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Abstract

We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Mea-
surements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented
particle [Shew et al., 2007] that was used by Gasteuil et al. [2007] to performed experiments in a parallelepipedic
Rayleigh-Bénard cell. The temperature signal is obtained from a RF-transmitter. Simultaneously, we determine
particle’s position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the
extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well
as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with
the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of
massless tracers. The comparison between experimental and numerical results shows the accuracy and reliability
of our experimental measurements and points also out the finite-size effects of the particle. Finally, the analysis
of Lagrangian velocity and temperature frequency spectra is shown and discussed. In particular, we observe that
temperature spectra exhibit an anomalous f−2.5 frequency scaling, likely representing the ubiquitous passive
and active scalar behavior of temperature.
Key words: Turbulent convection, plume/thermals.

1 Introduction
Thermal convection occurs in many industrial and geophysical applications, ranging from heat exchangers or nu-
clear/chemical reactors to atmospheric circulation. In most of these cases, the flow is highly turbulent and transports
heat very efficiently. Nevertheless, understanding and modeling the local and global properties of the temperature,
velocity and heat-flux fields in these situations is still a challenge. To analyze turbulent thermal convection in a
laboratory, we choose the Rayleigh-Bénard configuration: a horizontal layer of fluid confined between a cooling
plate above and a heating plate below. In this flow configuration, the temperature gradient is confined in the
thermal boundary layers close to the heating and cooling plates. Due to the strong mixing, a nearly homogeneous
temperature distribution is observed in the bulk. The driving force of the flow is measured by the Rayleigh number:

Ra =
gα∆TH3

νκ
, (1)

where H is the height of the cell, g is the gravitational acceleration, α is the constant pressure thermal expansion
coefficient, ∆T = Th − Tc is the difference of temperature between the heating and the cooling plate, ν is the
kinematic viscosity of the fluid, and κ is its thermal diffusivity. The Prandtl number expresses the ratio between
viscous and thermal dissipation:
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Pr =
ν

κ
. (2)

A further input parameter is the aspect ratio Γ, i.e. the ratio between the horizontal and the vertical size of the
cell. The response of the system is represented by the Nusselt number, which compares convective and conductive
heat flux:

Nu =
QH

λ∆T
, (3)

where Q is the global heat flux, and λ is the thermal conductivity of the fluid.
Assuming locally homogeneous and isotropic turbulence, for sufficiently high Reynolds and Peclet numbers,

passive scalars and velocity spectra follow the well-known Kolmogorov-Obukhov laws [Kolmogorov, 1941, Monin
and Yaglom, 2007]. However, in thermally driven flow, temperature is not a passive scalar and the similarity
theory requires a further generalization. It has been argued that for small scales a thermally stratified fluid can
be considered locally stationary and homogeneous, but not isotropic and axially symmetric relative to the vertical
direction [Bolgiano, 1959, Obukhov, 1959]. Within this framework, the scalings become dependent on the Bolgiano-
Obukhov (BO59) lengthscale measuring the importance of the thermal stratification,

LBO ≡ ε5/4ε
−3/4
θ (αg)

−3/2
, (4)

where εT and εu are the temperature and kinetic energy dissipation rate, respectively. LB characterizes the minimum
length scale of inhomogeneities beyond which stratification should be taken into account. The ordinary Kolmogorov
spectrum scalings (k−5/3) are expected to be recovered at scales smaller than the Bolgiano length. On the other
hand, if LB becomes much larger than the external turbulence length scale L0, the effect of the mean flow becomes
important and the similarity theory does not apply. Yet, all the theoretical predictions and scalings are assessed
for regions of space far enough from solid boundaries. In general, stratification affects a certain range of scales,
which cannot be considered locally isotropic. Corrections to the velocity and temperature correlations and spectra
may be universal and may be in principle determined empirically. For stable stratified flows, Bolgiano [1959]
established a theoretical framework to determine the asymptotic form of these functions for scales much greater
than LB . These Bolgiano-Obukhov (BO59) scalings predict spectra that are steeper for the velocity and milder
for the temperature compared to those given by Kolmogorov-Obukhov scalings. Nevertheless, the ultimate picture
on velocity and temperature scalings in thermal convection is far from being obtained [Lohse and Xia, 2010].
Experimental measurements at Ra ≈ 1010 and Pr = 4.4 exhibit a K41 behaviour for velocity [Zhou et al., 2008]
and for velocity and temperature [Sun et al., 2006] structure functions. However, direct numerical simulations
(DNS) of thermal convection on a cylindrical domain [Kunnen et al., 2008] show a BO59 scaling for temperature
structure functions in the radial direction and for vertical velocity structure functions in the longitudinal direction
(Ra = 108, Pr = 1).

Even though remarkable progresses have been made towards a deeper understanding of scaling laws between
control and response parameters [Grossmann and Lohse, 2000, Chavanne et al., 2001, Stevens et al., 2013], new
investigations are required to clarify some of the open issues [Lohse and Xia, 2010, Chillà and Schumacher, 2012].
Most of literature studies on Rayleigh-Bénard turbulence have been focused on eulerian measurements of velocity
and temperature distribution [Xia et al., 2003, Tilgner et al., 1993], with the aim of characterizing the behavior
of the local heat flux, Nu, as a function of the Rayleigh number, Ra [Shang et al., 2004]. Although the mean
velocity in the central region of the convection cell is homogeneous and close to zero, the velocity root-mean-square
is neither homogeneous nor isotropic [Qiu et al., 2000, Xia et al., 2003]. These flow inhomogeneities prevent from
using the frozen-flow hypothesis [Taylor, 1938]: this makes the connection between time-domain measurements and
space-domain predictions difficult.

