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We present an experimental study of non-homogeneous turbulence using a Rayleigh-Bénard con-
vection cell. The fluid motion is forced by a temperature difference between two horizontal plates.
Using Lagrangian tracking on a large volume we can capture part of the Large Scale Circulation.
The velocity statistics are strongly affected by the inhomogeneous mean flow but we recover the
typical Homogeneous Isotropic Turbulence statistics by removing the local average. We discuss and
explain a Lagrangian unsteadiness which persists because of the Large Scale Circulation oscillations.
Our Lagrangian approach is a new way to study specificities of the convective roll motions in tur-
bulent thermal convection. We propose a model based on the convolution between the Large Scale
Circulation oscillations and the turbulent fluctuations to explain the shape of the velocity PDFs.
However, the acceleration statistics are not affected by the mean flow.

I. INTRODUCTION

Understanding the properties of turbulent transport
which occurs in thermal flows is still a challenge. Many
natural (atmospheric and oceanic dynamics, processes in
planetary cores) and industrial (cooling of buildings, heat
exchangers) flows are indeed controlled by thermal con-
vection without mechanical forcing. The most common
used laboratory model system is the Rayleigh-Bénard
cell. A layer of fluid confined in a closed cell is cooled
from above and heated from below. If the thermal forcing
is sufficient, a turbulent flow can appear. Temperature
gradients are confined into the thermal boundary layers
close to the top and bottom plates. Their destabilization
implies the development of fluid pockets called thermal
plumes. During the last two decades, much progress were
made to understand the coupling between thermal forc-
ing and heat flux across the cell or the turbulent prop-
erties of velocity and temperature fields [1–3]. Never-
theless, numerous points are still open to discussion like
plume dynamics, boundary layers structure [4] or inter-
actions between large scale flow and fluctuations.

Improvements of techniques and computing resources
during the last decade allow high-resolution spatio-
temporal Lagrangian measurements in turbulent flows
[5, 6]. This point of view is very adapted to flows
with important mixing [7]. Moreover, some facets of the
turbulence as finite-Reynolds effects are described with
stochastic models using Lagrangian approach [8, 9]. The
Lagrangian tracking of particles opens the door of multi-
particle statistics [10]. Although experimental and nu-
merical Lagrangian studies are well developed for clas-
sic turbulence [11], it is not the case for thermal con-
vection. To our knowledge, there is one large numer-
ical study of Lagrangian transport in thermal convec-
tion [12, 13]. Two different Lagrangian experiments were
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also proposed. The first one, in Lyon, was made using a
large particle with embedded temperature sensors which
was immersed in a Rayleigh-Bénard cell [14]. Recent im-
provements of the technique have led to robust statistics
[15]. This instrumented particle is able to explore all
the flow but finite-size effects are observed. The second
one, in Hong-Kong, explored the very center of convec-
tion cells – where the flow is quite homogeneous – with
sub-millimetric particles [16, 17]. To be complementary,
we propose to combine sub-millimetric particle tracking
and observation of a large part of the flow.

In this letter we present a new experiment of La-
grangian tracking in a turbulent Rayleigh-Bénard cell.
We propose to introduce a first bridge between the Hong-
Kong studies and the Lyon ones. The measurement vol-
ume is wide enough to observe part of the Large Scale
Circulation (LSC). We are deliberately out of the Homo-
geneous Isotropic Turbulence (HIT) framework. Indeed
we want to observe the impact of the LSC on turbulent
statistics of tracers. This letter focuses on one-particle
statistics (in opposition to two-particle statistics as pair
dispersion). We will discuss both the effects of the inho-
mogeneity and unsteadiness of the LSC structure on the
velocity statistics. Then we will present the acceleration
ones.

