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Abstract. Data mining algorithms are essential tools to extract infor-
mation from the increasing number of large datasets, also called Big
Data. However, these algorithms demand huge amounts of computing
power to achieve reliable results. Although conventional High Perfor-
mance Computing (HPC) platforms can deliver such performance, they
are commonly expensive and power-hungry. This paper presents a study
of an unconventional low-cost energy-efficient HPC cluster composed of
Raspberry Pi nodes. The performance, power and energy efficiency ob-
tained from this unconventional platform is compared with a well-known
coprocessor used in HPC (Intel Xeon Phi) for two data mining algo-
rithms: Apriori and K-Means. The experimental results showed that the
Raspberry Pi cluster can consume up to 88.35% and 85.17% less power
than Intel Xeon Phi when running Apriori and K-Means, respectively,
and up to 45.51% less energy when running Apriori.
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1 Introduction

Petaflop computing relied on the advent of massively parallel architectures, such
as vector processing units and manycore processors. For instance, Graphics Pro-
cessing Units (GPUs) and the Intel Xeon Phi have been used extensively in cur-
rent High Performance Computing (HPC) platforms, since they have proven to
significantly increase the overall processing power of these platforms. However,
several challenges still have to be overcome to reach the exascale computing
era [11], [15]. First, current cutting-edge parallel machines are power-hungry.
This characteristic has motivated the community to seek for strategies to reduce
energy consumption while delivering high performance [3], [16]. Second, HPC
platforms are expensive to obtain, which may be unaffordable for small- and
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medium-size institutes. In this context, the use of such architectures might be
unworkable, but the demand for performance must not be disregarded.

One of the research domains that are gaining attention in the HPC commu-
nity is Big Data, which is a term applied to data sets whose size or type is beyond
the ability of relational databases to capture, manage, and process the data with
low-latency. Big Data comes from sensors, devices, video/audio, networks, log
files, transactional applications, web, and social media (much of it generated in
real time and in a very large scale). To extract insights from unstructured data
in a feasible time, Big Data applications usually exploit HPC platforms.

The already mentioned massively parallel architectures (e.g., GPUs and the
Intel Xeon Phi) have been used to process Big Data applications with high
performance. However, their expensive financial cost and recent issues related
to energy consumption leads the scientific community to consider the use of
low-cost and low-power architectures to build scalable machines. This way, high
performance may be achieved with lower financial cost [4], [13].

In this paper, we study the use of an unconventional low-cost energy-efficient
HPC cluster composed of eight Raspberry Pi boards, interconnected by a net-
work switch, to verify whether it can be used as an alternative for HPC. Although
these boards are not optimized for high performance, they can be considered as
a good candidate to scalable systems with very low energy consumption.

Our main goal is to evaluate the performance, power and energy consump-
tion of the Raspberry Pi cluster for two well-known data mining algorithms com-
monly used in Big Data applications: Apriori and K-Means. The results obtained
with the Raspberry Pi cluster are compared with a well-known coprocessor used
extensively in HPC (Intel Xeon Phi). Our results show that the Raspberry Pi
cluster can achieve better energy efficiency than Intel Xeon Phi, consuming up
to 45.51% less energy than Intel Xeon Phi when running Apriori and K-Means
kernels.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the related work. In Section 3 we briefly present the architectures
used in this work. In Section 4 we describe the applications we have chosen and
explain their implementations. Section 5 presents our experimental methodology
and the evaluation of the observed results. Finally, in Section 6, we present our
conclusions and suggestions for future research.

2 Motivation and Related Work

As aforementioned, the energy efficiency of parallel computers is an obstacle to
be overcome on the way to the exascale era. Future HPC computers will be
limited to about 20 MW of power consumption in the coming decade [3], [18].
Thus, energy efficiency is a relevant aspect to be addressed.

Recently, many high performance architectures have been designed driven by
low-power consumption constraints. Kruger et al. [9] proposed a cluster of low-
cost Parallella boards, each one featuring a 16-core Epiphany RISC System-on-
Chip (SoC) and a dual-core ARM Cortex-A9. They concluded that the cluster
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achieved better performance than an Intel i5-3570. However, Parallella lacks
hardware for complex arithmetic operations, which can degrade the performance
of few specific applications. Although they mention the importance of energy
efficiency, the work did not present a rigorous power consumption analysis.