More recently, improvements in computing power and storage capacities has allowed the appearance of La-
grangian studies of turbulence, which naturally provide useful informations on transport mechanisms. The La-
grangian description of turbulence has significantly contributed to our current comprehension of transfer processes
[Toschi and Bodenschatz, 2009]. In particular, a number of experimental [Mordant et al., 2001, La Porta et al.,
2001, Voth et al., 2002], numerical [Yeung, 2002, Biferale et al., 2004] and theoretical [Chevillard et al., 2003] stud-
ies focused on velocity and acceleration statistics in homogeneous and isotropic turbulence. The first numerical
Lagrangian studies of thermal convection were those of Schumacher [2008, 2009], which were specifically focused
on pair dispersion and on acceleration statistics. Although the tracer motion was largely anisotropic due to the
vertical buoyancy, pair dispersion was close to the homogeneous and isotropic turbulence. Acceleration and tem-
perature statistics showed a non-gaussian behaviour characterized by a large intermittency (higher in the horizontal
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Figure 1: (a) Sketch of the convection cell and of the mobile sensor. The six dark dots in the plates show the location
of the PT100 temperature sensors. (b) Photograph of the instrumented particle (open). We see the batteries place.

directions). Relevant to the present work was also the finding of the non-symmetric behaviour of the heat transport
probability density function. From an experimental point of view, measurements of turbulent thermal convection
in a Lagrangian framework are relatively scarce. Only recently, Ni et al. [2012] used three-dimensional particle
tracking velocimetry to analyze velocity and acceleration statistics in turbulent Rayleigh-Bénard convection. In
particular, they observed a gaussian and a stretched exponential distribution for the probability density function
of velocity and acceleration in the centre of the cell.

From the above review, phenomenological and statistical analyses of turbulent Rayleigh-Bénard convection in a
Lagrangian frame of reference appear not yet complete and require further investigation. This is exactly the purpose
of the present study. In this work, we present both experimental and numerical measurements of temperature and
velocity in a Lagrangian frame. For the experiments, we improved the neutrally-buoyant instrumented particle
presented in Shew et al. [2007] and already used and tested by Gasteuil et al. [2007]. This smart particle explores a
rectangular Rayleigh-Bénard cell filled with water. We compare Eulerian maps obtained from our Lagrangian data
with PIV measurements, to show that the particle samples correctly the entire flow (and to deduce pseudo-Eulerian
maps of temperature and thermal flux). At the same time, we perform Direct Numerical Simulations (DNS) of La-
grangian particle tracking of massless tracers in turbulent Rayleigh-Bénard convection. These numerical simulations
correspond to the ideal case of a particle of zero diameter and, therefore, they can be viewed as a “thought exper-
iment” built to highlight possible finite-size effect of the smart-particle in the experiments. Velocity, temperature
and heat flux statistics obtained from experiments and numerical simulations are compared and discussed.

2 Smart particle, experimental setup and numerical simulation method
2.1 Smart Particle
The mobile sensor consists in a 2.1 cm in diameter capsule containing temperature instrumentation, a radio-
frequency emitter, and two batteries. The mobile cover is Polyvinyl Chloride (PVC) with a thermal conductivity
λp = 0.19W · m−1 · K−1 at ambient temperature. Four cylindrical thermistors (0.8 mm in length, 0.4 mm in
diameter, 230 kΩ, response time 0.6 s in water) are mounted on the capsule wall protruding 0.5 mm into the
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∆T (◦C) Ra Nu
13.15 3.5× 1010 230
18.60 5.0× 1010 244
22.90 6.2× 1010 264

Table 1: Parameters used for acquisitions in the experiments.

surrounding flow (see sketch in zoom of figure 1(a) and photograph figure 1(b)). A resistance controlled oscillator
is used to create a square wave whose frequency depends on the average of the four measured temperatures. This
square wave is used directly to modulate the frequency of a radio wave generated by the radio-frequency emitter.
The temperature signal is recovered on the fly by a stationary receiver. The capsule has been redesigned (compared
to the one described by Shew et al. [2007]) in order to have the four thermistors at the equator and a simpler
handling. A new shell has been conceived to contain two batteries and to extend the emission time which can
now reach up to 1000 turnover times. The position of the batteries fixes one rotation axis. As a consequence, the
four thermistors lay on a horizontal plane during the particle displacement. At the same time the trajectory of the
particle is recorded with a digital camera placed in front of the large face of the cell (due to cell dimensions, we
assume that the mean flow is quasi bi-dimensional).

2.2 Experimental setup
Our convection cell is a 10.5 cm-thick 41.5 cm × 41.5 cm rectangular cell with 2.5 cm-thick PMMA walls (see sketch
figure 1(a)). Both plates consist in 4 cm-thick copper plates coated with a thin layer of nickel. The bottom plate is
Joule-heated while the top plate is cooled with a temperature regulated water circulation. Plate temperatures are
controlled by PT 100 temperature sensors. We work with deionized water. The bulk temperature is fixed between
37.05◦C and 38.35◦C in different experiments. The corresponding Prandtl number are in the range 4.62 − 4.49.
Main parameters are grouped in table 1.

We can estimate the thermal boundary layer thickness by :

δθ =
H

2Nu
. (5)

In our case, δθ is in the range 0.8–0.9 mm. This is consistent with measurements of Salort et al. [2014], who used
the same cell, though with a rough bottom plate, and found δθ ≈ 0.8mm close to the top-smooth plate1. The
corresponding kinetic boundary layer thickness, in the Prandtl-Blasius theory for Pr > 1, can be estimated by:

δv ≈ Pr1/3δθ, (6)

which leads to a kinetic boundary layer thickness in the range 1.3–1.5 mm. Consequently the smart particle, with
its diameter of 21 mm, cannot be influenced by the thermal and the kinetic boundary layers.

2.3 Numerical simulations
Direct Numerical Simulations are performed to complement our experimental results. We consider an incompress-
ible and Newtonian turbulent flow of water confined between two rigid boundaries. Horizontal and wall-normal
coordinates are indicated by x, y and z, respectively.

The bottom wall is kept at uniform high temperature (Th), whereas the top wall is kept at uniform low temper-
ature (Tc). The size of the computational domain is Lx×Ly ×Lz = 2πH × 2πH × 2H (in x, y and z, respectively),
where H is the half-channel height. Periodic boundary conditions are imposed on velocity and temperature along
the horizontal x and y directions; at the walls, no slip conditions are enforced for the momentum equations while
constant temperature conditions are adopted for the energy equation. A sketch of the computational domain/flow
conditions is presented in Fig.2.