II. EXPERIMENTAL SETUP AND
MEASUREMENT TECHNIQUES

Our experimental setup is an octagonal cell (figure 1)
filled with deionized water with a height ofH = 30 cm, an
inner diameter of D = 40 cm. The top and bottom plates
are made of anodized aluminium. We impose the heat
flux from the bottom with a heating electrical resistance.
The top plate temperature is fixed with a regulated glycol
circulation. The walls are made of polymethylmetacry-
late (PMMA). The imposed heat flux is 600 W and the
top plate is maintained at 30.4oC. The resulting dif-
ference of temperature is ∆T = 19.2oC. The Rayleigh
number is therefore Ra = gα∆TH3/νκ = 2.0 × 1010,
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FIG. 1. Top-view of the convection cell and measurement
setup. The purple area corresponds to a horizontal slice of
the measurement volume observed by the three cameras. See
text for more details about the dimensions and camera spec-
ifications.

where g is the acceleration due to gravity, α the ther-
mal expansion coefficient of water, ν its kinematic vis-
cosity and κ its thermal diffusivity. The Nusselt number
is Nu = QH/λ∆T ≈ 100 (including about 15% of losses)
where Q represents the heat flux across the cell and λ the
thermal conductivity of water. The Prandtl number, de-
fined as Pr = ν/κ, reaches 4.4 for a mean temperature
of 40oC. In these conditions the convective flow is turbu-
lent. A roll confined between two diametrically opposite
sides of the lateral walls appears with a turnover time of
about 80 s. We have qualitatively observed using shad-
owgraphy that it can change spontaneously of sidewalls
pair between which it is fixed with a typical time scale
of some hours. This LSC is indeed known to exhibit a
long time dynamics with spontaneous changes of posi-
tion and orientation like reversals or cessations (see e.g.
[2, 18, 19]). The large time scale of the flow is much
longer than the observation time of the experiments re-
ported here (six runs of 180 s) and its study goes beyond
the scope of the present work.

Three coplanar pr1088×2048 pixels2 cameras are
placed around the cell at equal vertical distance from
both plates and at polar angles ψ = 45o, 180o and 270o

(respectively numbered 1 to 3 on the figure 1). We per-
form a 3D Lagrangian tracking in a measurement vol-
ume of approximately 11 cm aside and 17 cm in height
centered in the cell. It corresponds to a ratio of about 6

pixels per Kolmogorov length – η =
(
ν3/ε

)1/4 ≈ 500µm

where ε is the mass rate of kinetic energy dissipation.
We estimate the energy dissipation as ε = RaPr−2(Nu−
1)ν3/H4 [20]. We seed the flow with polystyrene parti-
cles with a diameter of 250µm and density of 1.03 g/cm3.
These particles are illuminated using 8 vertical bars of 6
white LEDs with a brightness of 864 lumens (see the fig-
ure 1 for the spatial disposition). We perform sets of six
180-second acquisitions. The total measurement time of
one set corresponds to about 2700 times the Kolmogorov
time scale – τη =

√
ν/ε ≈ 0.4 s – and 540 times the

free-fall one – τff =
√
H/gα∆T – so the flow is well

averaged for time scales to which the LSC remains fixed
between two opposite sidewalls. The sampling frequency
must be large enough compared to the Kolmogorov time
scale to resolve dissipative scales. Besides, oversampling
is compulsory to resolve and properly filter measurements
noise (for instance due to the refractive index thermal
fluctuations [16]) from the reconstructed trajectories [21]
and estimate the velocity and acceleration statistics. As
empirically suggested by previous Lagrangian tracking
experiments to accurately measure velocity and acceler-
ation [6],we use a sampling frequency of 200 Hz, hence
oversampling by a factor of 80 the dissipative time-scale.
The trajectories and their temporal derivatives are fil-
tered using the traditional method of convolution with a
Gaussian kernel of width 0.3 τη which does not affect the
dissipative scale resolution.

III. VELOCITY STATISTICS

First we present in the figure 2 the probability den-
sity functions (PDFs) of the three components of the La-
grangian velocity. For the HIT case we expect Gaussian
PDFs. Nevertheless the two horizontal components are
found to be highly non-Gaussian. As we will see this is
related to the fact that the Lagrangian statistics are af-
fected by the inhomogeneity of the flow. In our measure-
ment volume, the large scale flow is principally horizontal
and highly inhomogeneous. The figure 3 illustrates this
point by showing the y component mean Eulerian field
vEy of the flow obtained by binning the space and aver-
aging the Lagrangian data in each bin. We observe the
signature of the convection roll present in the cell. The
axes are chosen ad hoc to match the x axis with the ro-
tation axis of the roll. Consequently the x component
mean velocity vEx is nearly null (not shown here). The
measurement volume is higher than wide so that we do
not really see the vertical mean flow confined close to the
vertical walls (see inset figure 3).

