give simple analytical expressions
for direct and inverse projections. We also consider “prim-
itive” camera models, that are orbits under the action of
various projective transformations, and lead to a general
notion of intrinsic parameters. The methodology is gen-
eral, but it is illustrated concretely by an in-depth study of
two-slit cameras, that we model using pairs of linear pro-
jections. This simple analytical form allows us to describe
models for the corresponding primitive cameras, to intro-
duce intrinsic parameters with a clear geometric meaning,
and to define an epipolar tensor characterizing two-view
correspondences. In turn, this leads to new algorithms for
structure from motion and self-calibration.

1. Introduction

The past 20 years have witnessed steady progress in the
construction of effective geometric and analytical models of
more and more general imaging systems, going far beyond
classical pinhole perspective (e.g., [1, 2, 6, 7, 13, 14, 17,
19, 20, 22, 26, 27]). In particular, it is now recognized that
the essential part of any imaging system is the mapping be-
tween scene points and the corresponding light rays. The
mapping between the rays and the points where they inter-
sect the retina plays an auxiliary role in the image forma-
tion process. For pinhole cameras, for example, all retinal
planes are geometrically equivalent since the corresponding
image patterns are related to each other by projective trans-
forms. Much of the recent work on general camera models
thus focuses primarily on the link between scene points and
the line congruences [10, 15] formed by the correspond-
ing rays, in a purely projective setting [1, 2]. The rational

Figure 1. A general camera associates a scene pointxwith a visual
ray l, then maps the ray l to its intersection y with some retinal
plane π, and finally uses a projective coordinate system on π to
express y as a point u in P2.

camera model of Ponce, Sturmfels and Trager [19] is a re-
cent instance of this approach, and provides a unified alge-
braic framework for studying a very large class of imaging
systems and the corresponding multi-view geometry. It is,
however, abstract, in the sense that the mapping between
visual rays and image points is left unspecified. This pa-
per provides a concrete embedding of this model, by mak-
ing the mapping from visual rays to a retinal plane explicit,
and thus identifying physical instances of rational cameras.
The imaging devices we consider are in fact the composi-
tion of three maps: the first two are purely geometric, and
map scene points onto visual rays, then rays onto the points
where they intersect a retinal plane. The last map is analyt-
ical: given a coordinate system on the retina, it maps image
points onto their corresponding coordinates (see Figure 1).
In particular, by introducing the notion of “primitive” cam-
era model as the orbit of a camera under the action of pro-
jective, affine, similarity, and euclidean transformations, we
can generalize many classical attributes of pinhole projec-
tions, such as intrinsic coordinates and calibration matri-
ces. Our methodology applies to arbitrary (rational) cam-
eras, but it is illustrated concretely by an in-depth study of
two-slit cameras [2, 7, 13, 27], which we describe using a
pair of linear 2×4 projection matrices. This simple form al-
lows us to describe models for the corresponding primitive
cameras, to introduce intrinsic parameters with a clear geo-
metric meaning, and to define an epipolar tensor character-
izing two-view correspondences. In turn, this leads to new
algorithms for structure from motion and self-calibration.



1.1. Background

Pinhole (or central) perspective has served since the
XVth Century as an effective model of physical imaging
systems, from the camera obscura and the human eye to the
daguerreotype and today’s digital photographic or movie
cameras. Under this model, a scene point x is first mapped
onto the unique line l joining x to c, which is itself then
mapped onto its intersection y with some retinal plane π.1

All retinas are projectively equivalent, and thus the essential
part of the imaging process is the map λLc

: P3 \ c → Lc

associating a point with the corresponding visual ray in the
bundle Lc of all lines through the pinhole c [17]. Simi-
larly, many non-central cameras can be imagined (and ac-
tually constructed [21, 22, 25]) by replacing the line bun-
dle Lc with a more general family of lines. For exam-
ple, Pajdla [14] and Batog et al. [2] have considered cam-
eras that are associated with linear congruences, i.e., two-
dimensional families of lines that obey linear constraints.
This model applies two-slit [13, 24, 27], pushbroom [7],
and pencil [26] cameras. For these devices, the projection
can be described by a projective map A so that each point x
is mapped to the line joining x andAx. Recently, a general-
ization of this model to non-linear congruences [10, 15] has
been introduced by Ponce, Sturmfels and Trager [19]. They
study algebraic properties of the essential map that asso-
ciates scene points to the corresponding viewing rays, and
provide a general framework for studying multi-view ge-
ometry in this setting. On the other hand, they do not focus
on the auxiliary part of the imaging process, that associates
viewing rays with image coordinates, leaving this map left
unspecified as an arbitrary birational map from a congru-
ence to P2. We provide in Section 2 the missing link with a
concrete retinal plane and (pixel) coordinate systems, which
is key for defining intrinsic parameters that have physical
meaning, and for developing actual algorithms for multi-
view reconstruction.

1.2. Contributions

From a theoretical standpoint: 1) we present a con-
crete embedding of the abstract rational cameras introduced
in [19], deriving general direct and inverse projection for-
mulas for these cameras, and 2) we introduce the notion of
primitive camera models, that are orbits of rational cam-
eras under the action of the projective, affine, and euclidean
and similarity groups, and lead to the generalization famil-
iar concepts such as intrinsic camera parameters. From a
more concrete point of view, we use this model for an in-
depth study of two-slit cameras [2, 13, 27]. Specifically,

1This is of course an abstraction of a physical camera, where a “central
ray” is picked inside the finite light beams of physical optical systems. As
noted in [2], this does not take anything away from the idealized model
adopted here. For example, a camera equipped with a lens is effectively
modeled, ignoring distortions, by a pinhole camera.

1) we introduce a pair of calibration matrices, which gen-
eralize to our setting the familiar upper-triangular matrices
associated with pinhole cameras, and can be identified with
the orbits of two-slit cameras under similarity transforms;
2) we define the epipolar tensor, that encodes the projec-
tive geometry of a pair of two-slit cameras, and generalizes
the traditional fundamental matrix; and 3) use these results
to describe algorithms for structure from motion and self-
calibration.

To improve readability, most proofs and technical mate-
rial are deferred to the supplementary material.

1.3. Notation and elementary line geometry

Notation. We use bold letters for matrices and vectors
(A,x, u, etc.) and regular fonts for coordinates (ai, xi, ui,
etc.). Homogeneous coordinates are lowercase and indexed
from one, and both points and planes are column vectors,
e.g., x = (x1, x2, x3, x4)

T , u = (u1, u2, u3)
T . For projec-

tive objects, equality is always up to some scale factor. We
identify R3 with points (x1, x2, x3, 1)

T in P3, and adopt
the standard euclidean metric. We also use the natural hier-
archy among projective transformations by the nested sub-
groups (dubbed from now on natural projective subgroups)
formed by euclidean (orientation-preserving) transforma-
tions, similarities (euclidean transformations plus scaling),
affine transformations, and projective ones. We will assume
that the reader is familiar with their analytical form.

Line geometry. The set of all lines of P3 forms a four-
dimensional variety, the Grassmannian of lines, denoted
by Gr(1, 3). The line passing through two distinct points
x and y in P3 can be represented using Plücker coordi-
nates by writing l = (l41, l42, l43, l23, l31, l12) where lij =
xiyj − xjyi. This defines a point in P5 that is indepen-
dent of the choice of x and y along l. Moreover, the co-
ordinates of any line l satisfy the constraint l · l∗ = 0,
where l∗ = (l23, l31, l12, l41, l42, l43) is the dual line for
l. Conversely any point in P5 with this property represents
a line, so Gr(1, 3) can be identified with a quadric hyper-
surface in P5. The join (∨) and meet (∧) operators are used
to indicate intersection and span of linear spaces (points,
lines, planes). For example, x ∨ y denotes the unique line
passing through x and y. To give analytic formulae for
these operators, it useful to introduce the primal and dual
Plücker matrices for a line l: these are defined respectively
as L = xyT −yxT and L∗ = uvT −vuT , where x,y are
any two points on l, and u,v are any two planes contain-
ing l (so l = x ∨ y = u ∧ v). With these definitions, the
join l ∨ z of l with a point z is the plane with coordinates
L∗z, while the meet l ∧w with a planew is the point with
coordinates Lw.