The imposed temperature difference ∆T = (Th − Tc) between the bottom and the top wall induces an unstable
buoyancy effect within the flow field (the acceleration due to gravity g acts downward along z). Mass, momentum
and energy equations in dimensionless form and under the Boussinesq approximation are:

∇ · u = 0, (7)
1Assuming plates independence [Tisserand et al., 2011].
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Figure 2: Sketch of the numerical simulation domain. Temperature contours for Ra = 109 are also shown (red
indicates regions of high temperature whereas blue indicates regions of low temperature).
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+ (u · ∇)θ = +

4√
PrRa

∇2θ, (9)

where ui is the ith component of the velocity vector, θ is the dimensionless temperature θ = (T − Tref )/∆T , p
is pressure, whereas δi,3θ is the buoyancy force (acting in the vertical direction only) that drives the flow. Eqs.
7-9 have been obtained using H as reference length, uref =

√
Hgα∆T/2 as reference velocity, Tref = (Th + Tc)/2

as reference temperature and p = ρgαH∆T/2 as reference pressure. Density ρ, kinematic viscosity ν, thermal
diffusivity κ and thermal expansion coefficient α are evaluated at a mean fluid temperature of ' 30oC. The Prandtl
and the Rayleigh numbers in Eqs. 7-9 are defined as Pr = ν/κ and Ra = (gα∆T (2H)3)/(νκ), respectively. In
the present study, we keep the Prandtl number Pr = 4 and we vary the Rayleigh number between Ra = 107 and
Ra = 109. The resulting set of equations are discretized using a pseudo-spectral method based on transforming the
field variables into wavenumber space, through Fourier representations for the periodic (homogeneous) directions x
and y, and Chebychev representation for the wall-normal (non-homogeneous) direction z (see Zonta et al. [2012],
Zonta and Soldati [2014] for details). We used up to 512 × 512 × 513 grid points to discretize the computational
domain. We injected Np = 1.28 · 105 Lagrangian tracers and we computed their dynamics as

ẋp = u (xp(t), t) θp = θ (xp(t), t) , (10)

with xp the tracers position and θp their temperature. Velocity and temperature at particle position are obtained
by 6th order Lagrange polynomials. Time advancement for the Lagrangian tracers is achieved using a 4th order
Runge-Kutta scheme.

As discussed above, numerical simulations are carried out in a laterally-opened (along x and y) domain configu-
ration, which is similar to that considered in the theory (where the vertical direction is not homogeneous, because
of the buoyancy, while the other two are homogeneous and isotropic). Experiments must be performed in a closed
cell and effects due to anisotropy may appear also in the other directions. Moreover, passive tracers in numerical
computations are free to explore the entire domain, whereas the smart-particle, due to its dimension, cannot directly
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Figure 3: Skewness of the distribution of the vertical and horizontal positions of the smart particle versus the
temperature of the cell center.

access the tiny boundary layer region. The comparison between experiments and simulations is precisely aimed at
highlighting these differences, which might have some influence on the flow statistics, as will be discussed in the
following.

3 Lagrangian measurements
To follow accurately the flow, the capsule and fluid density are carefully matched within 0.005%. This is the main
difficulty of the experiment. On figure 3 we plot the skewness of the distributions of the horizontal and vertical
positions while varying mean temperature of the cell. Due to the flow symmetry, we assume that the particle
ideally matches the fluid density when both horizontal and vertical skewness are close to 0, which happens for a
temperature of 37.5◦C. If the mean temperature is shifted of few tenth of degrees, symmetry is broken while the
particle becomes less neutrally-buoyant. The effect is more dramatic on the horizontal position. To explain it, we
assume a particle denser than the fluid. When traveling along the top plate, it is easily advected by a cold plumes:
the particle goes downwards earlier during the travel. When traveling along the bottom plate, it is more difficult
for a plume to advect the particle: it goes upwards only when reaching the corner of the cell. As a consequence,
the average horizontal particle trajectory is shifted close to the plate region where hot plumes rise. This reasoning
holds also for a less dense particle and explain the large skewness of the distribution of the horizontal position.

We performed measurements from 6 to 20.3 hours. The cell is kept as horizontal as possible to minimize the
influence of additional flow parameters on the final results. Although flow reversals may occur in horizontal cells,
in the present experiments we have never observed such events. Figure 4(a) shows an example of a temperature
measurement along the particle trajectory. In this case, Ra = 5.0 × 1010 while the acquisition time is six hours.
Globally, the particle describes a loop in the counterclockwise direction (the rotation direction can change for other
acquisitions). Its mean speed is 1 cm/ s. Close to walls and plates, its speed is typically 2 to 3 cm/ s.

As said previously, the thermal boundary layer thickness can be computed as:

δθ =
H

2Nu
, (11)

which corresponds to a thickness of less than 1 mm for the considered Rayleigh numbers, which is not directly
accessible to our particle. This is why we do not observe large temperature gradients close to the top and bottom
plates. However, we clearly detect hot and cold jets near the right and left walls, respectively. Temperature
fluctuations in the cell (outside the boundary layers) are typically 1◦C and are likely due to advection by plumes.
Nevertheless, joint measurements of temperature and trajectory give indications that the particle movement is more
influenced by the mean wind than by plumes, except close to the vertical walls - inside hot and cold jets. The reason
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of this observation could be the size of the smart particle being larger than the typical size of the thermal plumes,
which in turn scales with the thermal and boundary layer thickness (≈ 1 mm). Note that a smaller particle could
be more influenced by plumes than by the mean wind.

From the knowledge of the velocity and temperature of the particle, we can compute the Lagrangian thermal
flux. We use a normalized vertical Nusselt number [Ching et al., 2004, Grossmann and Lohse, 2004]:

NuL
z = 1 +

H

κ∆T
(T (t)− 〈T (t)〉t) vz(t), (12)

where T (t) is the instantaneous temperature measured by the particle, 〈T (t)〉t is its mean along the trajectory
and vz(t) is its vertical velocity. Figure 4(b) shows the NuL

z along the trajectory. Most of the vertical thermal
transfer is symmetrically concentrated in the hot and cold jets, corresponding to plumes where T (t)− 〈T (t)〉t and
vz(t) have the same sign. The average vertical heat flux along the trajectory reaches 〈NuL

z 〉t = 138. We observe
very intense positive events in the jets (up to 30 times larger than the average) but only few, small negative events.
This point will be detailed in subsection 5.1.