Similarly to our work, d’Amore et al. [5] proposed the use of Raspberry Pi
boards. They built a cluster of six Raspberry Pi boards to evaluate the perfor-
mance of Big Data applications. The authors concluded that the cluster is an af-
fordable solution to their problem, but the work only focused on how the data can
be retrieved and used. However, the authors did not conduct any power/energy
or quantitative performance evaluation.

In order to analyze the power efficiency of different processors, Aroca et al. [2]
compared Intel, AMD and ARM processors. They used five different processors
in their analysis, running web servers, database servers and serial applications
from the Linpack benchmark. They concluded that devices with low-power char-
acteristics (e.g., the Intel Atom and ARM ones) are good candidates to compose
the infrastructure of data centers. On the other hand, aspects of HPC systems
were not considered, such as parallel applications that are mainly CPU-bound.

Other initiatives are also worried about these issues related to energy con-
sumption. ARM processors attempt to be a suitable alternative for low-power
consumption in HPC. This is the proposal of the Mont-Blanc and Mont-Blanc2
projects [14], which intend to design a new computer architecture to establish
HPC standards based on energy-efficient platforms. Similarly, the Glasgow Rasp-
berry Pi Cloud (PiCloud) [17] is a cluster of Raspberry Pi devices designed to
be a scale model of a cloud computing platform, in order to address cloud sim-
ulations and applications.

Both projects proved to be energy efficient in their proposals, which reinforces
the applicability of our work, that evaluates the behavior of Big Data applica-
tion kernels in parallel architectures, as well as in [5]. We compare the use of a
cluster of low-cost and low-power platforms with a coprocessor designed specifi-
cally for HPC (Intel Xeon Phi). Furthermore, we measure the power and energy
consumption of both architectures when running two data mining algorithms
used in the Big Data research domain.

3 Experimental Platforms

In this section we detail the platforms that we considered in this work, high-
lighting their main features.

3.1 Intel Xeon Phi

The Intel Xeon Phi is a 64-bit coprocessor that primarily targets HPC workloads.
This coprocessor features Intel’s Many Integrated Core (MIC) architecture and
provides full compatibility with the x86-64 Instruction Set Architecture (ISA)3.

3 Intel markets this coprocessor with several different specifications. In this work we
refer as Intel Xeon Phi to the one codenamed Knight’s Corner.
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Fig. 1. Overview of the Intel Xeon Phi coprocessor.

An overview of the Intel Xeon Phi is presented in Figure 1. It features 61
dual-issue, out-of-order processing cores with 4-way simultaneous multithread-
ing, enabling up to 244 working threads. Cores are interconnected by a bidirec-
tional ring topology. Each core has 32 kB instruction and 32 kB data L1 caches
and 256 kB of L2 cache, which is the last level of cache in the architecture.
All caches are private and coherent. With regard to power consumption, this
coprocessor has a Thermal Design Power (TDP) of 300 W . The Intel Xeon Phi
coprocessor is usually connected to a host machine through a Peripheral Com-
ponent Interconnect Express (PCIe) bus. A single Intel Xeon Phi board may
have up to 16 GB of memory.

3.2 Raspberry Pi Cluster

The Raspberry Pi is a low-cost general purpose SoC. It has a quad-core 64-bit
processor based on the ARMv7 architecture. In our work, we used a Raspberry
Pi 2, which features a quad-core Cortex-A7 CPU running at 900 MHz. Each of
the four cores has 64 kB instruction and 64 kB data L1 caches and 512 kB of
L2 cache shared among all cores. The L2 is the last level cache in Raspberry Pi
2. The total amount of memory is 1 GB.

This type of SoC is not usually used in HPC due to its low performance.
However, some characteristics make it much more energy efficient, e.g., the ab-
sence of peripheral controllers and hardware support for complex arithmetic
operations. Hence, given the possibility of scaling this type of architectures, the
overall energy efficiency of a larger system could be improved while achieving
decent performance. The Raspberry has all components that conventional com-
puters have, thus, it can be connected to a local area network using an Ethernet
interface. Many Raspberry units can be clustered, conceiving a low-power and
low-cost system with high potential to achieve high performance [4], [13].

A schematic diagram of our Raspberry Pi cluster is depicted in Figure 2. In
our work, we opted to group eight Raspberry Pi 2 devices in order to conceive
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Fig. 2. The Raspberry Pi cluster (left) and a overview of the ARM Cortex-A7 (right).

the cluster. The devices were interconnected by the means of a layer 3 switch,
constituting a local network.

