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ABSTRACT (267 words) 

1. Visualisation of spatial networks based on pairwise metrics such as (dis)similarity coefficients 

provides direct information on spatial organization of biological systems. However, for large 

networks, graphical representations are often unreadable as nodes (samples), and edges (links 

between samples) strongly overlap. We present a new method, MAPI (Mapping Averaged Pairwise 

Information), allowing translation from spatial networks to variation surfaces.  

2. MAPI relies on i) a spatial network in which samples are linked by ellipses and, ii) a grid of 

hexagonal cells encompassing the study area. Pairwise metric values are attributed to ellipses and 

averaged within the cells they intersect. The resulting surface of variation can be displayed as a 

colour map in Geographical Information System (GIS), along with other relevant layers, such as land 

cover. The method also allows the identification of significant discontinuity in grid cell values 

through a nonparametric randomisation procedure. 
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3. The interest of MAPI is here demonstrated in the field of spatial and landscape genetics. Using 

simulated test datasets, as well as observed data from three biological models, we show that MAPI is 

i) relatively insensitive to confounding effects resulting from isolation-by-distance (i.e. over-

structuring), ii) efficient in detecting barriers when they are not too permeable to gene flow and, iii) 

useful to explore relationships between spatial genetic patterns and landscape features. 

4. MAPI is freely provided as a PostgreSQL/PostGIS database extension allowing easy interaction 

with GIS or the R software and other programming languages. Although developed for spatial and 

landscape genetics, the method can also be useful to visualise spatial organisation from other kinds 

of data from which pairwise metrics can be computed. 

 

INTRODUCTION 

Computation of metrics to estimate similarity, difference or flow between samples is a common 

approach to study a wide range of social and biological systems (Borgatti et al. 2009; Miele et al. 

2015). Computing pairwise metrics allows the construction of networks with nodes (samples) being 

connected by edges that are associated with the value of the metric of interest. When geographic 

coordinates of samples are available, such networks are inherently informative about the spatial 

organization of the system under study (Barthélemy 2011). This organization can be visualised by 

superimposing the network on a geographic map, with the thickness or colour of the edges 

displayed according to the pairwise values. However, such graphical representations are difficult to 

interpret for large networks as the numerous nodes and edges strongly overlap and obscure both 

the network and the underlying geographic space (Hennemann 2013). To better visualise spatial 

information, variation surfaces can be produced using interpolation procedures (e.g. kernel density 

estimation, kriging). To do so, pairwise metric values have first to be attributed to unique 

geographical points (i.e. transformed into punctual values) as, for example, to the middle of the 

edges connecting the samples in the network (e.g. Miller 2005).  
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 In this paper we present a novel method, MAPI (Mapping Averaged Pairwise Information), to 

produce variation surfaces from pairwise metrics computed between georeferenced samples. In 

essence, MAPI is a non-parametric smoothing procedure applied to pairwise values rather than 

punctual values. To smooth out pairwise values, the straight lines connecting the samples in the 

network are replaced by ellipsoidal polygons for which the foci are located on the two samples being 

connected. Then, similarly to kernel density estimators for punctual values, ellipses constitute a 

geometric shape used to average information between overlapping connections. This smoothing 

procedure produces a two-dimensional geographical layer that can be easily visualised and 

customised in a GIS. Although this method may be of interest in other research fields, we will 

hereafter focus on spatial and landscape genetics, where pairwise metrics are widely used but 

flexible visualisation tools are still lacking for these measures (see Miller 2005; Vandergast et al. 

2010, Etherington 2011, Petkova et al. 2016). 

 

 Although new methods, such as spatially-explicit clustering, are increasingly used in spatial 

genetics to describe genetic variation and identify barriers to gene flow (Guillot et al. 2009), pairwise 

genetic measures, such as distance, remain appealing as: i) they can be computed between 

individuals or populations, ii) they facilitate handling massive datasets, which are increasing with the 

advance in high-throughput sequencing (Duforet-Frebourg and Blum 2014) and, iii) their regression 

against geographic distances may be informative with respect to isolation-by-distance (IBD), i.e. the 

increase of genetic differentiation with spatial separation due to restricted dispersal (Wright 1943). 