4 Pseudo-Eulerian maps
4.1 Methodology and PIV measurements
The velocity distribution in the central region of the convection cell is close to that of a solid body rotation, a
situation that hinders the particle from exploring easily this region. To obtain a correct resolution of the central
region we performed very long experiments. With more than twenty-hour measurement, we have enough data in
the whole cell (including the central zone) to compute pseudo-Eulerian maps of several quantities. To do this, we
divide our cell in 1.04 cm × 1.04 cm squares and we compute the average of the considered quantity in each cell.
The accuracy of the method has been evaluated through comparison of the pseudo-Eulerian velocity field (figure
5(a)) with the results obtained by Particle Image Velocimetry (PIV) measurements in the same cell (figure 5(b)) at
similar Rayleigh numbers. We performed PIV measurements with a 1.2 W, Nd:YVO4 laser. Flow was seeded with
Spherical 110P8 glass beads of 1.10±0.05 in denseness and of 12 µm average diameter. Twelve-hour acquisitions
with one picture pair (frequency acquisition 20 Hz) every ten seconds were used to compute mean velocity fields.
We used CIVx [Fincham and Delerce, 2000] free software for analysis. Several passes are applied to picture pairs.
For the first one, we cut out pictures in 30×30 pixels2 elementary boxes with 50% overlap. Search zones was one
and a half larger.

The velocity magnitude obtained from PIV is in good agreement with observations from Xia et al. [2003]
for a similar cell. The small differences of the flow structure between PIV and pseudo-Eulerian map are linked
to the imperfect sampling of space by the smart particle. Moving inside the cell, the smart particle samples more
frequently specific regions of the flow rather than others, with possible effects on the Lagrangian statistics compared
to Eulerian ones. This is the case of the bottom-left corner (z ≈ 100mm and x ≈ 10mm) and of the top-right corner
(z ≈ 320mm and x ≈ 400mm). The velocity measured with the smart particle is slightly lower than that obtained
with the PIV technique, probably due to at least two effects: a small difference in the Rayleigh number and particle
size. For particles with the same density of the surrounding fluid and moving in a turbulent flow, experimental
[Qureshi et al., 2007a, 2008] and numerical [Lucci et al., 2011] studies show that the size of the particles has a slight
effect on the velocity dynamics but a strong effect on the acceleration variance (not shown here). This is consistent
with our observations on the mean velocity field. Moreover, and contrary to the PIV measurement, we observe a
minimum of the magnitude of the velocity near the corners, where a vertical velocity becomes a horizontal velocity.
This could be due to the particle size and stiffness (small deformability). In the corners, streamlines are deflected
and the smart particle filters the flow at a characteristic spatial and temporal scale. As a consequence, the change
of direction is much more complex for the smart particle than for the fluid, which can lead to a deceleration of the
particle in these regions.

A further explanation for the lower velocity measured by the smart particle compared to PIV could be the
time-response of the particle to temperature fluctuations. We can estimate the time response of the particle by:

tr ∼ d2

κ
, (13)

where d2 is a characteristic length. The response-time of the 1-millimeter thick PVC mobile cover is tpr ∼ 13 s.
If we assume that the smart particle is filled with air, the corresponding response-time is tir ∼ 19 s. These values
of the response-time are close to the time the smart particle spends to travel from the top to the bottom plate and
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Figure 5: (a) Pseudo-Eulerian field of the velocity magnitude from Lagrangian data, Ra = 5.0× 1010. (b) Field of
the velocity magnitude obtained by PIV, Ra = 5.6× 1010.

vice versa. Consequently, in some regions of the flow, the smart particle could have a slightly different denseness
from the fluid which could have a small influence on the velocity measured by the smart particle. Nevertheless, as
we can observe on figure 5, the particle motion is very similar to the fluid one.

We can also estimate the Stokes number of the smart particle. For the case of neutrally buoyant particles with
a size larger than the Kolmogorov length scale η, we can estimate the Stokes number by [Qureshi et al., 2008, Xu
and Bodenschatz, 2008]:

St =
d
4/3
p

12η4/3
, (14)

where dp is the particle diameter. The Stokes number turns out to be of about 12. Some experimental [Qureshi
et al., 2007b, 2008] and numerical [Lucci et al., 2011] works show that for neutrally buoyant particles, the Stokes
number does not have a strong effect on the velocity dynamics. However we will observe some finite-size effects,
especially on spectra.

4.2 Temperature and thermal flux maps
Our Lagrangian method can be efficiently used to obtain pseudo-Eulerian map of temperature in the whole cell.
To our knowledge, this is the first Lagrangian experiment giving the whole temperature map for this range of
Rayleigh and Prandtl numbers. The pseudo-Eulerian temperature field is plotted in figure 6(a). We observe that
the flow is homogeneous in the bulk, whereas hot and cold jets dominate the regions close to the walls. Deviations
of temperature from the bulk value are in particular seen in the top-left and bottom-right corners and are likely due
to the effect of buoyant plumes driving the smart particle along the vertical walls. As suggested by Scagliarini et al.
[2014], the mean wind acts stabilizing the boundary layers and reducing the plume emission activity. Moreover, the
intense mixing makes the plume temperature close to the bulk temperature along the plates but in the top-left and
bottom-right corners (where the mean wind is blocked and mixing cannot be observed).