4 Data Mining Algorithms

To conduct our work, we chose two data mining algorithms used in the Big Data
domain. These algorithms play an important role in different fields, including
pattern recognition, image analysis and bioinformatics [19]. In this section, we
detail these algorithms and their parallel versions.

4.1 Association Rule Learning

Association rule learning is a very common method used to discover relations
between variables in large databases. Apriori is a state-of-the-art association
rule machine-learning technique used for frequent itemset mining [1]. Given a
list of itemsets, it identifies association rules between those items based on their
frequency. These rules reveal subsets of items that frequently occur together
in the same itemsets. The algorithm is driven by the following rule: all non-
empty frequent itemsets must be also frequent. This rule allows the algorithm to
eliminate all itemsets that are not composed of frequent item subsets, reducing
significantly the search space. The Apriori algorithm works as follows. For each
association rule A→ B, where A and B are subsets of items of a frequent itemset,
the Apriori algorithm calculates its confidence, presented in Equation 1. High
confidence levels mean that most of the time an itemset A is present in a frequent
itemset, the itemset B is also there.

Conf(A,B) =
support(A ∧B)

support(A)
(1)

In this paper, the multi-threaded version of the algorithm follows a Map-
Reduce parallel pattern. After identifying the itemsets of size K = 1, items from
S are distributed among the threads (Map stage). Each thread then counts the
occurrences of its subset of items ei ∈ S. With all frequencies calculated, the
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subsets are regrouped (Reduce stage). Thus, the itemsets that do not meet the
minimum support (i.e. a threshold used to eliminate infrequent itemsets) are
removed, and then the confidence is calculated to form the association rules.
This steps are repeated incrementing K until the subsets of size K are empty.

In the distributed version, the itemsets are assigned first to the nodes instead
of threads. Each node then runs a multi-threaded version of the algorithm, ex-
actly as described before.

4.2 K-Means Clustering

The K-Means clustering is a clustering approach widely used and studied [12].
Formally, the K-Means clustering problem can be defined as follows. Given a set
of n points in a real d-dimensional space, the problem is to partition these n
points into k partitions, so as to minimize the mean squared distance from each
point to the center of the partition it belongs to. Several heuristics have been
proposed to address the K-Means clustering problem [6], [8]. We opted to use the
Lloyd’s algorithm [7], which is based on an iterative strategy that finds a locally
minimum solution for the problem. The minimum Euclidean distance between
partitions and centroids is used to cluster the data points. The algorithm takes
as input the set of data points, the number of partitions k, and the minimum
accepted distance between each point and the centroids.

The K-Means algorithm works as follows. First, data points are evenly and
randomly distributed among the k partitions, and the initial centroids are com-
puted. Then, data points are re-clustered into partitions taking into account
the minimum Euclidean distance between them and the centroids. The centroid
of each partition is recalculated taking the mean of all points in the partition.
The whole procedure is repeated until no centroid is changed and every point is
farther than the minimum accepted distance.

The multi-threaded version of this algorithm takes an additional parameter
t, that is the total number of threads. An unique range of points and partitions is
assigned to each thread, with two processing phases, A and B. In phase A, each
thread re-clusters its own range of points into the k partitions. In phase B, each
thread works in its own range of partitions, in order to recalculate centroids.

The distributed K-Means algorithm takes the number of available nodes that,
by themselves, spawn working threads. The strategy employed in this algorithm
is to first distribute the data points and replicate the data centroids among the
available nodes, and then to loop over a two-phase iteration. In the first phase,
partitions are populated, as in the multi-threaded algorithm, and in the second
phase, data centroids are recalculated. For this recalculation, first each node
uses its local data points to compute partial centroids, i.e., a partial sum of data
points and population within a partition. Next, nodes exchange partial centroids
so that each peer ends up with the partial centroids of the same partitions.
Finally, nodes compute their local centroids and broadcast them.
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5 Experimental Results

In this section, we first describe the experimental setup and discuss important
implementation details for each platform. Then, we present the results obtained
with the data mining algorithms on both platforms.

5.1 Setup and Implementation Details

We used the multi-threaded implementations of both algorithms to carry out the
experiments on the Intel Xeon Phi, since the memory is shared among all cores in
this processor. More precisely, we parallelized the algorithms using the OpenMP
programming model and we compiled them with Intel C/C++ Compiler (icc)
version 16.0.1.