2. A physical model for rational cameras
For convenience of the reader, we briefly recall in Sec-

tion 2.1 some results from [19]. We then proceed to new
results in Sections 2.2 and 2.3.

2.1. Cameras and line congruences
Congruences. A line congruence is a two-dimensional
family of lines in P3, or a surface in Gr(1, 3) [10]. Since a
general camera produces a two-dimensional image, the set
of viewing rays captured by the imaging device will form a
congruence. We will only consider algebraic congruences
that are defined by polynomial equations in Gr(1, 3). Every
such congruence L is associated with two non-negative in-
tegers (α, β): the order α is the number of rays in L that
pass through a generic point of P3, while the class β is the
number of lines in L that lie in a generic plane. The pair
(α, β) is the bidegree of the congruence. The set of points
that do not belong to α distinct lines is the focal locus F (L).
Geometric rational cameras. Order one congruences (or
(1, β)-congruences) are a natural geometric model for most
imaging systems [1, 2, 17]. Indeed, a (1, β)-congruence L
defines a rational map λL : P3 99K Gr(1, 3) associating a
generic point x in P3 with the unique λL(x) line in L that
contains x.2 All possible maps of this form are described
in [19]. The Plücker coordinates of a line λL(x) are homo-
geneous polynomials (or forms) of degree β+1 in the coor-
dinates of x. For example, a family of (1, β)-congruences
are defined by an algebraic curve γ of degree β and a line δ
intersecting γ in β − 1 points [15]. Its rays are the common
transversals to γ and δ. The mapping λL : P3 99K Gr(1, 3)
can be expressed, using appropriate coordinates of P3, by

λL(x) =


x1
x2
x3
x4

 ∨

x1f(x1, x2)
x2f(x1, x2)
g(x1, x2)
h(x1, x2)

 , (1)

where f , g and h are respectively forms of degree β − 1,
β and β. The remaining (1, β)-congruences for β > 0
correspond to degenerations of this case, or to transversals
to twisted cubics. These can be parameterized in a similar
manner [19].
Photographic rational cameras. Composing λL : P3 99K
Gr(1, 3) with an arbitrary birational map ν : L 99K P2

determines a map ψ = ν◦λL : P3 99K P2, which is taken as
the definition of a general “photographic” rational camera
in [19]. Although this model leads to effective formulations
of multi-view constraints, it is abstract, with no explicit link
betweenu = ψ(x) and the actual image point where the ray
λL(x) intersects the sensing array.

2A rational map between projective spaces is a map whose coordinates
are homogeneous polynomial functions. In particular, this map is not well-
defined on points where all these polynomials vanish. Here and in the
following, we use a dashed arrow to indicate a rational map that is only
well-defined on a dense, open set.

2.2. Rational cameras with retinal planes

In this paper, we adapt the framework from [19] for
studying physical instances of photographic cameras. We
will refer to the map λL defined by a (1, β)-congruence L
as the essential part of the imaging process (or an “essen-
tial camera” for short). The auxiliary part of the process
requires choosing a retinal plane π in P3. This determines
a map µπ : L 99K π that associates any ray l in L not lying
in π with its intersection y = l ∧ π with that plane. For a
generic choice of π, this map is not defined on β lines, since
β lines from L will lie on π (recall the definition of β from
Section 2.1). Together, λL and µπ (or, equivalently, L and
π) define a mapping µπ ◦ λL : P3 99K π that can be taken
as a definition of a geometric rational camera. Finally, an
analytic counterpart of this model is obtained by picking a
coordinate system (π) on π, that corresponds to the pixel
grid where radiometric measurements are obtained. Rep-
resenting (π) as a 4 × 3 matrix Y = [y1,y2,y3], where
columns correspond to basis points, the coordinates u in P2

of any point y on π are given by u = Y †y, where Y †

is a 3 × 4 matrix in the three-parameter set of pseudoin-
verses of Y (see for example [17]). Note that both µπ and
Y † are linear, and in fact a simple calculation shows that
N = Y † ◦ µπ is described by the 3× 6 matrix

N = Y † ◦ µπ =

(y2 ∨ y3)
∗T

(y3 ∨ y1)
∗T

(y1 ∨ y2)
∗T

 . (2)

This expression does not depend on L: it represents a linear
map P5 99K P2 that associates a generic line l in P3 with
the coordinates u in P2 of its intersection with π.

Example 1. Consider the plane π = {x3 − x4 = 0}
in P3, equipped with the reference frame given by y1 =
(1, 0, 0, 0)T , y2 = (0, 1, 0, 0)T , y3 = (0, 0, 1, 1)T (with
fixed relative scale). The matrix N takes in this case the
form

N =

1 0 0 0 −1 0
0 1 0 1 0 0
0 0 1 0 0 0

 . (3)

The null space of the corresponding linear projection is
{p41 − p31 = p42 + p23 = p43 = 0}, which characterizes
lines contained in π. ♦

In summary, a complete analytical model of a physical
photographic rational camera is a map ψ : P3 99K P2 that is
the composition of the essential map λL : P3 99K Gr(1, 3),
associated with a (1, β)-congruence L, and the linear map
N of (2):

x 7→ u = ψ(x) =NλL(x). (4)

By construction, the coordinates of ψ(x) are forms of
degree β + 1 in x. One could of course define directly a
rational camera in terms of such forms (and indeed rational
cameras are commonly used in photogrammetry [9]). Note,



however, that arbitrary rational maps do not, in general, de-
fine a camera, since the pre-image of a generic point u in
P2 should be a line. From (4) we also easily recover the
inverse projection χ : P2 99K Gr(1, 3) mapping a point in
P2 onto the corresponding viewing ray in L:

u 7→ l = χ(u) = λL(Y u). (5)

The Plücker coordinates of l are also forms of degree β +1
in u. Equation (5) can be used to define epipolar or multi-
view constraints for point correspondences, since it allows
one to express incidence constraints among viewing rays in
terms of the corresponding image coordinates [22]. See also
Section 4.

To conclude, let us point out that although a rational
camera ψ : P3 99K P2 was introduced in terms of a congru-
ence L, a retinal plane π, and a projective reference frame
on π, the retinal plane is often not (completely) determined
given ψ. This is well known for pinhole cameras, and we
will argue that a similar ambiguity arises for two-slit cam-
eras. On the other hand, it is easy to see that the congruence
L and the global mappingN can always be recovered from
the analytic expression of the camera: the congruence L is
in fact determined by the pre-images ψ−1(u) under ψ of
points u in P2, whileN is described byN(ψ−1(u)) = u.

2.3. Primitive camera models
The orbit of a rational camera under the action of any

of the four natural projective subgroups defined earlier is
a family of cameras that are geometrically and analytically
equivalent under the corresponding transformations. Each
orbit will be called a primitive camera model for the corre-
sponding subgroup, and we will attach to every such model,
whenever appropriate and possible, a particularly simple an-
alytical representative. A primitive camera model exhibits
(analytical and geometric) invariants, that is, properties of
all cameras in the same orbit that are preserved by the asso-
ciated group of transformations. For example, the intrinsic
parameters of a pinhole perspective camera are invariants
for the corresponding euclidean primitive model; we will
argue in the next section that this definition can in fact be
applied for arbitrary rational cameras. Another familiar ex-
ample is the projection of the absolute conic, which is an
invariant for the similarity orbit of any imaging system. In-
deed, the absolute conic, defined in any euclidean coordi-
nate system by {x4 = x21 + x22 + x23 = 0}, is fixed by
all similarity transformations. This property is commonly
used for the self-calibration of pinhole perspective cam-
eras [12, 16, 18, 23] but it can be used for more general
cameras as well (see Section 4).