To put forward the influence of the mean flow on the
Lagrangian statistics, we split up the velocity into a mean
local velocity at the particle position (vEk ) and a fluctu-
ating Lagrangian one (v′k):

vk(t) = vEk (x(t), y(t), z(t)) + v′k(t), (1)

where k = x, y, z. The figure 4 shows the PDF of each
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FIG. 2. PDFs of the velocity components vk normalized by
the corresponding standard deviation. The dashed line rep-
resents a Gaussian distribution.
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FIG. 3. Vertical slices of the mean Eulerian velocity vEy . Inset:
sketch of the convection roll and of the measurement volume
in the {~y, ~z} plan.

component of the fluctuating velocity v′k. We observe
that the v′z and v′y PDFs collapse on a Gaussian distri-
bution. The non-Gaussianity seen in the figure 2 for vy
and vz was therefore entirely related to the large inhomo-
geneity of the mean flow due to the LSC. However, the
v′x PDF is nearly unchanged compared to the vx one. As
previously pointed, the x-axis was chosen to be aligned
with the rotation axis of the convection roll, so that the
mean field vEx is nearly null. This brings the following
paradox: (i) since vEx is null, according to eq. 1 it is
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FIG. 4. PDFs of the three fluctuating velocity components
v′k(t) normalized by the corresponding standard deviation.
The dashed line represents a Gaussian distribution.

expected that vx(t) ≈ v′x(t) so if the PDF of vx is non-
Gaussian, so should be v′x; (ii) however, the analysis on vy
and vz suggests that the non-Gaussianity arises because
of the LSC, so in the absence of a x component mean
velocity, one could expect x component fluctuations to
be Gaussian. This paradox can be solved by considering
there are two sources of Lagrangian unsteadiness. First
in the Lagrangian framework the large scale inhomogene-
ity of vE(x, y, z) results in a non-stationary Lagrangian
perturbation vL(t) = vE(x(t), y(t), z(t)) along the par-
ticle trajectory (x(t), y(t), z(t)) as seen in eq. 1. This
unsteadiness has been taken care of by removing from
the Lagrangian trajectories the local Eulerian average.
Then the remaining non-Gaussianity of v′x results from
an intrinsic unsteadiness of the flow very likely to be at-
tributed to small motions of the convection roll. The roll
is confined between two opposite sides of the cell (at the
time scale of our acquisitions). But it could still weakly
oscillate at sufficient short time scales to impact the ve-
locity statistics without being visible on the average. To
confirm this explanation, we show in the figure 5 the ratio
v

′RMS
x /v

′RMS
y where RMS means the root-mean square.

In statistically stationary conditions, we should expect a
ratio close to one, as for both horizontal components the
effect of thermal plumes on velocity fluctuations should
be similar. On the contrary, v

′RMS
x is about 50% higher

than v
′RMS
y which can be attributed to the signature of

roll motions.

Mathai et al. [22] have observed very similar velocity
PDFs for suspended particles in a turbulent system with
a non-null mean flow. They attribute this to a period-
icity in the velocity induced by the particle interaction
with the mean flow. In our case it is a little bit different
because such a velocity periodicity is likely due to the
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mean flow oscillation itself. But the resulting velocity
statistics should be similar. Indeed we probably observe
the so-called sloshing motion of the convection roll [23–
25] in our cell. We propose a simple model to explain the

shape of the PDF of v′x. The ratio v
′RMS
x /v

′RMS
y is quite

homogeneous so we consider at the first order that the
convection roll motion is an oscillating solid translation
along the x-axis. A diagram is presented in the inset of
the figure 6. We call

