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Abstract. Controlling the construction of geometric objects is impor-
tant for several Geometric Modeling applications. Homology (groups and
generators) may be useful for this control. For such incremental construc-
tion processes, it is interesting to incrementally compute the homology,
i.e. to deduce the homological information at step s of the construction
from the homological information computed at step s−1. We here study
the application of effective homology results [13] for such incremental
computations.
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1 Introduction

Geometric Modeling deals with the representation and the construction of ge-
ometric objects. For instance, many representations and related construction
operations have been conceived for CAD/CAM applications ; since a modeled
geometric object can be manufactured, it is necessary to control its construction,
in order to detect any problem as soon as possible. According to the applica-
tion, homology (i.e. homology groups and/or the correspondence between their
generators and chains of cells of the object at each step of its construction) may
be useful for controlling the construction.

Many works in Geometric Modeling deal with subdivided geometric objects,
i.e. objects partitioned into cells of different dimensions, and many methods have
been proposed for computing the homology of subdivided objects, e.g. based
upon the Smith Normal Form of incidence matrices [1]. Such methods make it
possible to compute the homology at each step of the construction of a geometric
object; but the whole homological information has to be computed at each step,
without taking advantage of the information known at the previous step. So, it
seems interesting for such a process to incrementally compute the homology, i.e.
to deduce the homology of the object at step s from the homology of the object



2 Homology Computation during an Incremental Construction Process

at step s − 1, according to the operation which is applied. Such incremental
computation can be done by applying results of effective homology [13].

Although some aspects are close to the work described in [6], the approach
here focuses on the application of construction operations and the related com-
plexities. Since only the structure of an object has to be taken into account
in order to compute its homology, it will be assumed that it is represented by
a semi-simplicial set or a cellular combinatorial structure (incidence graph or
combinatorial map). In the simplicial (resp. cellular) case, two basic operations
(and the inverse operations) are studied1: cone and identification (resp. exten-
sion and identification), which make it possible to construct any semi-simplicial
set (resp. any cellular combinatorial structure). At each step, some ”homological
information” is maintained in order to reduce the complexity of the homology
computation. This ”homological information” depends on the (subset of) com-
binatorial structure which is taken into account: for semi-simplicial sets and a
subclass of cellular combinatorial structures, a ”homological information” re-
lated to connected components is maintained; but it is necessary to maintain a
”homological information” associated with cells and connected components for
cellular combinatorial structures in general. More precision can be found in [3].

Notations A chain complex (C, ∂) can be associated with a semi-simplicial
set or a cellular combinatorial structure S, in such a way that there is a strong
correspondence between them (for instance, a generator of the chain complex is
associated with any simplex, and the boundary operator is deduced from the face
operators). Chain complex (H, 0) (or equivalently H) denotes the homology of S.
The complexity of a chain complex, or a combinatorial structure, is related to the
number of generators and the ”cost” of the face or boundary operators (in terms
of generators): for instance, the complexity of a n-dimensional semi-simplicial
set (or its associated chain complex) is

∑n
i=0 kici +

∑n
i=1(i+ 1)kidi−1, where ki

is the number of i-simplices, ci (resp. di) is the complexity of the representation
of a i-simplex (resp. of a i-simplex in the boundary of a (i+ 1)-simplex).

2 Effective homology bases

This section is mainly based on the course notes of J. Rubio and F. Sergeraert
[13] (see also [5]).

A reduction ρ = ((C, ∂), (CS , ∂S), h, f, g) is a 5-tuple where (1) (C, ∂) and
(CS , ∂S) are chain-complexes; (2) f : (C, ∂) → (CS , ∂S) and g : (CS , ∂S) →
(C, ∂) are chain-complex morphisms; (3) h : (C, ∂)→ (C, ∂) is a graded module
morphism of degree +1. They satisfy 2: (4) gf = idCS ; (5) fg + h∂ + ∂h =
idC ; (6) hf = gh = hh = 0. Reduction ρ will be sometimes symbolized by

(C, ∂)
ρ⇒⇒⇒ (CS , ∂S). The homologies of (C, ∂) and (CS , ∂S) are isomorphic, and

1 Obviously, other operations are useful for Geometric Modeling applications, and a
similar study has to be done for each operation.