This situation is well represented in figure 6(b), where we observe large fluctuations in the corners but fewer
fluctuations in the vertical jets and close to the plates. The observed slight asymmetry can be explained by a
non-perfect particle-to-fluid density matching. With velocity and temperature joint measurements, this is the only
Lagrangian experimental technique that gives a pseudo-Eulerian thermal flux map which is presented on figure 7.
We observed that NuL

z is large inside both cold and hot jets, where vertical velocity vz is large, and indicates that
the spatial distribution of NuL

z is chiefly influenced by plumes.
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Figure 6: Pseudo-Eulerian (a) temperature field and (b) square mean root of the difference between the temperature
and the temperature average along the trajectory. Measurements at Ra = 5.0× 1010.
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4.3 Velocity fluctuations
Now we discuss velocity root mean square (RMS) maps obtained by our smart particle in connection with the
results obtained by PIV measurements. From the velocity pseudo-Eulerian maps, we can compute smooth velocity
mean fields by interpolation. This velocity value at each point (x, z) is indicated as vEi (x, z) where i = x, z is
the horizontal or vertical velocity, respectively. Thus, in each square s described above, for all (xs, ys) Lagrangian
coordinates of the particle trajectory included in the square we have:

vRMS
i,s =

√
〈
(
vLi (xs, zs)− vEi (xs, zs)

)2〉s, (15)

where vLi (xs, zs) represents the Lagrangian velocity events inside the considered square and 〈.〉s is the average
of these events. This is similar to the velocity RMS computed from PIV measurements for all (x, y) in the cell:

vRMS
i (x, z) =

√
〈(vi(x, z, t)− 〈vi(x, z, t)〉t)2〉t. (16)

In these two definitions, both vEi (x, z) and 〈vi(x, z, t)〉t represent the mean flow. Figure 8 compares vertical
(left) and horizontal (right) velocity fluctuations from the smart particle (top) and from PIV (bottom). First, we
note that RMS values recorded by the particle are slightly smaller compared to those evaluated by PIV (excepted
in the top-right and bottom-left corners). This is mainly due to the filtering effect played by the particle on small
scales fluctuations. This is consistent with an experimental study in a Von-Kármán flow [Machicoane et al., 2015].
The velocity RMS of large particles decreases slightly when their diameter increases relatively to the integral scale.
There is also a secondary effect due to a small difference in the value of Ra (Ra = 5 × 1010 for the Lagrangian
particle and Ra = 5.6 × 1010 for PIV measurements). The two regions characterized by the largest fluctuations
(where Lagrangian velocity fluctuations can be up to 50% more intense than those measured by PIV) are those
where vertical plumes impinge on the horizontal walls and induce large turbulence patches. In our Lagrangian
measurements, we also observe significant fluctuations along the horizontal plates: these fluctuations, which are not
visible in the PIV measurements, are due to particle rebounds on the horizontal walls. To estimate their influence
on the pseudo-Eulerian velocity RMS map we propose a simple model. A fluid particle impinging on a wall follows
faithfully the flow streamlines and converts instantaneously its vertical velocity into a horizontal one. By contrast,
the smart particle is characterized by a finite size and by a large stiffness. When it approaches the wall, its trajectory
will not adapt immediately to the flow streamlines and the particle will hit the wall. If we assume an elastic rebound
with the wall, a positive vertical velocity will become a negative one and vice versa. Due to this rebound, the RMS
of the velocity measured by the smart particle will be twice the size of that characterizing the fluid. Since we
observe one particle rebound at the wall every two large scale turnovers, the increase of the velocity RMS is of the
order of 50%. This is exactly the increase of vertical velocity RMS observed between pseudo-Eulerian and Eulerian
maps. Although these rebounds have an influence on the vertical-velocity statistics in the corners, the effect on the
vertical Lagrangian Nusselt number is negligible. These corners are indeed characterized by a local temperature
that is close to the mean one (see figure 6 (a)). Consequently, seeing the NuL

z definition (equation 12), this will
weakly affect the vertical heat flux.

5 Flow statistics
5.1 Probability density functions
In figure 9(a) we show the probability density function (PDF) of the temperature fluctuations recorded by our
instrumented particle at Ra = 5 · 1010 for different measurement time (t = 2, 4, 8, 16, 20.5 hr). We note that
the shape of the PDF becomes increasingly smooth for increasing measurement times. Present results based on
20.5-hour measurements substantially improve previous results of Gasteuil et al. [2007] obtained with a 2-hour
acquisition. Nevertheless, the global shape is conserved, and confirms the overall quality of the results by Gasteuil
et al. [2007]. The nearly-symmetric shape of the PDF is a further signature of the quality of the results (good
buoyancy neutrality). However there is a small asymmetry of the shape of the temperature PDF, whose skewness
is -0.5. This effect is due to a very small buoyancy of the smart particle. The skewness of the distribution of the
horizontal and the vertical position are respectively 0.06 and 0.03. By looking at figure 3, it corresponds to an error
of about 0.05oC above the isodensity temperature (equivalent to an error of 0.002%). Since we have a buoyancy
driven flow, the smart particle can be very sensitive to small density differences. In the present case, the particle
stays a little longer in the top-left corner, where it likely measures cold temperatures rather than hot ones.
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Figure 9: (a) Probability Density Function (PDF) of the temperature fluctuations T − 〈T (t)〉t at Ra = 5.0× 1010

for different measurement times. (b) Comparison between experimental and numerical results of the PDF of
temperature fluctuations, T − 〈T (t)〉t, normalized by the corresponding standard deviation. Solid line represents
experimental data whereas dashed lines correspond to DNS data at different Ra.

The PDF has sharp exponential tails, in agreement with previous Eulerian measurements [Belmonte et al., 1994]
performed far from the boundary layers and using air at Ra = 4.8×107. However, tails are wider due to the passage
of the particle in hot and cold jets. This suggests that Eulerian measurements in Rayleigh-Bénard convection are
delicate: since the flow is largely inhomogeneous, the position at which the measurement is taken is fundamental.
The generalization of the behaviour of the entire cell based on a local measurement requires a lot of care. In
Fig. 9(b), we compare experimental results of the PDF of temperature fluctuations obtained in the 20.5-hour
measurement with our results from numerical simulations at different Rayleigh numbers. Results are normalized
by the corresponding temperature standard deviation, std(T ). Even though numerical experiments are carried out
at smaller Rayleigh number, the agreement between experiments and simulations is satisfactory when Ra > 108.
Deviations between experimental and numerical results are observed only for (T − 〈T (t)〉t)/(T − 〈T (t)〉t)RMS > 3,
hence highlighting the accuracy of the present experiments. Indeed, our numerical simulations can be seen as
an ideal experiment, since we sample the flow-field with massless (pointwise) fluid tracers (no size/inertia effect
of the Lagrangian probes). Within this framework, the difference between experiments and simulations can give
indications on the effect of the size of our smart particle: due to the finite-size, our smart particle acts as a filter
for small/short space/time scale events, and numerical experiments show larger tails. It is worth noting that the
particle does not visit all the regions of the cell, notably close to walls, and that might be in principle one of the
reason of such difference. However, at sufficient high Ra (> 109) boundary layer is very thin and figure 9 together
with similar comparisons for the velocity (not presented here) show that the difference is always confined to the
tails of distributions.