To further illustrate these concepts, we describe classi-
cal primitive models for pinhole projections. We consider
the standard pinhole projection ψ(x) = (x1, x2, x3)

T , as-
sociated with the 3 × 4-matrix [Id |0]. Its projective orbit
consists of all linear projections P3 99K P2, corresponding

to 3 × 4 matrices of full rank, so pinhole cameras form a
primitive projective model. The affine orbit of ψ is the fam-
ily of finite cameras, i.e., cameras of the form [A | b], where
A is a 3× 3 full-rank matrix. The orbit of ψ under similari-
ties or under euclidean transformations is the set of cameras
of the form [R | t] where R is a rotation matrix. The eu-
clidean and similarity orbits in this case coincide: this is of
course related to the scale ambiguity in pictures taken with
perspective pinhole cameras. The euclidean/similarity in-
variants of a finite camera can be expressed as entries of a
3 × 3 upper-triangular calibration matrix K: this follows
from the uniqueness of the RQ-decomposition A = KR.
Primitive models for cameras “at infinity” include affine,
scaled orthographic, and orthographic projections: these
are defined by the orbits under natural projective groups of
ψ′(x) = (x1, x2, x4)

T . Here the similarity and euclidean
orbits are different (indeed, orthographic projections pre-
serve distances). The intrinsic parameters can be expressed
as entries of a 2× 2 calibration matrix (see [8, Sec. 6.3]).

The remaining part of the paper focuses on a particu-
lar class of rational cameras, namely two-slit cameras, for
which the general concepts introduced above can be easily
applied. Two-slit cameras correspond in fact to congruences
of class β = 1, so they can be viewed as the “simplest” ra-
tional cameras after pinhole projections.

3. Two-slit cameras: a case study
Two-slit cameras [3, 7, 13, 24, 27] record viewing rays

that are the transversals to two fixed skew lines (the slits).
The bidegree of the associated congruence is (1, 1), since
a generic plane will contain exactly one transversal to the
slits, namely the line joining the points where the slits inter-
sect the plane. This type of congruence is the intersection
of Gr(1, 3) with a 3-dimensional linear space in P5 [2]. The
map λL associated with the slits l1, l2 is

x 7→ l = (x ∨ l1) ∧ (x ∨ l2). (6)

We now fix a retinal plane π equipped with the coordinate
system defined by Y = [y1,y2,y3]. A rational camera
ψ : P3 99K P2 is obtained by composing (6) with the 3× 6
matrix N as in (2). A simple calculation shows that the
resulting map can be written compactly as

x 7→ u =

xTP ∗1S1P
∗
2x

xTP ∗1S2P
∗
2x

xTP ∗1S3P
∗
2x

 , (7)

whereP ∗1,P
∗
2 are the dual Plücker matrices associated with

the slits l1, l2, while S1,S2,S3 are Plücker matrices for
y2 ∨ y3, y3 ∨ y1, y1 ∨ y2 respectively [3, 27].

Example 2. Let us fix the slits to be the lines l1 = {x1 =
x3 = 0}, l2 = {x2 = x3 + x4 = 0}. The corresponding



Figure 2. Left: A pinhole c induces a homography between any
two retinal planes not containing c. Right: Two skew lines l1, l2
induce a homography between planes intersecting at a transversal
δ to l1, l2.

essential map P3 99K Gr(1, 3) is given by

λ(x) = (x1(x3 + x4), x2x3, x3(x3 + x4), x2x3, 0,−x1x2)T
(8)

Composing with the projectionN in Example 1, we obtain
the formula for a rational camera with slits l1, l2:

u = ψ(x) = (x1(x3 + x4), 2x2x3, x3(x3 + x4))
T (9)

The same expression can be deduced from (7). ♦

It is noted in [3, 27] that using a different retinal plane
π in (7) corresponds, in general, to composing the rational
camera ψ : P3 99K P2 with a quadratic change of image
coordinates P2 99K P2. However, this transformation is in
fact linear when π and π′ intersect along a transversal to
the slits. This follows from the following property:

Lemma 1. Let l1, l2 be two skew lines in P3. For any point
x not on the these lines, we indicate with λ(x) the unique
transversal to l1, l2 passing through x. If π and π′ are two
planes intersecting at a line δ that intersects l1 and l2, then
the map f : π 99K π′ defined, for points y not on δ, as

f(y) = λ(y) ∧ π′, (10)

can be extended to a homography between π and π′.

This Lemma also implies that two retinal planes that in-
tersect at a transversal to the slits can define the same ra-
tional camera (using appropriate coordinate systems). Note
the similarity with the traditional pinhole case, where the
choice of the retinal plane is completely irrelevant since the
pinhole c induces a homography between any planes π,π′

not containing c. See Figure 2.

3.1. A projective model using linear projections
Contrary to the case of pinhole cameras, two-slit cameras

of the form (7) are not all projectively equivalent. This can
be argued by noting that the coordinates u1,u2 in P2 of
the points y1 = l1 ∧ π, y2 = l2 ∧ π (the intersections
of the slits with the retinal planes) are always preserved by
projective transformations of P3. For Batog et al. [1, 2], the

coordinatesu1,u2 are “intrinsic parameters” of the camera;
indeed, they are projective intrinsics (i.e., invariants) of a
two-slit device. Batog et al. also argue that choosing the
points y1, y2 as points in the projective basis on π leads
to simplified analytic expressions for the projection. Here,
we develop this idea further, and observe that any two-slit
camera with this kind of coordinate system can always be
described by a pair of linear projections. More precisely,
for any retinal plane π, let us fix a coordinate system Y =
[y1,y2,y3] where y1 = l2 ∧ π, y2 = l1 ∧ π and y3 is
arbitrary: in this case, a straightforward computation shows
that (7) reduces to

x 7→

[
u1

u2

u3

]
=

(pT
1 x) (q

T
2 x)

(pT
2 x) (q

T
1 x)

(pT
2 x) (q

T
2 x)

 =

[
pT
1 x/p

T
2 x

qT1 x/q
T
2 x

1

]
, (11)

where p1 = (l1 ∨ y3), p2 = −(l1 ∨ y1), q1 = (l2 ∨ y3),
q2 = −(l2 ∨ y2) are vectors representing planes in P3. It
is easy to see that this quadratic map can be described using
two linear maps P3 99K P1, namely

x 7→
[
u1

u3

]
=

[
pT
1 x
pT
2 x

]
= A1x, x 7→

[
u2

u3

]
=

[
qT1 x
qT2 x

]
= A2x.

(12)
In other words, (11) determines the 2 × 4 matrices A1 and
A2 up to two scale factors, and vice-versa. Since apply-
ing a projective transformation to x in (11) corresponds to
a matrix multiplication applied to bothA1 andA2, we eas-
ily deduce that every pair of 2× 4-matrices of full rank and
with disjoint null-spaces corresponds to a two-slit camera,
and that all these cameras are projectively equivalent. The
two 2 × 4 matrices for a two-slit camera are analogues of
the 3×4 matrix representing a pinhole camera: for example,
the slits are associated with the null-spaces of these two ma-
trices.3 For two given projection matrices, the retinal plane
may be any plane containing the line {pT2 x = qT2 x = 0}:
this is the line through y1 and y2, and is the locus of points
where the projection is not defined. This completely de-
scribes a primitive projective model with 7 + 7 = 14 de-
grees of freedom. More precisely, there are 8 degrees of
freedom corresponding to the choice of the slits, 2 for the
intersection points of the retinal plane with the slits, and 4
for the choice of coordinates on the plane (since two basis
points are constrained).

In the remainder of the paper, we will always assume that
a two-slit photographic camera is of the form (11). This
is equivalent to knowing the “projective intrinsic parame-
ters” [2], namely the coordinates of l1 ∧ π, l2 ∧ π. We
will also identify a camera with its two associated projec-
tion matrices.

3The linear maps P3 99K P1 correspond in fact to the “line-centered”
projections for the two slits. The action of a two-slit camera is arguably
more natural viewed as a map P3 99K P1 × P1, however we chose to
maintain P2 as the image domain, since it is a better model for the retinal
plane used in physical devices.



Figure 3. Physical interpretation of the entries the calibration ma-
trices for parallel two-slit cameras: the parameters fu, fv, u0, v0
describe the change of retinal plane coordinates, with respect to
some camera in the euclidean orbit of (15).