2 fg denotes g ◦ f .
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the complexity of (CS , ∂S) is lower than that of (C, ∂); so, the homology of (C, ∂)
is computed with a better complexity starting from (CS , ∂S). Several methods
are based on (composition of) elementary reductions3 in order to simplify a chain
complex before computing its homology [9, 11].

A homological equivalence Υ is a pair of reductions (C, ∂)
ρ⇐⇐⇐ (CB , ∂B)

ρS⇒⇒⇒
(CS , ∂S). This notion makes it possible to associate a ”small” chain complex
(CS , ∂S) with another chain complex (C, ∂), through a ”bigger” one (CB , ∂B),
even when no reduction (C, ∂)⇒⇒⇒ (CS , ∂S) exists.

An effective short exact sequence ((C0, ∂0), (C1, ∂1), (C2, ∂2), i, j, r, s) is a di-
agram:

0
0−→ (C0, ∂0)

r←−−→
i

(C1, ∂1)
s←−−→
j

(C2, ∂2)
0−→ 0

where (1) (C0, ∂0), (C1, ∂1), (C2, ∂2) are chain complexes; (2) i,j are chain
complex morphisms; (3) r,s are graded module morphisms. They satisfy (4)
ir = idC0 ; (5) ri + js = idC1 ; (6) sj = idC2 . This notion is a key one for opti-
mizing the homology computation at each step of an incremental construction
process; indeed, if an effective short exact sequence can be associated with the
applied operation, the following SES theorem can be applied (only the subparts
of the theorem which are useful here are provided: cf. [13] page 71).

Theorem 1 (SES Theorem). Let ((C0, ∂0), (C1, ∂1), (C2, ∂2), i, j, r, s) be a
short exact sequence. Then, given two homological equivalences Υ 0 : (C0, ∂0)⇐⇐⇐
(CB0, ∂B0)⇒⇒⇒(CS0, ∂S0) and Υ 1 : (C1, ∂1)⇐⇐⇐ (CB1, ∂B1)⇒⇒⇒ (CS1, ∂S1) (resp.
Υ 2 : (C2, ∂2) ⇐⇐⇐ (CB2, ∂B2) ⇒⇒⇒ (CS2, ∂S2)), it is possible to deduce from
i, j, r, s, Υ 0 and Υ 1 (resp. Υ 2) a homological equivalence Υ 2 : (C2, ∂2) ⇐⇐⇐
(CB2, ∂B2)⇒⇒⇒ (CS2, ∂S2) (resp. Υ 1 : (C1, ∂1)⇐⇐⇐ (CB1, ∂B1)⇒⇒⇒ (CS1, ∂S1)).

If the applied operation ”corresponds” to a short exact sequence, and if the
operands of the operation are associated with homological equivalences, it is pos-
sible to deduce a homological equivalence, and thus a (homologically equivalent)
”small” complex, for the result of the operation, providing a better complexity
for the final homology computation4. Of course, it is also necessary to check the
complexity of the application of the SES theorem in order to check that the whole
computation is better than, say, a computation based upon the computation of
the Smith Normal Form of the incidence matrices.

3 Application to simplicial structures

The SES theorem has been applied in order to reduce the cost of the homology
computation [14]. For instance, Boltcheva et al [5] applied it for the conception

3 An elementary reduction can be defined when a i-dimensional generator x appears
in the boundary of a (i + 1)-generator y with a coefficient equal to 1 or −1. Note
that reductions exist, which are not compositions of elementary reductions.

4 For instance, when Υ 2 is deduced from i, j, r, s, Υ 0 and Υ 1, the generators of CS2

are that of CS0 and CS1.
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of the Meyer-Vietoris (MV) algorithm, which computes the homological infor-
mation of abstract simplicial complexes from the homological information of
sub-complexes and their intersections. This algorithm has been applied for the
Manifold-Connected decomposition of abstract simplicial complexes [6]. The ba-
sic idea is the following: let B and C be sub-complexes of A, such that A = B∪C,
and ΥB∩C , ΥB and ΥC are homological equivalences associated with B ∩ C, B
and C; a short exact sequence ((B ∩ C), (B ⊕ C), A = (B ∪ C), i, j, r, s) can be
defined5, and a homological equivalence associated with A can be computed by
applying the SES theorem.