As previously mentioned, with our instrumented particle we are able to record simultaneously velocity and
temperature, hence we can compute the local value of the vertical Nusselt number NuL

z . Figure 10(a) shows the
histogram of the vertical Nusselt for three different Rayleigh numbers. The most probable value is NuL

z = 0,
corresponding to the time during which the particle has a horizontal trajectory or is advected by the mean wind far
from the walls (hence far from plumes), where no significant vertical heat flux is observed. Interestingly, there is a
larger positive tail, which is the signature of near wall intense events [Gasteuil et al., 2007]. When Ra increases,
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Figure 10: (a) PDF of the vertical thermal flux NuL
z for different Rayleigh numbers, six-hour measurements.

(b) Comparison of the vertical Nusselt PDF NuL
z normalized by the standard deviation. Solid line represents

experimental data whereas dashed lines correspond to DNS ones.

the shape of the histogram does not change, but we observe more intense events at higher Ra. In figure 10(b) we
compare our experimental and numerical results of PDF (NuL

z ). Results are normalized by their corresponding
standard deviation, std(NuL

z ). We observe a very good agreement between experiments and simulations over the
entire range of measured NuL

z /std(NuL
z ), for Ra > 108. Deviations are seen only for extreme and rare events,

NuL
z /std(NuL

z ) > 7, due to the filtering effect of the smart particle size on velocity/temperature fluctuations.

5.2 Spectral analysis
We conclude our discussion with a spectral analysis of velocity and temperature Lagrangian time series recorded
at different Rayleigh numbers. Let us recall some scalings in stratified flows based on Kolmogorov similarity
theory [Monin and Yaglom, 2007]. In the inertial range, dimensional considerations suggest

Eu(k) = ε2/3k−5/3Ψu(k/LBO) , Eθ(k) = εθε
−1/3k−5/3Ψθ(k/LBO) (17)

where εθ = κ〈∇θ2〉 is the temperature dissipation, and Ψi are appropriate universal functions. For isotropic
turbulence Ψi ∼ 1 and the scalings reduce to Eu(k) ∼ k−5/3 , Eθ(k) ∼ k−5/3. It is worth emphasizing that these
scalings are local, and thus typically apply to Eulerian measurements. Assuming a Lagrangian perspective, these
scalings are influenced by sweeping and become Eu(f) ∼ f−2 , Eθ(f) ∼ f−2, in a local moving frame of reference,
as it can be found by dimensional arguments [Monin and Yaglom, 2007]. In non-homogeneous flows the situation
is even more complex, since multiple scales can play a role and different scalings can be observed. Possible scalings
above the Bolgiano-Obukhov length are

Eu(k) ∼ ε
2/5
θ (gα)4/5k−11/5 , Eθ(k) ∼ ε

4/5
θ (gα)−2/5k−7/5 . (18)

These scalings have been recently observed in Rayleigh-Taylor turbulence [Boffetta et al., 2009], upon assumption
of a correspondence between the box length in the horizontal direction and the Bolgiano length (which is otherwise
a priori unknown).
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Figure 11: (a) Horizontal and (b) vertical velocity spectra at different Rayleigh numbers.

Figures 11(a), 11 (b) and 12(a) show the frequency spectra (for six-hour acquisitions) of horizontal velocity,
vertical velocity and temperature, respectively. We observe three distinctive characteristics. First, a peak appears
at a frequency f ' 1.25 × 10−2 Hz (80 s), which is consistent with the typical large scale turnover time for each
Rayleigh number. Yet, when Ra increases, the spectrum shifts upwards, indicating a more intense dynamics.
Finally, a cut-off occurs at f ' 0.15 Hz for vertical velocity and at f ' 0.5Hz for temperature, whereas the cut-off
is less visible for the horizontal velocity. These cut-off are probably due to finite-size effect. We could estimate the
cut-off frequency as the turbulence timescale (obtained dimensionally) at the particle size tc−o ∼ d

2/3
p ε−1/3. It leads

to a cut-off frequency of about 0.2 Hz which is consistent with the observed one. For the temperature, the cut-off
appears for a higher frequency because of the lower size of the sensors.

From the proposed scaling laws (lines in figures 11-12) we note some interesting features. A f−2 power law
characterizes the vertical velocity, whereas a f−2.5 power law characterizes the horizontal velocity. Compensated
spectra (by f−2 and by f−2.5) are also shown to indicate the scaling properties in a more convincing way, in figure
13. In particular, the plateau and the cut-off become well visible and define clearly the inertial range for both
components. It is important to note here that, even though compensated spectra appear rather convincing, the
scaling exponents should not be considered as exact because of statistical errors and possible lack of resolution. A
similar flow anisotropy has been also observed by Ouellette et al. [2006] in a Von-Kármán flow. From the above
observations, we can infer the following physical interpretation. The particle has a large vertical velocity when
it enters hot and cold jets along the lateral walls, whereas it has a large horizontal velocity when it is driven by
the mean wind along the top and bottom walls. Since the hot and cold jets are characterized by more intense
fluctuations, the corresponding spectra have a weaker slope. Upon substitution of k = f/u in eq. (18), we obtain
the Bolgiano scaling Eu(f) ∼ f−11/5, in which the frequency f describes the global dynamics observed from a fixed
frame. Note that this scaling is different from that obtained in a frame moving with the fluid. In this case, from
dimensional arguments, we find Eu(f) ∼ f−4. This indicates that the velocity scalings (f−2 and f−2.5) observed at
large scale are reasonably consistent with the Bolgiano global scaling. After the cut-off, a f−4 power law appears for
both spectra, which is consistent to the stochastic model of Sawford [1991]. Concerning the temperature spectra, we
observe a f−2.5 power law with very visible plateaus on the compensated spectra figure 12(b). Note that due to the
anisotropic and inhomogeneous flow condition we do not find a f−2 slope, as expected for a passive scalar in local
isotropy conditions. Yet, temperature can not be considered as a pure passive scalar, in particular inside hot and
cold jets. Unfortunately, at present we do not have a quantitative explanation for this power law. It probably stems
from the mixing of different scalings due to the Lagrangian measurements. Results from numerical simulations (not
shown here) differ from the present experimental results due to the different flow configuration: our simulations are
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Figure 12: (a) Temperature spectra at different Rayleigh numbers. (b) Same temperature spectra compensated by
f−2.5.
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Figure 13: (a) Horizontal and (b) vertical velocity spectra compensated by f−2.5 and f−2 respectively for different
Rayleigh numbers.
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run in a domain with top and bottom walls but no side walls, whereas experiments are run in a square enclosure.
The absence of a characteristic confinement length in the simulations hinders the possibility of observing a clear
scaling at large scales.