Example 3. The two-slit projection from Example 2 is of
the form (11) with

A1 =

[
1 0 0 0
0 0 1 0

]
,A2 =

[
0 2 0 0
0 0 1 1

]
. (13)

The retinal plane belongs to the pencil of planes containing
{x3 = x3+x4 = 0}, i.e., it is a plane of the form x3−dx4 =
0. The choice d = 1 is natural since points of the form
[x1, x2, 1, 1] are mapped to [x1, x2, 1]. ♦

3.2. Orbits and calibration matrices
Using the linear model introduced above, we can easily

describe affine, similarity, and euclidean orbits for two-slit
cameras. For example, the affine orbit of the device in (9),
(13) corresponds to

A1 =

[
mT

1 t1
mT

3 t3

]
,A2 =

[
mT

2 t2
mT

3 t4

]
, (14)

where mi are arbitrary 3-vectors. This is the family of
two-slit cameras where the retinal plane is parallel to the
slits: indeed, although this plane is not completely deter-
mined, it is constrained to contain the line {[mT

3 , t3]x =
[mT

3 , t4]x = 0}, that intersects both slits. We will refer to
(14) as a parallel two-slit camera. These cameras form an
affine model with 12 degrees of freedom.

We now consider the family of (euclidean) parallel cam-
eras of the form

A1 =

[
1 0 0 0
0 0 1 0

]
, A2 =

[
2 cos θ 2 sin θ 0 0

0 0 1 d

]
.

(15)
for d 6= 0 and 0 < θ < 2π (and θ 6= π). The slits for this
camera are at an angle of θ and distance d. Note that (9) is
of this form, with θ = π/2 and d = 1.

Using (15) as a family of canonical euclidean devices,
we can introduce expressions for the “intrinsic parameters”
of two-slit cameras.

Proposition 1. IfA1,A2 describe a parallel two-slit cam-
era (14), then we can uniquely write

A1 =K1

[
rT1 t1
rT3 t3

]
, A2 =K2

[
rT2 t2
rT3 t4

]
, (16)

whereK1 andK2 are upper-triangular 2× 2 matrices de-
fined up to scale with positive elements along the diagonal,
and r1, r2, r3 are unit vectors, with r3 orthogonal to both
r1, r2. Here, θ = arccos(r1 · r2) is the angle between the
slits, and |t4 − t3| is the distance between the slits. More-
over, if the matricesK1 andK2 are written as

K1 =

[
fu u0

0 1

]
,K2 =

[
2fv v0
0 1

]
, (17)

then fu, fv can be interpreted as “magnifications” in the u
and v directions, and (u0, v0) as the position of the “prin-
cipal point”. See Figure 3.

The parameters θ and d, and the matricesK1 andK2 are
clearly invariant under euclidean transformations. More-
over, within the parallel model (14), two cameras belong to
the same euclidean orbit if and only if all of their parameters
are the same. In fact, the 12 degrees of freedom of a parallel
camera are split into 6 corresponding to the “intrinsics” θ,
d,K1 andK2, and 6 for the “extrinsic” action of euclidean
motion.4 Compared to the traditional intrinsic parameters
for pinhole cameras, we note the absence of a term corre-
sponding to the “skewness” of the image reference frame.
Indeed, the angle between the two axes must be the same as
the angle between the slits, as a consequence of the “intrin-
sic coordinate system” (the principal directions correspond
in fact to the fixed basis points y1,y2 on the retinal plane).
On the other hand, θ and d do not have an analogue for pin-
hole cameras. We will sometimes refer to d and θ as the
“3D” intrinsic parameters, since we distinguish them from
the “analytic” intrinsic parameters, that are entries of the
calibration matrices K1,K2, and differentiate (euclidean
orbits of) cameras only based on analytic part of their map-
ping. We also point out that for two-slit cameras in (16), the
euclidean orbit and the similarity orbit do not coincide: this
implies that when the intrinsic parameters are known, some
information on the scale of a scene can be inferred from a
photograph [22].
Pushbroom cameras. Pushbroom cameras are degenerate
class of projective two-slit cameras, in which one of the
slits lies on the plane at infinity [3]. This is quite similar to
the class affine cameras for perspective projections. Pushb-
rooms are handled by our projective model (11), but not by
our affine one (14), where both slits are necessarily finite.
We thus introduce another affine model, namely

A1 =

[
mT

1 t1
0 1

]
, A2 =

[
mT

2 t2
mT

3 t3

]
, (18)

where m1,m2,m3 are arbitrary 3-vectors. All such cam-
eras are equivalent up to affine transformations, so this de-

4Intrinsic parameters describing euclidean orbits among more general
(non-parallel) two-slit cameras can also be defined, but two more param-
eters are required. We chose to consider only two-slits with retinal plane
parallel to the slits, since this is a natural assumption, and because the pa-
rameters have a simpler interpretation in this case.



scribes an affine model with 11 degrees of freedom. The
corresponding rational cameras can be written as

x 7→
(
[mT

1 , t1]x,
[mT

2 , t2]x

[mT
3 , t3]x

, 1

)T

. (19)

This coincides with the linear pushbroom model proposed
by Hartley and Gubta [7], who identify (19) with the 3 × 4
matrix with rows [mT

1 , t1], [m
T
2 , t2], [m

T
3 , t3].

Let us now consider a family of affine pushbroom cam-
eras of the form[

sin θ cos θ 0 0
0 0 0 1

] [
0 1 0 0
0 0 1 0

]
, (20)

for 0 < θ < 2π (and θ 6= π). This represents a pushbroom
camera where the direction of movement is at an angle θ
with respect to the parallel scanning planes. We use this
family of canonical devices to define calibration matrices
and intrinsic parameters.

Proposition 2. Let A1,A2 define a pushbroom camera as
in (18), and let us also assume thatm1 andm3 are orthog-
onal.5 We can uniquely write

A1 =K1

[
rT1 t1
0 1

]
,A2 =K2

[
rT2 t2
rT3 t3

]
. (21)

where K1 = diag(1/v, 1), K2 =

[
f u
0 1

]
(with positive v

and f ) and r1, r2, r3 are unit vectors, with r3 orthogonal
to both r1, r2. Here, θ = arccos(r1 · r2) is the angle be-
tween the two slits (or between the direction of motion of the
sensor and the parallel scanning planes). Moreover, v can
be interpreted as the speed of the sensor, and f and u as the
magnification and the principal point of the 1D projection.

The entries K1,K2 are the “analytic” intrinsic param-
eters of the pushbroom camera, while θ is a “3D” intrinsic
parameter.

4. Two-slit cameras: algorithms
In this section, we apply our study of two-slit cameras

to develop algorithms for structure from motion (SfM). The
epipolar geometry of two-slit cameras will be described in
terms of a 2× 2× 2× 2 epipolar tensor. Previously, image
correspondences between two-slit cameras have been char-
acterized using a 6×6 [3], or a 4×4 fundamental matrix [2].
The latter approach, due to Batog et al. [2], is similar to
ours, since it is based on the “intrinsic” image reference
frame that we also adopt. However, the tensor representa-
tion has the advantage of being easily described in terms of
the elements of the four 2×4 projection matrices, in a form
that closely resembles the corresponding expression for the

5The more general case can also be described, but presents some tech-
nical difficulties. See the supplementary material for a discussion.

traditional fundamental matrix. The definition of the epipo-
lar tensor was already given in [19] for image coordinates in
P1×P1 (and without explicit links to physical coordinates).
Here, we also observe that every such tensor identifies ex-
actly two projective camera configurations:

Theorem 1. Let (A1,A2), (B1,B2) be two general pro-
jective two-slit cameras. The set of corresponding image
points u, u′ in P2 is characterized by the following rela-
tion: ∑

ijkl

fijkl

[
u1

u3

]
i

[
u2

u3

]
j

[
u′1
u′3

]
k

[
u′2
u′3

]
l

= 0, (22)

where F = (fijkl) is a 2 × 2 × 2 × 2 “epipolar tensor”.
Its entries are

fijkl = (−1)i+j+k+l·det
[
(A1)

T
3−i (A2)

T
3−j (B1)

T
3−k (B2)

T
3−l

]
.

(23)
Up to projective transformations of P3 there are two con-
figurations (A1,A2), (B1,B2) compatible with a given
epipolar tensor.