The original IBD model has been further extended in landscape genetics to assess the impact of 

landscape heterogeneity on spatial genetic structure and gene flow. In this field, replacing straight 

line distances between samples by ecological distances has given rise to concepts of isolation-by-

barrier, isolation-by-resistance and isolation-by-environment (Balkenhol et al. 2015). Nowadays, 

various approaches using least cost paths, circuit theory or population graphs have been developed 

to assess the impact of landscape features on genetic structure and gene flow (e.g. Coulon et al. 
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2004; Cushman et al. 2006; McRae 2006; McRae & Beier 2007; Garroway et al. 2008; Dyer & Nason 

2004; Dyer 2015, Petkova et al. 2016).  

 

 Landscape genetics approaches often require a priori knowledge on species–landscape 

interactions to target relevant environmental variables, set cost/resistance values and account for 

demographic effects such as population size (e.g. Broquet et al. 2006; Weckworth et al. 2013). These 

methods can be difficult to apply when little is known about the species under study. In such a 

situation, we still rely on exploratory analyses to identify environmental variables of interest and 

draw up hypotheses that can be further tested using appropriate sampling schemes (Kelling et al. 

2009; Richardson et al. 2016). Although the visualisation of pairwise genetic measures may be an 

obvious first step in such an approach (Etherington 2011), there are still very few tools allowing 

visualisation of such measures along with environmental layers without, first, attributing features 

such as cost or resistance values to habitat types. Among those tools, Allele In Space (Miller 2005) 

and the GIS toolbox of Vandergast et al. (2010) offer the rare possibility to produce variation 

surfaces of genetic distances that can be mapped over landscape layers (Wood et al. 2013; Adams & 

Burg 2015). Both tools rely on an inverse-distance-weighted interpolation of pairwise measures that 

are first spatially attributed to the middle of the segments linking the samples in the network. 

Confounding effects due to IBD can be somewhat limited by i) using residuals from the regression of 

genetic distances against geographic distances (Miller 2005) or, ii) limiting the network to the 

nearest neighbours for each sample (Vandergast et al. 2010).  

 

 Disentangling the relative contributions of IBD and environmental features in shaping spatial 

genetic patterns remains a central issue in landscape genetics (Bradburd et al. 2013; Wang et al. 

2014). This question is often addressed using Mantel and partial Mantel tests between matrices of 

population- or individual-based genetic distances, Euclidean distances and ecological distances (e.g. 
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Cushman et al. 2006; Hagerty et al. 2011). There is an ongoing debate on the statistical performance 

of the Mantel test in spatial and landscape genetics (see Raufaste & Rousset 2001; Legendre & Fortin 

2010; Cushman & Landguth 2010; Guillot & Rousset 2013; Cushman et al. 2013) and, recently, 

alternative methods using multivariate or geostatistical techniques have been proposed to 

disentangle the effects of geographic distance and environmental heterogeneity on spatial genetic 

structure (e.g. Duforet-Frebourg and Blum 2014; Bradburd et al. 2013; Galpern et al. 2014; Botta et 

al. 2015). Moreover, results from lot of methods do not include spatially-explicit variation surfaces 

that can be mapped over landscape layers to facilitate their interpretation.  

 

 In this general context, MAPI provides an approach to i) visualise pairwise genetic measures 

without confounding effects resulting from IBD, ii) test for spatial genetic discontinuity through a 

nonparametric randomisation procedure and, iii) explore relationships between observed genetic 

patterns and environmental heterogeneity, notably by using MAPI results for further statistical 

analyses. In this work, we assessed the efficiency of MAPI to accurately detect spatial discontinuity 

in pairwise genetic metrics by applying permutation tests on controlled simulated datasets of 

panmictic populations and populations under isolation-by-distance, including scenarios of separation 

by a linear barrier to gene flow. We also appraised the potential of MAPI in a landscape genetics 

framework by analysing genotypes simulated under landscape constraints with various spatial 

configurations of favourable and unfavourable habitats. We used a Bayesian conditional 

autoregressive model to analyse the relationships between MAPI results and landscape variables. To 

illustrate MAPI we also re-analysed published data from three biological models: 1) microsatellite 

genotypes from a rodent population under IBD, 2) DNA sequences from a plant virus exhibiting 

spatial genetic discontinuities and, 3) microsatellites and landscape data from both a forest specialist 

and a generalist species of ground beetles. Finally, we used controlled and observed datasets to 

explore MAPI sensitivity to parameter setting and sampling scheme. 
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METHODS 

MAPI methodology 

MAPI is implemented as an open-source SQL extension within open source database PostgreSQL 9.x 

and Postgis 2.x (1996-2013, The PostgreSQL Global Development Group: http://www.postgresql.org/ 

- http://postgis.net/). Source code, user manual, and training datasets can be downloaded from: 

https://www1.montpellier.inra.fr/CBGP/software/MAPI/. Importation of data files and running of 

MAPI commands can be easily done from the software R (R core Team 2015). We hereafter detail 

the steps of MAPI, with Figures 1 and 2 illustrating the general framework and Table 1 providing 

hints for setting parameter values. 