−−→
Vinst the velocity induced by the roll

motions. At every time the roll center position is called
X(t) and we have

−−→
Vinst(t) = Ẋ(t)−→x . With this model

the vy velocity is not affected by the roll oscillation. Ve-
locities Vinst(t) are in a range [−Vmax, Vmax]. At the first
order we assume that all velocities have the same proba-
bility to occur in this range. For the example of a periodic
oscillation with amplitude X0 and pulsation ω we have
Vmax = X0ω. If we assume that in absence of roll oscil-
lation the PDF of v′x would be a centered Gaussian with
standard deviation σ (related to turbulent fluctuations),
the PDF induced by the roll oscillation would be simply
obtained by the convolution of this Gaussian with a cen-
tered rectangular function of width 2Vmax. The resulting
fit equation is the convolution product (∗):

PDFfit(v′x) =

[
1√
2πσ

exp

(
−v′2

x

2σ2

)]
∗ (2)[

erf

(
v′x + Vmax
Vnorm

)
− erf

(
v′x − Vmax
Vnorm

)]
,

We can fit the experimental PDF of v′x shown in fig-
ure 4 with this expression. For the ease of fit we use
sharp error functions to build our rectangular distri-
bution. The error function sharpness are fixed with

Vnorm = 0.01 mm/s whose does not affect the shape of
the rectangular distribution for Vnorm � 1 mm/s. The
figure 6 compares the best fit from eq. 2 with the PDF of
v′x with fit parameters in good agreement with the phe-
nomenon scales. These ones reach σ = 2.8 ± 0.1 mm/s
and Vmax = 8.7 ± 0.1 mm/s. σ is a bit smaller than the
standard deviation of v′y and v′z which reach respectively
4.1 mm/s and 3.8 mm/s. This difference perhaps denotes
an anisotropy due to the high velocities in the ~y direc-
tion. With the value of Vmax we estimate the typical
time scale of the roll motions. Considering the octago-
nal shape of the cell, the maximal amplitude for the roll
translation is estimated to be in a range between a quar-
ter and a half of one sidewall width – i.e. between 3.5
and 7 cm. Therefore, if we assume a periodic oscillation,
and the relation Vmax = X0ω, the fitted value for Vmax
corresponds to a pulsation ω ∈ [0.12, 0.25] rad/s, i.e. an
oscillation period in the range [26− 51] s which is signif-
icantly less than the acquisition time (six runs of 180 s).
This is consistent with the fact that the roll oscillation is
averaged while computing vEx . Furthermore it is in agree-
ment with previous LSC oscillation time scale measured
at Ra = 6.5× 109 and Pr = 5.3 [26].

This sloshing has not been observed by Ni et al. [16].
Their velocity PDFs obtained in the very center of the
convection cell are very Gaussian whereas the sloshing
should also occurs in their cell. This difference could be
due to geometric effects. In our cell the convection roll
is confined between two opposite flat walls whereas the
Ni et al. cell is perfectly cylindrical. Because they put
up less resistance to a longitudinal motion compared to
cylindrical walls, the flat sidewalls could allow sufficiently
important sloshing to be detected on our velocity statis-
tics contrary to the Ni et al. ones [16].

IV. ACCELERATION STATISTICS

We study now the acceleration statistics. The figure
7 shows the normalized PDFs of the three acceleration
components and the one of the vertical acceleration ob-
tained by Ni et al. in the very center of a convection cell
(i.e. with very few effects of inhomogeneity) [16]. All
distributions have a similar stretched exponential shape,
which is common for the Lagrangian acceleration in clas-
sic turbulent flows [6, 11, 21]. The acceleration standard
deviations reach respectively 2.5 mm/s2, 2.3 mm/s2 and
2.0 mm/s2 for ax, ay and az resepctively. The PDF shape
is in a good agreement with previous experimental [16]
and numerical [12] works in turbulent thermal convec-
tion. To confirm this point we compare the acceleration
variance to the kinetic energy dissipation rate. If we ob-
serve a space-time region small enough, the acceleration
variance can be linked to the kinetic energy dissipation
rate [6, 27]:

(std (ak))
2

= a0ε
3/2ν−1/2 (3)