Proof sketch. The definition of F follows by applying the
incidence constraint for two lines to the “inverse line projec-
tions” (5) of image points. See the supplementary material
or [19] for details. The definition of F is clearly invariant
under projective transformations of P3. Hence, we may as-
sume that

A1 =

[
1 0 0 0
c11 c12 c13 c14

]
, A2 =

[
0 1 0 0
c21 c22 c23 c24

]
,

B1 =

[
0 0 1 0
c31 c32 c33 c34

]
. B2 =

[
0 0 0 1
c41 c42 c43 c44

]
.

(24)
The 16 entries of F are now the principal minors (i.e.,
all minors obtained by considering subsets of rows and
columns with the same indices) of the 4×4-matrix C =
(cij). Thus, determining the projection matrices (A1,A2),
(B1,B2) corresponding to the tensor F , is equivalent to
finding the entries of a 4 × 4-matrix given its principal mi-
nors. This problem is studied in [11]. The set of all ma-
trices with the same principal minors as C have the form
D−1CD or D−1CTD, where D is a diagonal matrix.
These two families of matrices, viewed as elements of (24),
correspond to two distinct projective configurations of cam-
eras.

The set of all epipolar tensors forms a 13-dimensional
variety in P15: this agrees with 14+14−15 = 13, where 14
represents the degrees of freedom of two-slit cameras, and
15 is to account for projective ambiguity. Two equations are
sufficient to characterize an epipolar tensor locally, however
a result in [11] implies that a complete algebraic character-
ization actually requires 718 polynomials of degree 12.

Our study of canonical forms and calibration matrices
in Section 3 also leads to a natural definition of essential
tensors: for example, an essential tensor could be defined
by (22) where (A1,A2), (B1,B2) are all of the form (16)



with K1, K2 being the identity. Proposition 1 then guar-
antees that for any pair of “parallel” two-slit cameras as in
(14), we can uniquely write the epipolar tensor as

F ijkl = Eijkl(K1A)i(K2A)j(K1B)k(K2B)l (25)

where Eijkl is an essential tensor. This closely resembles
the analogous decomposition of fundamental matrices. Re-
covering an algebraic characterization of essential tensors,
similar to the classical result that identifies essential matri-
ces as fundamental matrices with two equal singular values,
could be an interesting topic for future work.

Structure from motion. Using Theorem 1, we can de-
sign a linear algorithm for SfM, that proceeds as follows:
(1) Using at least 15 image point correspondences, estimate
F linearly using (22). (2) Recover two projective camera
configurations that are compatible F . Clearly, for noisy im-
age correspondences, the linear estimate from step 1) will
not be a valid epipolar tensor: a simple solution for this
is to recover elements of C using only 13 principal mi-
nors given by the entries of F . More precisely, after set-
ting c12 = c13 = c14 = 1 (and normalizing F so that
f2222 = 1), the elements on the diagonal and on the first
column of C can be recovered from F using linear equali-
ties. The remaining six entries are pairwise constrained by
six elements of F , leading to 8 possible matrices C. In an
ideal setting with no noise, exactly two of the 8 solutions
will be consistent with the remaining two elements of F
(more generally, we consider the two solutions that mini-
mize an “algebraic residual”). A preliminary implementa-
tion of this approach, presented in detail the supplementary
material, confirms that projective configurations of two-slit
cameras can be recovered from image correspondences. It
is also possible to design a 13-point algorithm that recov-
ers projection matrices (24) and the corresponding tensor F
from a minimal amount of data, namely 13 point correspon-
dences between images. The set of linear tensors that sat-
isfy (22) for 13 correspondences is a two-dimensional linear
space, and imposing constraints for being a valid epipolar
tensor leads to a system of algebraic equations. According
to [11, Remark 14] this system has 28 complex solutions
for F , which translate into 56 matrices C = (cij). Experi-
ments using the computer algebra system Macaulay2 [5]
confirm these theoretical results.

Self-calibration. Any reconstruction based on the epipolar
tensor will be subject to projective ambiguity. On the other
hand, using results from Section 3, it is possible to develop
strategies for self-calibration. Let us assume that we have
recovered a projective reconstruction of two-slit projections
Ai

1,A
i
2 for i = 1, . . . , n, and also that we know that they

are in fact (parallel) finite two-slit cameras. Our goal is to
find a “euclidean upgrade”, that is, a 4 × 4-matrix Q that
describes the transition from a euclidean reference frame
to the frame corresponding to our projective reconstruction.

According to Proposition 1, we may write

Ai
1QΩ∗QTAi

1
T
=Ki

1K
i
1
T

Ai
2QΩ∗QTAi

2
T
=Ki

2K
i
2
T
,

(26)

(equality up to scale) whereKi
1,K

i
2 are the unknown 2×2

matrices of intrinsic parameters for Ai
1,A

i
2, and Ω∗ =

diag(1, 1, 1, 0). Geometrically, (26) expresses the fact that
the dual of the image of the absolute conic is a section of
the dual absolute quadric. These relations are completely
analogous to the self-calibration equations for pinhole cam-
eras, so that any partial knowledge of the matricesKi

1,K
i
2

can be used to impose constraints on QΩ∗QT and hence
on Q (although, as for the pinhole case, we can actually
only recover a “similarity” upgrade). For example, if the
principal points are known to be at the origin (so Ki

1K
i
i

T

andKi
2K

i
2

T
are diagonal), then (26) gives four linear equa-

tions in the elements of QΩ∗QT corresponding to the zero
entries of Ki

1K
i
1

T
and Ki

2K
i
2

T
. A sufficient number of

views allows us to estimate QΩ∗QT , and from a singular
value decomposition we can recover Q up to a similarity
transformation. We refer to the supplementary material for
some experiments with synthetic data.

5. Discussion
In the first part of this presentation, we have described

optical systems that can be associated with congruences of
order one, and that record lines by measuring the coordi-
nates of their intersection with some retinal plane. This
setting is very general, but excludes important families of
imaging devices such as (non-central) catadioptric cam-
eras, or cameras with optical distortions. In these examples,
visual rays are reflected or refracted by specular surfaces or
optical lenses, leading to maps that are often not rational
(for example, they may involve square-roots). These cases
could be handled by noting that mirrors or lenses act on a
line congruence L of (primary) visual rays by mapping it
to a new congruence L′ of (secondary) rays. A completely
general system consists of a sequence of such steps, fol-
lowed a final map where rays are intersected with a retinal
plane. Partial results in [19] discuss the effect of reflecting
a (1, β)-congruence off an algebraic surface, but an effec-
tive description of reflections and refractions in terms of line
congruences is still missing. It will of course be of great in-
terest to pursue this direction of research, and extend the
approach proposed in this presentation to a completely gen-
eral setting.
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This supplementary document contains some technical
material not included in the main body of the paper, and
presents the algorithms for SfM and self-calibration for
two-slit cameras.

A. Calculations with Plücker coordinates

Let π be a plane in P3. We consider a reference frame
(π) on π described by a 4 × 3 matrix Y = [y1,y2,y3].
The map N : Gr(1, 3) 99K P2 associating any line l not on
π with the coordinates of the point y = π ∧ l for (π) is
described by the 3× 6 matrix

N =

(y2 ∨ y3)
∗T

(y3 ∨ y1)
∗T

(y1 ∨ y2)
∗T

 . (27)

Indeed, this is the only linear map Gr(1, 3) 99K P2 such
that N(y1 ∨ z) = (1, 0, 0)T , N(y2 ∨ z) = (0, 1, 0)T ,
N(y3∨z) = (0, 0, 1)T ,N((y1+y2+y3)∨z) = (1, 1, 1)T

for all z not in π.
Let us now consider two “slits” l1, l2, that we represent

using dual Plücker matrices P ∗1,P
∗
2. The action of the cor-

responding essential camera x 7→ λL(x) can be written as

x 7→ l = (l1∨x)∧ (l2∨x) = P ∗1xxTP ∗2−P ∗2xxTP ∗1, (28)

where l = λL(x) is given as a dual Plücker matrix. Writing
S1,S

∗
1,S2,S

∗
2,S3,S

∗
3 for the primal and dual Plücker ma-

trices for y2 ∨y3,y3 ∨y1,y1 ∨y2 respectively, and L,L∗

for the primal and dual Plücker matrices of l = λL(x), we
have

λL(x) ∧ π = Y Nl = Y

tr(S∗1L)tr(S∗2L)
tr(S∗3L)