The Intel’s MIC System Management and Configuration (MICSMC) tool
was used to monitor the processor’s power consumption. Power measurements
obtained from MICSMC are very accurate as shown in [10]. Intel Xeon Phi can be
either used in offload or native modes. In the former mode, the main application
code is executed on the host and performance-critical sections of the application
are offloaded to the coprocessor. In the latter mode, the entire application is
executed on the coprocessor. In this paper, we chose the latter since we intend
to compare the performance and energy consumption of the coprocessor only.

For the Raspberry Pi cluster, on the other hand, we adopted a hybrid pro-
gramming model: we used the OpenMPI library to implement the distributed
version of the applications (i.e., to make use of all nodes available in the Rasp-
berry Pi cluster) and OpenMP inside each node to exploit four cores available in
it. We compiled both applications with mpicc version 1.4.5 with GNU C Com-
piler (GCC) version 4.6.3. To measure the energy consumption of this cluster,
we used a watt-meter instrument connected before the power supply of the de-
vices, except the network switch, taking the total consumption in kilowatts-hour
(kWh) of the whole system. The Equation 2 was used to convert our results to
Joules (J).

E(J) = 1000× 3600× E(kWh) (2)

The power consumption was calculated for the Raspberry Pi cluster, as well
as the energy consumption, for the Intel Xeon Phi. To calculate these values, we
used Equation 3.

E(J) = P (W ) × t(s) (3)

We ran each application varying the number of available nodes or threads,
depending on the target platform. For the Raspberry Pi cluster, we used four
threads per cluster and varied the number of nodes in 4 (12.5% of the total
number of cores), 8 (25% of the total number of cores), 16 (50% of the total
number of cores) and 32 (all available cores). Similarly, we varied the number of
threads proportionally to the number of cores available in the Intel Xeon Phi,
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Fig. 3. Execution time: (a) Raspberry Pi cluster - Apriori, (b) Raspberry Pi cluster -
K-Means, (c) Intel Xeon Phi - Apriori (d), Intel Xeon Phi - K-Means.

i.e., 30, 60, 120 and 240 threads. This allows us to compare both platforms when
the same percentages of the overall resources available in each platform are used.

Three workload sizes were defined for each algorithm, to evaluate the behav-
ior of both systems when the workload increases. For the Apriori algorithm, the
increase on the workload size can be achieved by reducing the minimum support.
We used the following minimum support values: 70 for the standard workload,
60 for large and 50 for huge. For K-Means, we increased the number of data
points to be clustered. We used the following number of data points: 214 for the
standard workload, 215 for large and 216 for the huge one.

Finally, we performed 10 runs for each configuration (number of threads/nodes
and workload sizes) and computed the average execution time and power. The
maximum standard deviation observed in Raspberry Pi cluster executions was
11.04%, while the Intel Xeon Phi presented at most 7.07%.

5.2 Evaluation

We used three metrics to compare the platforms: execution time, power con-
sumption, and energy consumption. Figure 3 presents the execution time of the
algorithms when executed on both architectures. As it can be observed, Apriori
proved to be more scalable than K-Means. It was possible to reduce the execution
time by 82.05% with the Apriori when changing from 1 node to 8 nodes in the
Raspberry Pi cluster, while in K-Means with same configurations the reduction
was about 74.97%. This is due to the fact that the Apriori algorithm has more
independent work units than the K-Means, which leads to less synchronization
when parallel work finishes.

Comparing the Raspberry Pi cluster and Intel Xeon Phi execution time,
the Intel Xeon Phi presented better results. It is an architecture with more
processing power, featuring a larger thread support (up to 240), thus it was
an expected behavior. However, the Intel Xeon Phi presented poorer scalability
than the Raspberry Pi cluster for both algorithms. For instance, the maximum
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Fig. 4. Power consumption: (a) Raspberry Pi cluster - Apriori, (b) Raspberry Pi cluster
- K-Means, (c) Intel Xeon Phi - Apriori (d), Intel Xeon Phi - K-Means.

execution time reduction, starting from 30 threads, was 73.85% when running
K-Means with the full architecture (240 threads). The communication in the
Raspberry Pi cluster, although done by the means of a local area network, is
not surpassed by the synchronization time spent by the 240 threads on the Intel
Xeon Phi, in the case of Apriori. Considering K-Means, it presents a similar
behavior when increasing the resources of the architectures. On the other hand,
with this application, the increase in the workload has run better in the Intel
Xeon Phi. It is worth noting that the multi-threaded version of the codes are
the same for both architectures, without specific optimizations. Thus, despite
the Intel Xeon Phi code could be improved, the Raspberry Pi cluster presents
better efficiency with a lower number of threads (32 at full use).