6 Conclusion
In this work, we have used an improved version of our smart particle to perform new experimental measurements in
Rayleigh-Bénard convection at different Rayleigh numbers (up to Ra = 6.2×1010). To corroborate the experiments
and isolate possible finite-size effects, we have also carried out Direct Numerical Simulations of Rayleigh-Bénard
turbulence with Lagrangian tracking of massless tracers.

In the experiments, due to the extended autonomy of the particle, we are able to sample velocity and temperature
at the particle position for long periods of time, up to twenty hours. This long data recording allows not only to
acquire long time-series describing the temporal evolution of a turbulent flow, but also to build pseudo-Eulerian
maps of the flow field and to compute converged PDF and spectra. The particle trajectory is driven by the
interaction between the mean large scale circulation (along the horizontal walls) and the thermal plumes generating
vertical hot and cold jets. Velocity and temperature fluctuations are essentially concentrated in the bottom-right
and top-left corners, and denotes strong turbulence events in these regions.

Upon comparison between experimental and numerical results, we are able to demonstrate the accuracy of our
experimental technique in recovering all the fundamental statistical features of the flow. The same comparison allows
a quantification of the finite-size effect of the smart particle, which acts filtering out the smallest turbulent scales.
This can be appreciated by comparing the tails of the pdf of velocity/temperature fluctuations. Yet, simulations
and experiments agree on the description of the large scales of the flow.

We finally computed velocity and temperature frequency spectra. Interestingly, horizontal and vertical velocity
spectra exhibit different scaling (f−2.5 and f−2, respectively), as a consequence of the strong flow anisotropy in the
vertical and horizontal directions. For temperature, we observe a steep f−2.5 scaling, likely representing the hybrid
passive and active scalar behavior of temperature.

A further study of these observations will be the subject of a future paper. As the flow is dominated by a mean
vortical structure, we can remove it from the recorded signal to study the behavior of turbulence fluctuations and
the interactions between fluctuations and mean structure along the line proposed by Machicoane and Volk [2015]
for Von-Kármán flows.

Acknowledgements: We thank Denis Le Tourneau and Marc Moulin for the manufacture of the cell. We
thank also Marius Tanase for his major support about the electronic device of the particle. We appreciate grately
the smartINST company for their collaboration. We acknowledge Éléonore Rusaoüen, Romain Volk and Mickaël
Bourgoin are also gratefully acknowledged for fruitful discussions. PIV measurements were made possible with the
help of PSMN computing resources.

References
A. Belmonte, A. Tilgner, and A. Libchaber. Temperature and velocity boundary layers in turbulent convection.

Physical Review E, 50(1):269, 1994.

L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, and F. Toschi. Multifractal statistics of lagrangian
velocity and acceleration in turbulence. Physical review letters, 93(6):064502, 2004.

G Boffetta, A Mazzino, S Musacchio, and L Vozella. Kolmogorov scaling and intermittency in rayleigh-taylor
turbulence. Physical Review E, 79(6):065301, 2009.

R. Bolgiano. Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res., 64(12):2226–2229, 1959.

X. Chavanne, F. Chillà, B. Chabaud, B. Castaing, and B. Hébral. Turbulent Rayleigh-Bénard convection in gaseous
and liquid he. Phys. Fluids, 13:1300–1320, 2001.

L. Chevillard, S. G. Roux, E. Lévêque, N. Mordant, J.-F. Pinton, and A. Arnéodo. Lagrangian velocity statistics
in turbulent flows: Effects of dissipation. Physical review letters, 91(21):214502, 2003.

F. Chillà and J. Schumacher. New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E, 35(58),
2012.

17



E. S. C. Ching, H. Guo, X.-D. Shang, P. Tong, and K.-Q. Xia. Extraction of plumes in turbulent thermal convection.
Physical review letters, 93(12):124501, 2004.

A. Fincham and G. Delerce. Advanced optimization of correlation imaging velocimetry algorithms. Experiments in
Fluids, 29(1):S013–S022, 2000.

. Gasteuil, W. L. Shew, M. Gibert, F. Chillà, B. Castaing, and J.-F. Pinton. Lagrangian temperature, velocity, and
local heat flux measurement in Rayleigh-Bénard convection. Physical review letters, 99(23):234302, 2007.

S. Grossmann and D. Lohse. Scaling in thermal convection: an unifying theory. J. Fluid Mech., 407:27–56, 2000.

S. Grossmann and D. Lohse. Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Physics
of Fluids, 16(12):4462–4472, 2004.

A. N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.
volume 30, pages 299–303, 1941.

R. P. J. Kunnen, H. J. H. Clerx, B. J. Geurts, L. J. A. Bokhoven, R. A. D. van Akkermans, and R.. Verzicco.
Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection.
Phys. Rev. E, 77(016302), 2008.

A. La Porta, G. A. Voth, A. M. Crawford, J. Alexender, and E. Bodenschatz. Fluid particle accelerations in fully
developped turbulence. Ann. Rev. of Fluid Mech., 409:1017–1019, 2001.

D. Lohse and K.-Q. Xia. Small-scale properties of turbulent rayleigh-bénard convection. Annual Review of Fluid
Mechanics, 42:335–364, 2010.

F. Lucci, A. Ferrante, and S. Elghobashi. Is stokes number an appropriate indicator for turbulence modulation by
particles of taylor-length-scale size? Physics of Fluids, 23(2):025101, 2011.