 = Y

tr(S1L
∗)

tr(S2L
∗)

tr(S3L
∗)


= Y

tr(S1P
∗
2xx

TP ∗1)
tr(S2P

∗
2xx

TP ∗1)
tr(S3P

∗
2xx

TP ∗1)

 = Y

xTP ∗1S1P
∗
2x

xTP ∗1S2P
∗
2x

xTP ∗1S3P
∗
2x

 ,
(29)

where equality is written up to scale, and we have used the
fact that tr(AB) = tr(BA) = tr(ATBT ) = tr(BTAT )
for any matrices A,B. Hence, we recover the expression
for a general two-slit camera, already noted in [3, 27]:

x 7→ u =

xTP ∗1S1P
∗
2x

xTP ∗1S2P
∗
2x

xTP ∗1S3P
∗
2x

 . (30)

If we choose an “intrinsic” reference frame, so that y1 =
l2∧π and y2 = l1∧π, or equivalentlyP ∗1y2 = P ∗2y1 = 0,

the two-slit projection (30) reduces to

x 7→ u =

xTP ∗1(y2y
T
3 − y3y

T
2 )P

∗
2x

xTP ∗1(y3y
T
1 − y1y

T
3 )P

∗
2x

xTP ∗1(y1y
T
2 − y2y

T
1 )P

∗
2x


=

−xTP ∗1y3y
T
2 P
∗
2x

−xTP ∗1y1y
T
3 P
∗
2x

xTP ∗1y1y
T
2 P
∗
2x


=

(pT
1 x) (q

T
2 x)

(pT
2 x) (q

T
1 x)

(pT
2 x) (q

T
2 x)

 ,
(31)

where p1 = P ∗1y3 = (l1 ∨ y3), p2 = −P ∗1y1 = −(l1 ∨
y1), q1 = P ∗2y3 = (l2∨y3), q2 = −P ∗2y2 = −(l2∨y2).
Finally, combining (28) and (31), we also obtain an expres-
sion for the inverse line projection χ : P2 99K Gr(1, 3):

u 7→ λL(Y u) = P
∗
1Y uu

TY TP ∗2 − P ∗2Y uuTY TP ∗1

= [−p2,0,p1]uu
T [0,−q2, q1]− [0,−q2, q1]uu

T [−p2,0,p1]

= u1u2(p2 ∧ q2)− u1u3(p2 ∧ q1)− u2u3(p1 ∧ q2) + u2
3(p1 ∧ q1).
(32)

B. Proofs
Lemma B.1. Let l1, l2 be two skew lines in P3. For any
point x not on the these lines, we indicate with λ(x) the
unique transversal to l1, l2 passing through x. If π and π′

are two planes intersecting at a line δ that meets l1 and l2,
then the map f : π 99K π′ defined, for points y not on δ, as

f(y) = λ(y) ∧ π′, (33)

can be extended to a homography between π and π′.

Proof. Let us fix a coordinate system (π) on π given by
Y = [y1,y2,y3]. Up to composing with a projective trans-
formation, we may assume that y1 = l2 ∧ π and y2 =
l1∧π. It is also convenient to define p1,p2, q1, q2 as in the
previous section, namely p1 = (l1 ∨y3), p2 = −(l1 ∨y1),
q1 = (l2 ∨ y3), q2 = −(l2 ∨ y2). The map λ(y) can now
be written as y = Y u 7→ χ(u) where χ is given in (32). In
particular, since δ = p2 ∧ q2 = y1 ∨ y2 lies on π′, we can
describe f(y) as

y = Y u 7→ χ(u) ∧ π′

= −u1u3(p2 ∧ q1 ∧ π
′)− u2u3(p1 ∧ q2 ∧ π

′) + u2
3(p1 ∧ q1 ∧ π

′)

= u1y
′
1 + u2y

′
2 + u3y

′
3,

(34)
where y′1 = −(p2∧q1∧π′), y′2 = −(p1∧q2∧π′), y′3 =
(p1 ∧ q1 ∧ π′). Fixing Y ′ = [y′1,y

′
2,y
′
3] as a reference

frame on π′, the map (33) corresponds to the identity on P2.
Hence, it can be extended to points y on δ (where u3 = 0),
and it is a homography.

We also give a sketch for a more “geometric” argument:
we need to show that the a (generic) linem on π is mapped
by (33) to a line on π′. If m does not intersect l1 or l2, the



union of the common transversals to l1, l2,m (that are the
lines in λL(m)) is a quadric in P3. The intersection of this
quadric with π′ will have degree two, however it contains
the transversal line δ, and hence it is reducible. Since δ
does not belong to the image of (33), we deduce that (the
closure of) image ofm is a line in π′.

Proposition B.1. If A1, A2 describe a parallel two-slit
camera (14), then we can uniquely write

A1 =K1

[
rT1 t1
rT3 t3

]
, A2 =K2

[
rT2 t2
rT3 t4

]
, (35)

whereK1 andK2 are upper-triangular 2× 2 matrices de-
fined up to scale with positive elements along the diagonal,
and r1, r2, r3 are unit vectors, with r3 orthogonal to both
r1, r2. Here, θ = arccos(r1 · r2) is the angle between the
slits, and |t4 − t3| is the distance between the slits. More-
over, if the matricesK1 andK2 are written as

K1 =

[
fu u0

0 1

]
,K2 =

[
2fv v0
0 1

]
, (36)

then fu, fv can be interpreted as “magnifications” in the u
and v directions, and (u0, v0) as the position of the “prin-
cipal point”.

Proof. The decomposition exists and is unique because of
RQ-decomposition of matrices [4, Theorem 5.2.3]. More
precisely, if we write A1 = [M1 | t1], A2 = [M2 | t2],
where M1,M2 are 2 × 3, then K1, K2 are the (normal-
ized) upper triangular matrices in the RQ decomposition for
M1,M2 respectively.

We next observe that for a pair canonical matrices

A1 =

[
1 0 0 0
0 0 1 0

]
, A2 =

[
2 cos θ 2 sin θ 0 0

0 0 1 d

]
,

(37)
the corresponding euclidean orbit is of the form[

rT1 t1
rT3 t3

]
,

[
2rT2 2t2
rT3 t3 + d

]
, (38)

where θ = arccos(r1 ·r2). This follows by applying a 4×4
euclidean transformation matrix to (37). These cameras de-
compose withK1 being the identity andK2 = diag(2, 1).

Finally, if we indicate with p1,p2 and 2q1, q2 the rows
of (38), so that the corresponding camera can be written as
x 7→ u = (pT1 x/p

T
2 x, 2q

T
1 x/q

T
2 x, 1), then the compo-

sition of
[
pT1
pT2

]
,
[
qT1
qT2

]
with K1,K2 as in (36) yields the

camera

x 7→
(
fu
pT
1 x

pT
2 x

+ u0, fv
2qT1 x

qT2 x
+ v0, 1

)T

. (39)

From this we easily deduce the physical interpretations of
the entries ofK1 andK2.

We point out that a decomposition with calibration matri-
ces is actually possible for generic finite two-slits (not nec-
essarily “parallel”), if we allow for non triangular matrices
K1,K2. Indeed, the four rows of M1,M2 will intersect
in a linear space of dimension one 〈r〉, and the second rows
of K1,K2 can describe how to obtain r from M1,M2.
Imposing that the diagonal elements of K1,K2 are posi-
tive, the decomposition is unique, and there are now 6 + 2
(“analytic” and “3D”) intrinsic, and 6 extrinsic parameters,
summing up to 14 degrees of freedom of our projective two-
slit camera model. On the other hand, the action of general
calibration matrices is not a linear change of image coordi-
nates, and requires changing retinal plane (in fact, we must
switch to a “parallel plane” for the two slits).

Proposition B.2. LetA1,A2 define a pushbroom camera

A1 =

[
mT

1 t1
0 1

]
, A2 =

[
mT

2 t2
mT

3 t3

]
, (40)

such that thatm1 andm3 are orthogonal. We can uniquely
write

A1 =K1

[
rT1 t1
0 1

]
,A2 =K2

[
rT2 t2
rT3 t3

]
, (41)

where K1 = diag(1/v, 1), K2 =

[
f u
0 1

]
(with positive v

and α) and r1, r2, r3 are unit vectors, with r3 orthogonal
to both r1, r2. Here, θ = arccos(r1 · r2) is the angle be-
tween the two slits (or between the direction of motion of the
sensor and the parallel scanning planes). Moreover, v can
be interpreted as the speed of the sensor, and f and u as the
magnification and the principal point of the 1D projection.