More basic operations are studied here: cone and identification (cf. [3] for
more precisions). Cone(A), the cone of A, consists in adding a new 0-simplex v
to A, and, for each i-simplex σ, in adding a (i + 1)-simplex incident to σ and
v. Obviously, a homological equivalence Υ : (Cone(A))⇐⇐⇐ (Cone(A))⇒⇒⇒ (X)
can be defined, where X contains only one 0-dimensional generator (the homol-
ogy of a cone is trivial), and Υ can be computed in linear time according to the
size of A.

The basic identification operation Ident(A, σ, τ) consists, given two i-simplices
σ and τ having the same boundary, in replacing them by a new simplex µ such
that the boundary (resp. the star) of µ is the boundary of σ (resp. the union
of the stars of σ and τ). This operation can be easily generalized in order to
identify any two i-simplices, and more generally subsets of simplices.

Assume a homological equivalence Υ : (A) ⇐⇐⇐ (AB) ⇒⇒⇒ (AS) is associated
with A. Given a set of simplices A0 which have to be identified, a chain complex
(A0) can be computed, in which each i-dimensional generator corresponds to
a basic identification of i-simplices (i.e. if k i-simplices are identified into one
i-simplex, there are (k − 1) corresponding i-generators in (A0)). The boundary
operator of (A0) is deduced from the face operators of the simplices of A0. So, a
homological equivalence Υ 0 : (A0)⇐⇐⇐ (A0)⇒⇒⇒ (A0) can be computed in linear
time according to the size of A0 (the size takes into account the simplices of
A0 and their face operators). A better homological equivalence Υ ′0 : (A0) ⇐⇐⇐
(A0)⇒⇒⇒ (A′0) may be deduced by applying a method for simplifying (A0), i.e.
which computes a reduction (A0)⇒⇒⇒ (A′0).

Let Ident(A,A0) be the result of the identification of the simplices of A0 in A.
It is possible to compute a short exact sequence Q = ((A0), (A), (Ident(A,A0)),
i, j, r, s) in linear time according to the size of A. Thus, by applying the SES
theorem, it is possible to compute a homological equivalence Υ I : (Ident(A,A0))
⇐⇐⇐ (IB) ⇒⇒⇒ (IS) (cf. figure 1). Once again, a better homological equivalence
Υ ′I : (Ident(A,A0))⇐⇐⇐ (IB)⇒⇒⇒ (I ′S) may be deduced by applying a method
for simplifying (IS), i.e. which computes a reduction (IS) ⇒⇒⇒ (I ′S). Then, the
homology of Ident(A,A0) can be computed from (I ′S).

As said before, the homological equivalence Υ 0 can be computed in linear
time according to the size of A0, and the short exact sequence Q can be com-

5 The chain complex associated with X is denoted (X).
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puted in linear time according to the size of A. The generators of (IB) (resp.
(IS)) are the generators of (A0) and of (AB) (resp. (A′0) and (AS); this explains
why it is interesting to reduce (A0) into (A′0)). It is not possible to give a precise
evaluation of the complexity related to the computation of the boundary opera-
tors of (IB) and (IS), and of the mappings of Υ I , since this complexity depends
on Υ , and thus depends also on the operations previously applied for construct-
ing A. But the complexity can be evaluated for certain cases: for instance, when
A is constructed by applying identifications, the whole computation is linear;
moreover, if (IB) (resp. IS) is deduced by modifying (AB) (resp. (AS)), the
computation is sub-linear; and the complexity of the whole construction (i.e.
related to all computations for all steps) is linear according to the size of the
initial object. In the general case, the complexity of the computation is clearly
related to the size of the parts of the object which are identified, i.e. (A0).

An informal argument for the interest of the approach is the fact that, for
many construction processes, local operations are applied at each construction
step ; since the complexity is related to the modified parts, it is interesting to
modify a previously known homological information rather than to compute it
from scratch. Other precisions are given in section 3 and Appendix 6.7 in [3]. In
particular, note that the SES theorem applies for the inverse operation of the
identification.