 

Data Input. The method requires sample geographical coordinates and pairwise metric values 

computed between samples (e.g. genetic distance).  

Grid of cells. A grid of hexagonal cells is superimposed on the area defined by the convex hull of the 

sampling points. Based on the Nyquist Frequency concept, optimized cell size should be at most half 

the average distance between closest samples. The half-width (hw) of the cells is computed as:  

ℎ = ²√ .   with N the number of sampling points, A the surface’s area defined by their convex 

hull and  a parameter depending on their spatial dispersion: 0.5 for regular sampling and 0.25 for 

irregular sampling (see Hengl 2006). The grid is automatically generated by informing the  

parameter. The final number of cells (nc) in the grid is then computed as: ≈ . .  . 

Alternatively, a user-defined grid of cells can be imported in PostgreSQL (see user manual for details 

on how to build or import a grid). 
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Network of ellipses. Network edges are formed by ellipsoidal polygons (hereafter referred to as 

ellipses) for which foci are the geographical locations of the two samples being connected. The 

shape of these polygons can be adjusted by two parameters: 1) the eccentricity of the ellipses which 

controls the smoothing intensity and must be greater than 0 (infinite circle) and smaller than 1 

(straight line) and 2) the radius of the error circle that controls for uncertainty on sample 

coordinates (error_circle_radius). In addition, two optional parameters (min_distance and 

max_distance) limit the analysis to a given range of between-sample distances. Effects of these four 

parameters on the shape of the network are detailed in section 1 of the Appendix.  

Surface. The ellipses receive the value of the metric computed between the samples they connect 

and the cells of the grid receive the weighted arithmetic mean (mw) of the ne ellipses intercepting 

their geographical extent, computed as: = ∑
, with vi and ai the metric value and area of the 

ellipse i, respectively, and sw, the sum-of-weights of the ellipses defined as: = ∑ . This 

weighting procedure limits long distance effects as long and inflated ellipses participate far less than 

short ellipses to the computation of mw. Cells not intersected by ellipse have no mw value and are 

not included in the final result. 

 

Test of significance for spatial structure. We implemented a nonparametric randomisation 

procedure, as schematised in the Figure 2, to test whether the pairwise metric values associated to 

the ellipses are independent of the sample locations (i.e. under the null hypothesis that pairwise 

metric values, and then mw cell values, are randomly distributed in space). Sample locations from the 

observed dataset (Figure 2A1) are permuted np times (Figure 2B1) (parameter n_permutations). At 

each permutation, new mw values are computed and stored to build a cumulative null distribution 

for each of the nc cells of the grid (Figure 2B2). Each mw cell value from the observed dataset is then 

ranked against its null distribution (Figure 2C1). For each cell, the proportion of permuted values 

that are smaller than the observed value provides a lower-tailed test (LT) p-value. An upper-tailed 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Piry, S. (Auteur de correspondance), Chapuis, M. P., Gauffre, B., Papaix, J., Cruaud, A.,

Berthier, K. (2016). Mapping averaged pairwise information (MAPI): a new exploratory tool to uncover
spatial structure. Methods in Ecology and Evolution, 7 (12), 1463-1475. , DOI : 10.1111/2041-210X.12616

A
cc

ep
te

d
 A

rt
ic

le
A

cc
ep

te
d

 A
rt

ic
le

This article is protected by copyright. All rights reserved. 

test (UT) p-value is also computed for each cell as: 1 – (LT p-value). As the probability to find 

significant cells only by chance (i.e. type I error) increases with the number of tests performed (i.e. nc 

tests), the False Discovery Rate (FDR) procedure proposed by Benjamini & Yekutieli (2001) is applied 

to account for multiple testing under positive dependency conditions (i.e. spatial autocorrelation 

between cells) (Figure 2C2). The significance level at which FDR is controlled can be set by users 

through the parameter my_alpha. For example, when my_alpha is set to 0.05, this means that 5% of 

the cells detected as significant can be false positives. Finally, for each test, significant cells that are 

spatially connected are aggregated together. When using metrics estimating differences, such as 

distances, significant highest mw values localise areas of higher dissimilarity than expected by chance 

(hereafter referred to as discontinuous areas) while significant lowest mw values localise areas of 

higher similarity than expected by chance (hereafter referred to as continuous areas).  