Proof. The proof is similar to that of Proposition B.1. The
decomposition is unique because of QR-factorization of
matrices. The euclidean orbits of “canonical” pushbroom
cameras have the form[

rT1 t1
0 1

]
,

[
rT2 t2
rT3 t3

]
, (42)

All these cameras decompose withK1,K2 being the iden-
tity. Finally, the physical interpretation of the parame-
ters follows by noting that composing a pushbroom cam-
era (with rows pT1 , (0, 0, 0, 1)

T and qT1 , q
T
2 ) with calibration

matricesK1,K2 yields

x 7→
(
1

v
pT
1 x, f

qT1 x

qT2 x
+ u, 1

)T

. (43)

Similarly to the case of finite slits, the decomposition
based on calibration matrices can be extended to the case of
arbitrary pushbroom cameras, by allowing for K2 to be a
general 2×2 matrix with positive entries along the diagonal.



This gives a total of 4 + 1 + 6 = 11 free parameters, which
agrees with the degrees of freedom of our affine pushbroom
model. However, a non-upper triangular matrix K2 does
not correspond to a linear change of image coordinates as
in (43), but requires changing retinal plane.

Theorem B.1. Let (A1,A2), (B1,B2) be two general pro-
jective two-slit cameras. The set of corresponding image
points u, u′ in P2 is characterized by the following rela-
tion: ∑

ijkl

fijkl

[
u1

u3

]
i

[
u2

u3

]
j

[
u′1
u′3

]
k

[
u′2
u′3

]
l

= 0, (44)

where F = (fijkl) is a 2 × 2 × 2 × 2 “epipolar tensor”.
Its entries are

fijkl = (−1)i+j+k+l·det
[
(A1)

T
3−i (A2)

T
3−j (B1)

T
3−k (B2)

T
3−l

]
.

(45)
Up to projective transformations of P3 there are two con-
figurations (A1,A2), (B1,B2) compatible with a given
epipolar tensor.

Proof. The inverse line projection (32) can be written as

χ(u) =
∑
ij

(−1)i+j(A1)3−i ∧ (A2)3−j

[
u1

u3

]
i

[
u2

u3

]
j

. (46)

The definition of F is simply the condition that χ(u) and
χ(u′) as in (46) are concurrent (see also [19]). Up a
global scale factor, the elements of F do not depend on the
scaling of the 2 × 4 matrices, and are fixed by projective
transformations of P3. Hence, assuming that the vectors
(A1)1, (A2)1, (B1)1, (B2)1 are independent (which is true
generically) we can apply a change of reference frame in P3

so that the projection matrices have the form

A1 =

[
1 0 0 0
c11 c12 c13 c14

]
, A2 =

[
0 1 0 0
c21 c22 c23 c24

]
,

B1 =

[
0 0 1 0
c31 c32 c33 c34

]
. B2 =

[
0 0 0 1
c41 c42 c43 c44

]
.

(47)
The 16 entries of F are now (up to sign) the princi-
pal minors of the 4×4-matrix C = (cij): more pre-
cisely, fijkl = (−1)i+j+k+l detC [i−1,j−1,k−1,l−1] where
C [i−1,j−1,k−1,l−1] is the submatrix of C where the se-
lected rows and columns correspond to the binary vector
[i− 1, j − 1, k− 1, l− 1] (for example,C [1,0,0,0] = (c11)).
Determining valid projection matrices (A1,A2), (B1,B2)
given the tensor F , is equivalent to finding the entries of
the 4 × 4-matrix C given its principal minors. This prob-
lem is studied in [11]. Under generic conditions, the set
of all matrices with the same principal minors as C have
the form D−1CD or D−1CTD, where D is a diagonal
matrix [11]. Each of these two families of matrices is a
projective configuration of cameras, and the two configura-
tions are in general distinct (see the discussion in the next
section).

C. Algorithms
C.1. Linear SfM

We assume that we are given pairs of corresponding im-
age points (ui,u

′
i), i = 1, . . . , n, for two unknown two-slit

cameras. Each pair yields a linear constraint on the epipo-
lar tensor F in (44). Hence, if n ≥ 15 correspondences
are given, we can compute a linear estimate for F . For
noisy data, this estimate will not be a valid epipolar tensor,
since tensors of the form (44) are not generic. However, it
is possible to recover projection matrices from only 13 of
the entries of F , which avoids the problem of using a valid
tensor. A simple scheme for this is as follows:

1. We set out to recover the entries of a 4 × 4-matrix C
given its principal minors. Since we can always re-
placeC withD−1CD, whereD is a diagonal matrix,
we can assume that c12 = c13 = c13 = c14 = 1 (at
least generically). Other similar assignments are pos-
sible.

2. Elements on the diagonal and on the first column ofC
are easily computed given (seven of the entries of) F :

• c11 = −f1222; c22 = −f2122; c33 = −f2212;
c44 = −f2221.

• c21 = (c11c22 − f1122)/c12; c31 = (c11c33 −
f1212)/c13; c41 = (c11c44 − f1221)/c14.

Here the elements to the right of the equal signs have
already been assigned. Hence, we recover 10 entries
of C from linear equalities.

3. The remaining six entries of C are pairwise con-
strained by six elements of F . For example, using the
minors f2112, f1112 (corresponding to rows/columns
2, 3 and 1, 2, 3 of C) we deduce that c32 must satisfy
ac232 + bc32 + c = 0 where

a = c13c21

b = f1112 + c11f2112 − c13c31c22 − c12c21c33
c = c12c31c22c33 − c12c31f2112,

(48)

and that c23 = (c22c33 − f2112)/c32. Similar relations
hold for the pairs c24, c42 and c34, c43. This leads to
8 possible matrices C, i.e., a finite number of cam-
era configurations. Note however that the entries f1111
and f2111 of F were never used (which is why we can
assume the tensor to be generic): in an ideal setting
with no noise, exactly two of the 8 solutions will be
consistent with the remaining constraints.

This approach for recovering two-slit projections from
the corresponding epipolar tensor relies on some genericity
assumptions (e.g., we have often divided by element with-
out verifying that it is not zero), and developing an optimal
strategy for this task is outside the scope of our work. Nev-
ertheless, we include as a proof of concept some results.



Experiments. We present a concrete example illustrating
some basic properties of the fundamental tensor. We con-
sider the following pairs of projection matrices:

A1 =

[
−1 7 4 0
8 −1 13 4

]
,A2 =

[
11 6 −2 4
8 −1 13 −5

]
B1 =

[
14 9 −3 8
0 0 0 1

]
,B2 =

[
−3 8 10 3
6 13 5 13

]
(49)

The pair A1,A2 represents a parallel finite two-slit cam-
era, while B1,B2 is a pushbroom camera. The associated
epipolar tensor (44) is

F =

[
0 0

21816 −25650

] [
1906 −2090
−3642 5510

]
[

880 475
18600 −11875

] [
97 −380
−1259 1425

]
,

(50)

where each 4×4 matrix represents a block (fijkl)kl for fixed
i, j. Note that f1111 and f1112 are zero, since the second
rows of A1,A2,B1 are linearly dependent. Using the ap-
proach outlined above, we can use this tensor to recover two
matrices C1,C2 whose principal minors are the entries of
F (we must normalize F so that f2222 = 1). We use these
matrices to construct two pairs of two-silt cameras, namely

A1
1 =

[
1. 0 0 0
−3.87 1. 1. 1.

]
A1

2 =

[
0. 1. 0. 0.

−14.22 8.33 −6.67 −22.17

]
,

B1
1 =

[
0. 0. 1. 0.

0.44 −0.28 0.27 1.14

]
B1

2 =

[
0. 0. 0. 1.
−0.86 0.26 0.15 0.88

]
,

(51)

and
A2

1 =

[
1. 0 0 0
−3.87 1. 1. 1.