0

a1
a1

a2

a2

v
v

Fig. 1. Incremental computation of homological equivalences

At last, note that these results generalize in some sense the results described
in [5, 6], since the identification operation is a more basic operation than the
gluing of connected components. In other words, gluing connected components
can be achieved by identifying parts of their boundaries; but the identification
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operation can also be applied to subsets of simplices belonging to the same
connected component.

4 Application to cellular structures

The previous results directly apply to other structures, as cubical [8] and sim-
ploidal [12] structures (as for simplices, the homology of any cube or simploid is
trivial; moreover, classical results apply for the cartesian product, which corre-
sponds in some way to the cone for simplicial objects). They can also be applied
to cellular combinatorial structures as incidence graphs6 [10] and combinato-
rial maps [7]. An incidence graph is represented in figure 2; results in [3] are
obtained for combinatorial maps, which generalize incidence graphs in order to
take multi-incidence into account7, and these results directly apply to incidence
graphs.

Any cellular combinatorial structure can be constructed by applying two
basic operations: extension and identification. Given a connected n-dimensional
structure, in which the dimension of all main cells is n, the extension consists
in adding a new (n + 1)-cell incident to all n-cells. For instance, this operation
applied to the incidence graph in figure 2 adds a volume incident fo faces f1 and
f2, the resulting ”corresponding object” is a 3-ball. The identification operation
consists in ”merging” two cells having the same boundary; as for the simplicial
case, this operation can be generalized in order to identify subsets of cells (this
is constrained by the fact that two cells can be identified if they are isomorphic:
for instance, it is not possible to identify a triangle and a square).

Fig. 2. A 2-sphere, subdivided into 2 faces, 2 edges and 2 vertices, together with its
simplicial equivalent and the corresponding incidence graph.

In the general case, it is not possible to associate a ”cellular” chain complex
(A) with any cellular combinatorial structure A, i.e. a chain complex in which

6 These structures have been defined in different contexts; they are sometimes referred
to as orders, Hasse diagrams, etc.

7 It is not possible to unambiguously represent with incidence graphs ”objects” in
which a cell is incident several times to another one, but this is possible with com-
binatorial maps.
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any generator corresponds to a cell, and such that the homology of (A) is the ho-
mology of A. It is thus not possible to directly apply the results obtained in the
simplicial case to cellular combinatorial structures. Indeed, cellular combinato-
rial structures exist, in which cells cannot be associated with balls. For instance,
applying the extension operation to an incidence graph which corresponds to
a subdivided torus or a Klein bottle does not produce a 3-ball. Moreover, any
(n + 1)-cell can be defined as the result of the application of the extension op-
eration to a n-dimensional cellular combinatorial structure; but we don’t know
how to decide in the general case whether a (simplicial or cellular) combinato-
rial structure corresponds to a n-sphere. So, we don’t know how to decide in the
general case whether a combinatorial cell corresponds to a ball.

But it is always possible to associate a simplicial equivalent S(A) with any
cellular combinatorial structure A; so, it is always possible to associate a ”sim-
plicial” chain complex (S(A)) with any cellular combinatorial structure A, i.e. a
chain complex in which any generator corresponds to a simplex of S(A), and such
that the homology of (S(A)) is the homology of A. So, the results presented in
section 3 can be directly applied, by maintaining at each step of the construction
of A its simplicial chain complex (S(A)). The problem here is the complexity
of the approach, since it is possible that many simplices in S(A) are associated
with one cell in A. So, more efficient approaches have been investigated.

4.1 A subclass of cellular combinatorial structures

A subset of cellular combinatorial structures has been defined in [2] (cf. also [4]):
each structure A of this subclass satisfies properties so that the cellular chain
complex (A) is homologically equivalent to the simplicial chain complex (S(A)).
So, the results presented in section 3 can be directly applied to the structures of
this subclass, associated with their corresponding cellular chain complexes, but
it is necessary to check at each construction step if the properties of the subclass
are still satisfied (this control can be done easily without significative cost, due
to the definition itself of the properties).