 

Data output. Cell-specific information, such as their geometry and associated mw and p-values, are 

stored as a spatial PostgreSQL table which can be exported as a shapefile or text file and imported 

into GIS software or the software R using the rgdal package. These data can be used for further 

statistical analyses of relationships between genetic measures and landscape variables. 

 

Visualisation. On the final graphical output (Figure 2D), the observed cell values (mw) are displayed 

using a colour scale. Cells with significant extreme values after FDR correction are visualised as black 

contours mapped as an additional layer. When significant cells are spatially connected, only the 

perimeter of the polygon they form is represented. Vector or raster maps, satellite imagery or 

teledetection products can be inserted below the MAPI layers for landscape interpretation. 
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Simulated data in spatial genetics  

Using backward-in-time (genealogy-based) simulation algorithms, we simulated datasets of 10 

microsatellite genotypes for 200 diploid individuals distributed on the nodes of a 20x10 lattice (i.e. 

one individual per node). Three demographic models with different sets of parameter values were 

analysed (25 simulated datasets each): (1) one IBD population without barriers to gene flow (spatial 

test datasets 1; IBD); (2) two panmictic populations separated by a barrier (spatial test datasets 2; 

Barrier); (3) two IBD populations separated by a barrier (spatial test datasets 3; Barrier & IBD) (see 

Figure 3 to visualise the simulated lattice). A null model of one panmictic population without a 

barrier to gene flow was also considered (spatial test datasets 0; Panmixia). The permeability of the 

barrier is controlled by setting the Nem parameter, i.e. the product of the effective population size 

and migration rate per generation. Details on simulation algorithms, parameter settings and basic 

measures of genetic variation can be found in sections 2.1 and 2.3 of the Appendix. We investigated 

MAPI sensitivity to sampling effort by (1) randomly re-sampling 75 individuals out of the 200 

simulated for each of the test datasets, which provided a test for how MAPI deals with both random 

irregular sampling and small sample size; (2) simulating additional test datasets with 100 loci for a 

representative subset of spatial datasets under both large regular and small irregular samplings (see 

Table 2 to identify test datasets).  

 

 Analyses of simulated test datasets with MAPI were performed using a grid of hexagonal 

cells defined by setting the parameter  to 0.5 and 0.25 for regular and irregular samplings, 

respectively (Table 1). The network was built using the genetic distance ar (Rousset 2000), an error 

radius for sample location of 0.01 and ellipses with an eccentricity value of 0.975. Cells with extreme 

high mw values were detected using 1,000 permutations of the sample locations and a significance 

level of 0.05 for computing significance for each cell. As the exact location of the barrier was known, 

we computed the proportion of the barrier covered by cells with significantly higher values 
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(hereafter referred to as Coverage). We also computed the proportion of the study area covered by 

cells with significantly higher values having no contact with the simulated barrier, which may result 

from stochasticity, edge effects or IBD (hereafter referred to as Unexpected). We also investigated 

the sensitivity of MAPI to the eccentricity value (0.900, 0.975 and 0.999) and number of cells (setting 

the parameter  to 0.15, 0.25, 0.5 and 0.75). To this aim, we used a subset of datasets simulated 

under both large regular sampling and small irregular sampling (see section 2.1 in the Appendix to 

identify test datasets). 

 

Simulated data in landscape genetics  

Using a forward-in-time (individual-based) simulation algorithm, we simulated datasets of 10 

microsatellite genotypes for diploid individuals distributed in a landscape raster of about 50x50 cells. 

Three landscape models, which consider two habitats with contrasted carrying capacity (20 and 2 for 

the favourable and unfavourable habitat, respectively) were analysed (20 simulated datasets each): 

(1) a spatial transition from the  favourable to unfavourable habitat with a high level of 

interpenetration (landscape test datasets 1; Gradient); (2) fragmentation of the favourable habitat in 

small areas isolated by a prevalent unfavourable habitat (landscape test datasets 2; Fragmentation); 

(3) a random distribution of the favourable and unfavourable habitats over the study area 

(landscape test datasets 3; Random) (see Figure 4 to visualise the simulated landscapes). For the 

latter, the detection of the habitat effect is unexpected since the spatial scale of autocorrelation in 

habitat is very small. Details on simulation algorithms, parameter settings and basic measures of 

genetic variation can be found in sections 2.2 and 2.3 of the Appendix. For each of the simulated 

datasets, we also investigated MAPI sensitivity to sampling effort by sampling 200 and 500 

individuals under three sampling schemes : (1) random sampling, in which individuals were sampled 

anywhere in the landscape regardless to the habitat; (2) balanced sampling, in which an equal 

number of individuals was sampled from each habitat; (3) gridded sampling, in which the same 
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number of individuals was randomly sampled from each square of a 3x3 grid encompassing the 

landscape raster.   