Figure 4 presents the observed power consumption in our experiment. The
applications are naturally unbalanced, thus, the power consumption varies de-
pending on the execution time spent by each work unit, which are irregular (the
cores and nodes present different times to solve their own work unit). With the
Apriori algorithm, changing the workload size results in less variation in power
consumption than when running the K-Means algorithm. Usually, with Apriori,
the power consumption reduces when increasing the workload size. With respect
to K-Means running in the Raspberry Pi cluster, the power consumption reduces
when the workload size is increased, but with the Intel Xeon Phi the opposite
occurs. In the Raspberry Pi cluster, each node has its own slave process and,
when it finishes its computation, the power consumption of the entire node is
drastically reduced while other nodes are still active.

We noticed a much more significant variation in power consumption on the
Raspberry Pi cluster than on the Intel Xeon Phi. This is due to the fact that
when less cores are used on the Intel Xeon Phi, the coprocessor idle cores keep
consuming a portion of the energy, since they are in the same device. On the
Raspberry Pi cluster, there is less impact from this fact, since the devices are
completely independent. Overall, the Raspberry Pi cluster is superior when com-
pared to Intel Xeon Phi. It was possible to obtain up to 88.35% of reduction in
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Fig. 5. Energy consumption: (a) Raspberry Pi cluster - Apriori, (b) Raspberry Pi
cluster - K-Means, (c) Intel Xeon Phi - Apriori (d), Intel Xeon Phi - K-Means

power consumption with Apriori when using the Raspberry Pi cluster over the
Intel Xeon Phi. In the same way, for K-Means, the biggest reduction was 85.17%.

Figure 5 presents the energy consumption results, which were obtained by
multiplying the average power by the execution time. As it can be observed, the
energy consumption increases as we increase the workload size. This is due the
increase in the execution time that the algorithms spent to reach a solution.

Another observation concerns the energy consumed when varying the num-
ber of threads/nodes. We observed a significant reduction in energy consumption
when more threads are used. This can be explained by the fact that if more re-
sources are used, the power consumption increases, but the time to solution
tends to decrease, due to the increase in the computational power. Thus, since
the power consumption is less determinant than the execution time in our ex-
periment, the energy consumption decreases when more resources are used.

In summary, the Raspberry Pi cluster proved to be more energy efficient than
the Intel Xeon Phi for Apriori, although the opposite occurs with K-Means. This
is due to the higher execution time difference for K-Means, since as more time
is spent running an application more energy is consumed during this time. The
Apriori algorithm was less energy-efficient in the Raspberry Pi cluster when
using a single node in comparison with 30 threads from the Intel Xeon Phi,
however, when more resources are employed proportionally, the Raspberry Pi
cluster starts to be more energy-efficient, consuming up to 45.51% less energy
than the Intel Xeon Phi. With respect to the financial costs, as mentioned before,
the Raspberry Pi cluster is about ten times cheaper than the Intel Xeon Phi,
thus presenting better price-performance ratio (i.e., cost-benefit).

6 Concluding Remarks

In this paper we evaluated the performance, power and energy consumption of an
unconventional low-cost energy-efficient HPC cluster composed of Raspberry Pi
nodes when running two well-known data mining algorithms used in Big Data



(Apriori and K-Means). The results obtained on this cluster were compared
to a coprocessor widely adopted in the HPC domain (Intel Xeon Phi). Our
results showed that the Raspberry Pi cluster achieved a better tradeoff between
execution time and power consumption for the Apriori kernel. On the other
hand, the Intel Xeon Phi presented better performance on K-Means.

As future work, we propose to apply load balancing strategies on both appli-
cations to improve their performances. Moreover, we intend to implement par-
allel versions of these applications for Graphical Processor Units (GPUs), and
use more HPC devices, for instance, a cluster of Xeon Phi boards. This would
allow us to compare this architecture with the ones used in our work. Finally,
we also intend to study the impacts on the energy efficiency and performance of
the Raspberry Pi cluster when running application kernels from other domains,
such as image processing and computational fluid dynamics.
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