4.2 The general case

The properties characterizing this subclass are sufficient but not necessary to
ensure the equivalence between (A) and (S(A)). Moreover, it may be useful for
some constructions to ignore these properties, even if only temporarily. It can
thus be useful to handle A and (S(A)), even if it is less efficient than to handle A
and (A). Even in this case, it is possible to optimize the computations. Indeed,
the interior of each cell c in A corresponds to a subset of simplices in S(A);
a homological equivalence Υ c can be associated with the interior of c when it
is created, and it is possible to maintain Υ c during the construction process in
order to optimize the homology computation.
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More precisely, assume a homological equivalence is associated with the in-
terior of any cell and with any connected component. Assume c is created by an
extension operation applied to a connected component C of A. This operation
corresponds in S(A) to a cone operation applied to S(C), where the vertex v of
the cone symbolizes cell c (in fact, the interior of c corresponds to the subset
incident to v, so the structure of the interior of c is very close to the structure of
S(C), since c corresponds to a cone on S(C)). Each cell of C remains unchanged,
so its homological equivalence is unchanged; the homological equivalence asso-
ciated with the connected component after operation is trivially defined, since
the resulting connected component is a cone; the homological equivalence asso-
ciated with c can be easily deduced from the homological equivalence associated
with C by applying the perturbation lemmas (cf. [13] pages 48-49). All computa-
tions can be performed in linear time according to the size of S(C). Note that,
at last, some reduction process may be applied to the small chain complex of Υ c.

Let Ident(A,A0) be the result of the identification of cells of a subset A0 in
A. Let c be a cell of Ident(A,A0): either c does not result from the identification
of cells, and its homological equivalence Υ c is not modified; either it results from
the identification of isomorphic cells, and Υ c is simply a homological equivalence
associated with one of these identified cells (all these homological equivalences
are homologically equivalent, since the cells are isomorphic): so, nothing is really
computed.

The homological equivalence associated with S(Ident(A,A0)) is computed in
the following way. A homological equivalence Υ 1

A0 is computed as the direct sum
of homological equivalences corresponding to the identified cells; more precisely
(and as for the simplicial case), if k isomorphic i-cells {cj}j∈[1,k] are identified
into one cell, there are in Υ 1

A0 k−1 copies of Υ cj , for some j ∈ [1, k] (for instance,
j may be chosen according to the complexity of Υ cj ). It is now possible to deduce
from Υ 1

A0 a homological equivalence Υ 2
A0 by ”linking” the homological equiva-

lences corresponding to cells accordingly to the boundary relations between cells
in A; this can be done by applying the pertubation lemmas (cf. [13] pages 48-49),
and the complexity is linear according to the size of Υ 1

A0 and n, where n is the
highest dimension of a cell in A0. Then, a reduction process can be applied to
the small complex of Υ 2

A0 , producing Υ 0 : C(A0)⇐⇐⇐ CB(A0)⇒⇒⇒ CS(A0).

Moreover, a short exact sequence Q = (C(A0), (S(A)), (S(Ident(A,A0))),
i, j, r, s) can be computed in linear time according to the size of S(A) (as for
the simplicial case, the complexity of the computation of the ”interesting” infor-
mation is sub-linear). The SES theorem can then be applied in order to deduce
a homological equivalence Υ I associated with Ident(A,A0); as for the simpli-
cial case, a reduction process can be applied to the small complex of Υ I , and a
”better” homological equivalence Υ ′I can be deduced.

As for the simplicial case in section 3, similar remarks about the complexity
of the process can be done (the main difference with the simplicial case is the
complexity of the computation of Υ 0, which depends also on the dimension of
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the identified cells). At last, note that a similar process can also be applied for
the inverse of the identification operation.

Acknowledgments. Many thanks to Francis Sergeraert, Sylvie Alayrangues
and Laurent Fuchs.
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11. González-Dı́az, R., Jiménez, M. J., Medrano, B., Real, P.:Chain homotopies for
object topological representations. Discrete Applied Mathematics 157(3), 490–499
(2009)

12. Peltier, S., Fuchs, L., Lienhardt, P.:Simploidals sets - Definitions, operations and
comparison with simplicial sets. Discrete App. Math. 157, 542–557 (2009)

13. Rubio, J., Sergeraert, F.: Constructive Homological Algebra and Applications.
Genova Summer School on Mathematics - Algorithms - Proofs, Genova, Italy (2006)

14. The Kenzo program, https://www-fourier.ujf-grenoble.fr/~sergerar/

Kenzo/