 

 Analyses of simulated datasets with MAPI were performed using grids constituted of 

squared cells that matched the landscape raster pixels (side length=1), the genetic distance ar 

(Rousset 2000), an error radius for sample location of 0.5 to consider that individuals can be 

anywhere within a cell, ellipses with an eccentricity of 0.975 and a minimal distance between 

samples of 0.1 to exclude intra-cell connections as individuals simulated within a same cell have the 

same geographical coordinates. For each simulation and sampling scheme, we extracted from each 

cell both, the mw value and habitat type, which was expressed as a factor according to favourability 

(hab): 1 for the favourable habitat and 2 for the unfavourable habitat. We fitted a regression model 

as follows: =∝ +  where ∝ is an intercept depending on the habitat type in cell i. To 

account for spatial correlations it was assumed that the error term  included two components: a 

structured component (i.e. spatially correlated) and an unstructured component (i.e. independently 

distributed). The unstructured heterogeneity term was assumed to be centred and normally 

distributed while the structured heterogeneity term was assumed to have a conditional intrinsic 

Gaussian autoregressive (CAR) distribution (Besag et al. 1991) with first- and second-order 

neighbours as neighbouring structure. The model was fitted in a Bayesian framework with an INLA 

approach (Blangiardo and Cameletti, 2015) using the R-INLA package (Martins et al. 2013) of the R 

software (R Core Team, 2015). The fit of the model to the data was assessed using posterior 

predictive checking (Gelman et al., 2004), and we systematically checked that residuals were not 

overly structured in space. Bayesian inference resulted in posterior densities for the parameters ∝  

(favourable habitat) and ∝  (unfavourable habitat). As we used a genetic distance, we expect a high 

posterior probability for the intercept of the favourable habitat (∝ ) to be less than the intercept of 

the unfavourable habitat (∝ ). The significance was assessed with a threshold of 0.05. 
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Biological datasets 

To illustrate MAPI behaviour in the presence of IBD, we analysed microsatellite genotypes from a 

rodent population that was previously characterised as a single genetic unit, only structured by IBD 

(Gauffre et al. 2008), using the clustering method GENELAND (Guillot et al. 2005). MAPI efficiency in 

detecting genetic discontinuities is further illustrated using DNA sequences from different strains of 

plant virus. These data were previously analysed (Desbiez et al. 2009; Joannon et al. 2010) using 

phylogenetic analyses, the clustering method SAMOVA (Dupanloup et al. 2002) and the maximum 

difference Monmonier’s algorithm (Monmonier 1973). Finally, MAPI was applied to genetic 

distances computed from microsatellite genotypes of two species of forest ground beetles with 

contrasted level of habitat specialisation (i.e. specialist and generalist). Previous work using Mantel 

tests between genetic, geographic and landscape distances showed that open field areas were a 

stronger barrier to gene flow for the forest specialist (Brouat et al. 2003). See section 3 in the 

Appendix for further details on the datasets and related works. 

 

RESULTS 

All simulation setups and MAPI graphical outputs are available online at: 

 https://www1.montpellier.inra.fr/CBGP/software/MAPI/. 

 

Sensitivity to isolation-by-distance 

Simulation test datasets. MAPI did not detect unexpected areas of genetic discontinuity under strict 

IBD, regardless of its strength (see test datasets 1 in Table 2; Figures 3E, 3I). When models combine 

IBD and barrier effects, MAPI still did not detect unexpected areas of genetic discontinuity, i.e. which 

did not overlap with the simulated barrier (see test datasets 3 in Table 2; Figures 3F-H, 3J-L). Under 
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large regular sampling, the average percentage over replicates of unexpected discontinuous areas 

was less than 0.15% whatever the simulation setting considered (see ‘Unexpected’ in Table 2), with a 

maximal percentage across the 625 simulated datasets of 1.3%. Under small irregular sampling, the 

percentage of unexpected discontinuous areas was still minute, with an average lower than 0.53% 

whatever the simulation setting (Table 2) and a maximum across the 625 simulated datasets of 5.8%. 