5

−20 −10 0 10 20

10−4

10−3

10−2

10−1

~y

~x

~z X(t)

−−−→
Vinst

v′x [mm/s]

P
D

F
(v
′ x)

FIG. 6. PDF of v′x. The solid line is the normalized fit from
eq. 2. Inset: scheme of the velocity

−−−→
Vinst(t) induced by the

roll translation. The purple region represents the top view of
the roll around the z-axis.

where k = x, y, z and a0 is supposed to be an universal
constant. The ε value derived from the global quantities
(see the setup description and [20]) does not take into
account the inhomogeneity of the flow. The numerical
study of Kunnen et al. [28] shows that the value of ε higly
depends on the localisation in the flow. Using their maps
of ε in a cylindrical cell we estimate the kinetic energy
dissipation rate in our measurement volume between 30%
and 40% of the one computed from global quantities. For
the vertical acceleration we obtain a0 = 2.8 ± 0.5. We
compare this value to the systematic study performed
by Ni et al. [16] for different Rayleigh numbers. The
expected value for Pr = 4.4 ranges between around 2.5
so our measurement is in quite good agreement with this
study.

Nevertheless, the numerical simulations from Schu-
macher [12] (Ra = 1.2 × 108, Pr = 0.7) show an
anisotropy of the acceleration with wider PDFs for the
horizontal accelerations. This can be related to the
plumes vorticity [29]. In our experiments we do not cap-
ture the lateral jets where the plumes are concentrated
what can explain why we don’t observe this anisotropy.
Contrary to the velocity, the acceleration is not affected
by the mean flow. It does exhibit a slightly inhomoge-
neous mean acceleration field (especially for az) but the
fluctuations reach several tens of the mean acceleration
field (not shown here) and the PDFs are not affected.
Moreover this robustness of acceleration statistics is very
likely to be related to the small correlation time (∼ 1 s)
and correlation length of acceleration components com-
pared to the typical scales of the flow inhomogeneity and
unsteadiness.
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FIG. 7. Normalized PDFs of ak. The black crosses represent
the PDF of az obtained by Ni et al. [16] (Ra = 4.3 × 109,
Pr = 6.1).

V. DISCUSSION AND CONCLUSION

We have proposed a Lagrangian experiment to explore
turbulent statistics in a large part of a convection cell
with two aims: to study the inhomogeneity of the LSC
and the roll motions. By observing a wider area than the
very center of a turbulent convection cell, we have shown
that the Lagrangian statistics are differently affected by
the mean flow imposed by the wall confinement. The
velocity distributions are very far from the well-known
HIT Gaussian shape. By removing the contribution of
the mean flow we recover Gaussian PDFs, except for one
velocity component affected by the motions of the con-
vection roll. The low number of plumes in the center of
the cell – compared to the falling and rising jets – explain
that we observe very these Gaussian PDFs. We propose
a very simple model based on an oscillating translation
of the LSC to explain the shape of the PDF of v′x which
takes into account the convolution between the turbulent
fluctuations and the additional perturbations induced by
the convection roll oscillation. The acceleration statis-
tics are similar to the previous Lagrangian studies and
are not affected by the mean flow. This study showed
two aspects of the Lagrangian unsteadiness. An inho-
mogeneous Eulerian mean field imposes an unsteadiness
along the trajectory of the particle which can be removed
by simply subtracting the local Eulerian mean field along
the Lagrangian path of tracers. Alternatively this shows
how the remaining non-Gaussianity (after local inhomo-
geneity has been removed) can be advantageously used to
infer subtler properties of the flow phenomenology. Here
for instance, we could infer the typical time scale of roll
oscillations from the velocity PDFs coupled to a simple
model. Some improvements in the tracking technique
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would be very interesting to observe a wider volume and
track particles over a longer time in order for instance to
explicitly investigate the roll dynamics or the Lagrangian
correlations. The area close to the walls where the ther-
mal plumes are concentrated is an other zone of investiga-
tion where some specificities of the turbulent convection
could be observed. We plan also to study the particle
transport, using pair dispersion, to investigate peculiari-

ties of an inhomogeneous turbulent flow.
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