N. Machicoane and R. Volk. Lagrangian velocity correlations and spectra of large particles in inhomogeneous and
anisotropic turbulence. submitted to Physics of Fluids, 2015.

N. Machicoane, R. Zimmermann, L. Fiabane, M. Bourgoin, J.-F. Pinton, and R. Volk. Large sphere motion in a
nonhomogeneous turbulent flow. New Journal of Physics, 16(1):013053, 2015.

A.S. Monin and A.M. Yaglom. Statistical fluid mechanics: mechanics of turbulence. Dover, 2007.

N. Mordant, P. Metz, O. Michel, and J.-F. Pinton. Measurement of lagrangian velocity in fully develloped turbulence.
Phys. Rev. Lett., 87(214501), 2001.

R. Ni, S.-D. Huang, and K.-Q. Xia. Lagrangian acceleration measurements in convective thermal turbulence. J.
Fluid Mech., 692:395–419, 2012.

A. M. Obukhov. The influence of hydrostatic forces on the structure of the temperature field in turbulent flow
(english translation). Dokl. Acad. Sci. USSR, Earth Sci. Sect, 125:1246–1248, 1959.

N. T. Ouellette, H. Xu, M. Bourgoin, and E. Bodenschatz. Small-scale anisotropy in lagrangian turbulence. New
Journal of Physics, 8(6):102, 2006.

X.-L. Qiu, S.-H Yao, and P. Tong. Large-scale coherent rotation and oscillation in turbulent thermal convection.
Physical Review E, 61(6):R6075, 2000.

N. M. Qureshi, M. Bourgoin, C. Baudet, A. Cartellier, and Y. Gagne. Turbulent transport of material particles:
an experimental study of finite size effects. Physical review letters, 99(18):184502, 2007a.

N. M. Qureshi, M. Bourgoin, C. Baudet, A. Cartellier, and Y. Gagne. Turbulent transport of material particles:
an experimental study of finite size effects. Physical Review Letters, 99(18):184502, 2007b.

N. M. Qureshi, U. Arrieta, C. Baudet, A. Cartellier, Y. Gagne, and M. Bourgoin. Acceleration statistics of inertial
particles in turbulent flow. The European Physical Journal B, 66(4):531–536, 2008.

J. Salort, O. Liot, É. Rusaoüen, F. Seychelles, J.-C. Tisserand, M. Creyssels, B. Castaing, and F. Chillà. Thermal
boundary layer near roughnesses in turbulent Rayleigh-bénard convection: Flow structure and multistability.
Physics of Fluids, 26(015112), 2014.

18



B. L. Sawford. Reynolds number effects in lagrangian stochastic models of turbulent dispersion. Physics of Fluids
A: Fluid Dynamics, 3(6):1577–1586, 1991.

A. Scagliarini, Á. Gylfason, and F. Toschi. Heat-flux scaling in turbulent rayleigh-bénard convection with an
imposed longitudinal wind. Physical Review E, 89(4):043012, 2014.

J. Schumacher. Lagrangian dispersion and heat transport in convective turbulence. Phys. Rev. Lett., 100(134502),
2008.

J. Schumacher. Lagrangian studies in convective turbulence. Phys. Rev. E, 79(056301), 2009.

X.-D. Shang, X.-L. Qiu, P. Tong, and K.-Q. Xia. Measured local heat transport in turbulent Rayleigh-Bénard
convetion. Phys. Rev. E, 70(026308), 2004.

W. L. Shew, Y. Gasteuil, M. Gibert, P. Metz, and J.-F. Pinton. Instrumented tracer for lagrangian measurements
in Rayleigh-Bénard convection. Rev. Sci. Instrum., 78(065105), 2007.

R. Stevens, E. P. van der Poel, S. Grossmann, and D. Lohse. The unifying theory of scaling in thermal convection:
The updated prefactors. Journal of fluid mechanics, 730:295–308, 2013.

C. Sun, Q. Zhou, and K.-Q. Xia. Cascades of velocity and temperature fluctuations in buoyancy-driven thermal
turbulence. Phys. Rev. Lett., 97(144504), 2006.

G. I. Taylor. The spectrum of turbulence. In Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, volume 164, pages 476–490, 1938.

A. Tilgner, A. Belmonte, and A. Libchaber. Temperature and velocity profiles of turbulent convection in water.
Phys. Rev. E, 47:R2253–R2256, 1993.

J.-C. Tisserand, M. Creyssels, Y. Gasteuil, H. Pabiou, M. Gibert, B. Castaing, and F. Chillà. Comparison between
rough and smooth plates within the same Rayleigh–Bénard cell. Physics of Fluids, 23(1):015105, 2011.

F. Toschi and E. Bodenschatz. Lagrangian properties of particles in turbulence. Ann. Rev. of Fluid Mech., 41:375
– 404, 2009.

G. A. Voth, A. La Porta, A. M. Crawford, J. Alexender, and E. Bodenschatz. Measurement of particle accelerations
in fully developped turbulence. Journal of Fluid Mech., 469:121–160, 2002.

K.-G. Xia, C. Sun, and S.-Q. Zhou. Particle image velocimetry measurement of the velocity field in turbulent
thermal convection. Phys. Rev. E, 66(066303), 2003.

H. Xu and E. Bodenschatz. Motion of inertial particles with size larger than kolmogorov scale in turbulent flows.
Physica D: Nonlinear Phenomena, 237(14):2095–2100, 2008.

P. K. Yeung. Lagrangian investigations of turbulence. Annual Review of Fluid Mechanics, 34:115–142, 2002.

Q. Zhou, C. Sun, and K.-Q. Xia. Experiment investigation of homogeneity, isotropy, and circulation of the velocity
field in buoyancy-driven turbulence. J. Fluid Mech., 598:361–372, 2008.

F. Zonta and A. Soldati. Effect of temperature dependent fluid properties on heat transfer in turbulent mixed
convection. Journal of Heat Transfer, 136(2):022501, 2014.

F. Zonta, M. Onorato, and A. Soldati. Turbulence and internal waves in stably-stratified channel flow with
temperature-dependent fluid properties. Journal of Fluid Mechanics, 697:175–203, 2012.

19