Thus, gaps between samples did not drastically increase the proportion of unexpected significant 

discontinuous areas, even under strong IBD (g=0.25, slope = 0.055). The single exception was the 

combination of strong IBD and genotype datasets of 100 loci, for which the small and irregular 

sampling led to a more significant (but still relatively low) increase in the percentage of unexpected 

discontinuous areas, with an average over replicates of 2.75% and a maximum of 10.8% (Table 2). 

However, the spatial distribution of the unexpected significant cells hardly suggested the presence 

of a barrier to gene flow (see online illustrations). 

 

Biological dataset. When applied on rodent microsatellite dataset, MAPI did not find any spurious 

significant area of genetic discontinuity that could be interpreted as a barrier to gene flow despite 

IBD, i.e. slope=0.005, p-value=0.005 (see section 3.1 in the Appendix). 

 

Detection of a barrier to gene flow 

Simulation test datasets. We found that MAPI was efficient in detecting strong to moderate barriers 

to gene flow, i.e. Nem≤1; FST≥0.1 with a barrier coverage ≥ 75% (see test datasets 2 in Table 2; 

Figures 3C-3D). When permeability increased (Nem>1; FST<0.1), the method lost its accuracy to 

detect the barrier, i.e. the proportion of undetected barriers became large (see test datasets 2 in 

Table 2; Figure 3B). However, our simulations showed that IBD increased the power of the method 

to detect the linear barrier, especially for high levels of gene flow. For example, for Nem=2.5, even 
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weak IBD (g=0.750; slope=0.005) increased the barrier coverage from 7% to 79%. As a result, MAPI 

performed well in identifying barriers to gene flow given that Nem<10 (see test datasets 3 in Table 2; 

Figure 3F-3H and 3J-3L). When individual samplings were small and irregular (N=75), the 

performance of MAPI to detect a weak barrier to gene flow (Nem>1) decreased by 30 to 70% (Table 

2), though in these situations there was still often a graphical signal for a barrier (see Figure S3 in the 

Appendix). As expected, increasing genotyping effort improved further the detection of barriers for 

high levels of gene flow (Table 2). For example, for Nem=2.5, increasing the number of loci from 10 

to 100 increased the barrier coverage from 7% to 98% in absence of IBD and for Nem=10, 30% of the 

barrier was still recovered.   

 

Biological dataset.  In line with previous results published on the plant virus sequence dataset, MAPI 

identified a major area of genetic discontinuity bisecting the study area from North to South (see 

section 3.2 in the Appendix). 

 

Sensitivity to parameter settings. The eccentricity and number of cells have little effect on the 

detection of unexpected significant areas (i.e. Unexpected in Figure 5). The worst situation (i.e. 3%) 

occurred when using very narrow ellipses (e=0.999; see Figure S1 of the Appendix) combined with a 

very high number of cells (i.e. β = 0.15). The combination of narrow ellipses (e=0.999), which result 

in a lower number of ellipses intercepting each cell, and a very low number of cells (i.e. β = 0.75) 

decreased MAPI efficiency to detect a barrier to gene flow (i.e. Coverage in Figure 5; Figure S3 in the 

Appendix). An eccentricity value of 0.975 associated with a β value of 0.5 for regular sampling or 

0.25 for irregular sampling ensures high barrier coverage, low rate of false positives and reasonable 

computational time. Lower values of eccentricity (0.8-0.95; inflated ellipses) provide same quality 

results as a value of 0.975 but at the cost of expended computational time and stronger smoothing 

effect (see broader aggregates of significant cells for a value of 0.9 in the Figure S3 in the Appendix). 
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The effect of the eccentricity parameter is further illustrated on virus data (Figure S8 in the 

Appendix). In all cases, the major area of genetic discontinuity was still uncovered by MAPI. 

 

Assessment of landscape effects 

Simulation test datasets. As expected, when the two habitats were distributed randomly, there was 

no obvious correspondence between the spatial variation in mw and landscape cell values (Figure 4; 

see also Figure S4 in the Appendix to visualise examples of MAPI graphical outputs). This was 

confirmed by the results of the Bayesian conditional autoregressive model which showed that most 

of the posterior probabilities for a habitat effect were not significant (Table 3 and Figure S5 in the 

Appendix). A difference between habitats was, however, still detected from a few simulated test 

datasets, especially when using random sampling. For the gradient and fragmented landscapes, 