]
A2

2 =

[
0. 1. 0. 0.

−14.22 8.33 9.25 4.24

]
,

B2
1 =

[
0. 0. 1. 0.

0.44 0.20 0.27 −0.07

]
B2

2 =

[
0. 0. 0. 1.
−0.86 −1.34 −2.26 0.88

]
.

(52)

Computing the epipolar tensor (44) for both of these pairs
yields F as in (50). On the other hand, the two camera
configurations are not projectively equivalent: indeed, if a
projective transformation between the two existed, it would
need to be the identity, because five of the eight rows coin-
cide. It is straightforward to verify that it is in fact the sec-
ond pair that corresponds to the configuration of the original
cameras (49).

We now try to recover the same cameras using image
correspondences. We consider 70 random points in space,
project them using (49), and add some noise to the images.

In this case, none of original the eight solutions will be ex-
actly consistent with the last two entries of F , however we
can consider the two solutions that minimize an “algebraic
residual” for these constraints. For image sizes of about
100 × 100, and noise with a standard deviation of 10−5,
we recover the following pairs of cameras (that should be
compared with (51)):

A1
1 =

[
1. 0 0 0
−3.97 1. 1. 1.

]
A1

2 =

[
0. 1. 0. 0.

−15.26 8.44 −7.60 −23.18

]
,

B1
1 =

[
0. 0. 1. 0.

0.42 −0.25 0.27 1.17

]
B1

2 =

[
0. 0. 0. 1.
−0.86 0.25 0.14 0.88

]
,

(53)

and
A2

1 =

[
1. 0 0 0
−3.97 1. 1. 1.

]
A2

2 =

[
0. 1. 0. 0.

−15.26 8.44 9.36 4.41

] (54)

B2
1 =

[
0. 0. 1. 0.

0.42 0.20 0.27 −0.07

]
B2

2 =

[
0. 0. 0. 1.
−0.86 −1.30 −2.42 0.88

]
.

(55)

C.2. Minimal SfM
A non-linear “minimal” approach for estimating the

epipolar tensor requires 13 corresponding image points.
Substituting these correspondences in (44), we obtain an
under-determined linear system, which implies that the
epipolar tensor is a linear combination αT1+βT2+γT3 for
some T1, T2, T3 that generate the corresponding null-space.
Since the variety of epipolar tensors has codimension 2 in
P15, we expect to find a finite number of feasible tensors
in this linear space (up to scale factors). According to [11,
Remark 14], the variety of epipolar tensors (that is viewed
there as the projective variety for the principal minors of
4 × 4 matrices) has degree 28. Hence, this minimal ap-
proach should lead to 28 complex solutions for F , and 56
projective configurations of cameras. Using the computer
algebra system Macaulay2 [5] we have verified (over fi-
nite fields) that imposing 13 general linear combinations of
the 16 principal minors of the matrixC (so each linear con-
dition can be viewed as a point correspondence), and fixing
c12 = c13 = c14 = 1, we obtain 56 solutions C in the
algebraic closure of the field.

C.3. Self-calibration
We describe a strategy for self-calibration for two-slit

cameras. We assume that we have recovered a projective
reconstruction Ai

1,A
i
2 for i = 1, . . . , n for finite two-slit

cameras (that we assume were originally “parallel”). We



indicate with Q a “euclidean upgrade”, that is, a 4 × 4-
matrix that describes the transition from a euclidean refer-
ence frame to the frame corresponding to our projective re-
construction. According to Proposition B.1, we may write
Ai

1Q = Ki[R
i
1 | ti1], A

i
2Q = Ki

2[R
i
2 | ti2], where Ri

1,R
i
2

are 2 × 3 matrices with orthonormal rows (for simplicity,
we remove the factor 2 from the canonical euclidean form).
In particular, for all i = 1, . . . , k, we have

Ai
1QΩ∗QTAi

1
T
=Ki

1K
i
1
T

Ai
2QΩ∗QTAi

2
T
=Ki

2K
i
2
T
,

(56)

where equality is up to scale and Ω∗ = diag(1, 1, 1, 0).
Geometrically, the matrix Ω∗Q = QΩ∗QT represents the
dual of the absolute conic, in the projective coordinates used
in the reconstruction. The equations (56) identify in fact the
dual of the image of the absolute conic in the two copies of
P1. These are the set of planes containing each slit that are
tangent to the absolute conic in P3.

We now assume that the principal points cameras are
at the “origin”, so that Ki

1,K
i
2 (and hence Ki

1K
i
1

T
and

Ki
2K

i
2

T
) are diagonal. Each row in (56) gives two linear

equations in the elements of Ω∗Q, corresponding to the zeros
in the matrices on the right hand side. For example, impos-
ing that the (1, 2)-entry ofKi

1K
i
1

T
is zero yields

a11a21m11 + a11a22m12 + a11a23m13 + a11a24m14

+ a12a21m21 + a12a22m22 + a12a23m23 + a12a24m24

+ a13a21m31 + a13a22m32 + a13a23m33 + a13a24m34

+ a14a21m41 + a14a22m42 + a14a23m43 + a14a24m44 = 0,
(57)

where Ω∗Q = (mij), and the elements of Ai
1 = (aij)

are known. A sufficient number of views allows us to es-
timate Ω∗Q linearly. Finally, from the singular value de-
composition of Ω∗Q, we can compute a matrix Q′ such that
Q′Ω∗Q′T = Ω∗Q. The matrix Q′ is however not uniquely
determined, and indeed we can actually only recover a sim-
ilarity upgrade, since any similarity transformation will fix
the absolute conic in P3.

Experiments. To apply our self-calibration scheme, we
consider 10 cameras Ai

1,A
i
2, i = 1, . . . , 10, of the form

Ai
1 = Ki

1[R
i
1 | ti1]Q

−1, Ai
2 = Ki

2[R
i
2 | ti2]Q

−1, where
Ri

1, t
i
1,R

i
2, t

i
2 are random parameters for euclidean prim-

itive parallel cameras, Ki
1,K

i
2 are random diagonal cal-

ibration matrices, and Q is a random 4 × 4 matrix de-
scribing a projective change of coordinates. We also add
small amounts of noise to the entries of Ai

1,A
i
2. The ma-

trices Ai
1,A

i
2 represent a projective configuration of two-

slit cameras. Using (56), we can recover an estimate for
Ω∗Q = QΩ∗QT by solving an over-constrained linear sys-
tem (with 40 equations). From this, we compute a matrix

Q′ such that Q′Ω∗Q′T ' Ω∗Q. For our example, the origi-
nal data was

Q =


1.49 0.60 −0.11 −1.15
−1.43 0.88 −0.93 1.52
−0.38 −0.21 1.83 −0.55
0.83 −0.95 −0.63 0.93

 ,

QΩ∗QT =


1. −0.58 −0.34 0.28
−0.58 1.42 −0.52 −0.55
−0.34 −0.52 1.36 −0.49
0.28 −0.55 −0.49 0.77

 ,
(58)

while our estimates are

Q′ =


−0.43 0.21 0.35 0.
0.67 0.26 0.08 0.
−0.04 −0.69 0.03 0.
−0.34 0.26 −0.28 1.

 ,

Q′Ω∗Q′T =


1. −0.59 −0.34 0.29
−0.59 1.44 −0.51 −0.56
−0.34 −0.51 1.35 −0.48
0.29 −0.56 −0.48 0.75

 .
(59)

The matrices Q, Q′ are not close, however one easily ver-
ifies that Q−1Q′ is (almost) a similarity transformation.
In particular, the cameras Ai

1Q
′,Ai

2Q
′, i = 1, . . . , 10

are a “similarity upgrade” of the projective solution. For
example, for the first of our 10 original cameras we had
K1

1 = diag(4.04, 1),K2 = diag(1.37, 1), and indeed

A1
1Q
′ =

[
−2.07 −1.29 3.23 13.25
0.39 −0.91 −0.12 −0.08

]
,

A1
2Q
′ =

[
−0.49 −0.36 1.24 2.81
0.38 −0.91 −0.12 0.53

]
,

(60)

describe a parallel two-slit camera, where the ratios between
the norms of the rows (the “magnifications”) are respec-
tively 4.05 and 1.38.