MAPI graphical outputs showed a relative convergence between variation in mw cell values and 

spatial habitat configuration (Figure 4 and Figure S4 in the Appendix). Accordingly, the intercept was 

significantly less for the favourable habitat (∝ ) than for the unfavourable habitat (∝ ) for all 

datasets regardless of the sampling scheme and size for the fragmented landscape and for most of 

the datasets when large (500 genotypes) and random or gridded samplings were used for the 

gradient landscape (Table 3). When the sampling size was smaller (200 genotypes) the proportion of 

significant posterior probabilities for ∝ <	∝  decreased of 25 and 50% for the random and gridded 

samplings, respectively.  Interestingly, under the gradient configuration, the balanced sampling led 

to very poor results and even, in a few cases, to false positives (i.e.	∝ <	∝ ) (Table 3 and Figure S5 in 

the Appendix).  
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Biological dataset. On ground beetle microsatellite dataset, MAPI analyses supported previously 

published conclusions by identifying a significant area of genetic discontinuity corresponding to a 

large open field for the forest specialist only (Figure 6). When using mw cell values in the Bayesian 

conditional autoregressive model with the proportion of trees as an explanatory variable, we found 

a significant negative relationship only for the forest specialist (posterior probability=1). This means 

that, on average, between-individual genetic distances were lower within highly forested areas. No 

significant pattern was found for the generalist (see section 3.3 in the Appendix). 

 

DISCUSSION 

In this work, we presented a new method to translate networks of pairwise relationships into 

variation surfaces. MAPI is essentially a smoothing procedure using the overlap between ellipses as a 

way to share information between spatial connections. The surface produced is a grid of cells that 

provide information on the average intensity of the pairwise relationships crossing at the cell 

locations. The variation of the cell values over the surface allows to localise areas where the majority 

of the crossing connections correspond to very low or very high pairwise values. The significance of 

these areas can be assessed using a nonparametric randomisation procedure.  

 

 MAPI can be applied to genetic data to detect areas of high genetic continuity and 

discontinuity. When using neutral markers (e.g. microsatellites) and genetic differentiation 

measures, continuous and discontinuous areas reflect areas where gene flow is the highest and the 

lowest, respectively. Variation in gene flow intensity can result from different processes such as 

spatial heterogeneity in population density or migration success (Richardson et al. 2016). Here, using 

controlled simulations, we determined that MAPI performed well to detect genetic discontinuities 

resulting from a physical barrier as long as it is not too permeable to gene flow. When gene flow was 
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high, MAPI’s performance was substantially improved with sampling effort in the number of loci and 

individuals. Under such spatial genetics models, the sensitivity analysis to eccentricity setting 

showed that a value of 0.975 ensured high barrier coverage, low rate of unexpected significant cells, 

high spatial resolution and reasonable computational time. This result might, however, differ in 

more complex scenarios than a linear barrier to gene flow (e.g. highly fragmented landscape). 

 A central feature of MAPI is its relative insensitivity to IBD, which is a critical issue for spatial 

and landscape genetics analyses (Guillot et al. 2009; Thomassen et al. 2010; Bradburd et al. 2013). In 

an ideal situation, with perfect regular sampling and no edge effects, all cells should theoretically 

display the same mw value under strict IBD. When analysing highly irregular samplings, the method 

detected a few unexpected significant areas of genetic discontinuity as the cells located within the 

spatial gaps were only informed from long-distance connections. These highly discontinuous areas 

were, however, small and generally located on the border of the study area. As for many spatial 

exploratory analyses, regular individual-based samplings are more likely to provide reliable and 

interpretable results (Oyler-McCance et al. 2013; Balkenhol et al. 2015). 

 

 In landscape genetics, assessing the effects of environmental features on spatial patterns of 

genetic variation often requires going beyond the detection of barriers to gene flow. In this context, 

our controlled simulations and ground beetle datasets (Brouat et al. 2003) showed that overlaying 

MAPI graphical outputs on landscape layers may provide information on which environmental 

variables are potential candidates to explain observed genetic patterns (see Figure 4 and Figure S9 in 

the Appendix). These candidate variables can be further explored by using mw cell values in post-

MAPI analyses. To illustrate this possibility we used a regression model accounting for spatial 

autocorrelation in mw cell values and fitted in a Bayesian framework. From our simulated datasets, 

the regression model successfully retrieved the expected relationships (i.e. smaller mw values within 

the favourable habitat) for the fragmented and gradient landscapes but not when the two habitats 
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were randomly distributed. These results can be explained by the difference in the scale at which 

habitats are spatially autocorrelated in the three simulated landscapes. As long distance effects are 

limited in the computation of mw by using an inverse-area-weighting procedure, the cells mainly 

reflect the average intensity of the shorter connections crossing at one location. Consequently, 

significant relationships between mw cell values and landscape variables are expected to be 

detectable when the landscape is spatially structured in such a way that a cell is mostly influenced by 

short-distance connections occurring between samples located within a relatively homogeneous 

landscape aggregate. Contrarily, when the spatial scale of autocorrelation in landscape features is 

smaller than the resolution of the sampling, a cell reflects between- as much as within-habitat 

connections and habitat effect are likely to become undetectable (e.g. random landscape). In the 

datasets simulated under a fragmented landscape model, sampling size and strategy did not affect 

the detection of habitat effect. Under the gradient configuration, the habitat effect was well 

detected especially when a large number (i.e. 500) of genotypes were sampled following a random, 

or even better, a gridded sampling strategy. Contrarily, the balanced sampling strategy was 

inefficient to detect an effect. This result can be due to the multi-scale patterns of autocorrelation of 

the habitats that have different consequences. First, as the two habitats strongly interpenetrate, the 

central part of the study area looks like the random landscape model (i.e. small habitat patches). 

Within this zone, the balanced sampling produces numerous between-habitats connections at short 

distance that blur the relationship between the mw cell values and habitat type. Second, over the 

whole study area, the scale at which the habitats are autocorrelated is quite large and, 

subsequently, autocorrelation in mw cell values can be expected to be large as well. In such a 

situation, increasing the neighbouring structure from two to five cells in the conditional 

autoregressive model significantly improves the detection of the habitat effect from the balanced 

sampling (i.e. mean posterior probability = 0.909 and 0.927; percentage of significant probability = 

60 and 75 for the datasets with 200 and 500 genotypes, respectively). 
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 Analysis of MAPI cell values conjointly with landscape variables is a data-driven exploratory 

approach that can help identify candidate landscape features. Adequate sampling schemes and 

analyses aiming to test for the effects of those candidate variables should be conducted at an 

appropriate spatial scale before drawing conclusions (Richardson et al. 2016). 
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Table 1 - Setting of MAPI parameter values. 
Step Parameter Definition Hints Default Simulated test data 

 Spatial framework 
 

Landscape 
framework 
 

Grid of 
cells 

 Defines the 
spatial 
resolution of the 
grid of cells 

0.50 for regular sampling 
0.25 for irregular sampling 
 
 
 
 
 

NA � set to 0.5 for large 
regular samplings (200 
samples);  
convert to 855 cells 
� set to 0.25 for small 
irregular samplings (75 
samples); convert to 843 
cells on average

� not used 
Importation of a grid 
with the resolution of  
the landscape raster 
pixels* 
 

Network 
of ellipses 

Eccentricity Ellipse 
eccentricity  

0.975 is a good starting point 
Run several independent 
analyses from 0.800 (inflated) to 
0.999 (narrow) to assess pattern 
robustness 

0.975 � set to 0.975 � set to 0.975 

error_circle_radi
us 

Error circle on 
sample locations 

Higher values for larger 
uncertainty on sample positions 

10 map 
units 

No error 
� set to 0.01 
 

Error 
� set to 0.50 
 

min_distance 
max_distance 
(optional) 

Minimum and 
maximum 
distances 
between 

Start without filtering 
Filter on minimum distance to 
avoid local effects (see an 
illustration in section 3.1 in the 

NA � not used 
 

� minimum distance 
set to 1 
 

Test for 
spatial 

structure 

n_permutations Number of 
permutations 
(np) 

≥ 1,000 1,000 � set to 1,000 � not used 
 

my_alpha Significance 
level

α = 0.05 0.05 � set to α = 0.05 � not used 

* When a grid is imported, the cells can be of any shape (e.g. hexagons, squares, etc.) 
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Table 2. Performance of MAPI under different spatial models. Parameters for each spatial model 
are indicated, including: the product of the effective population size and migration rate per 
generation (Nem); the shape parameter of the geometric distribution (g); the number of simulated 
populations (Ksim); and the number of loci (Nloc). Performance is measured as the average 
percentage, over 25 replicates, of the barrier covered by significant discontinuous areas (Coverage), 
and the average percentage, over 25 replicates, of significant discontinuous areas having no contact 
with the barrier (Unexpected). Large sampling refers to the sampling of 200 genotypes distributed 
regularly on the lattice, and small sampling to the sampling of 75 genotypes drawn randomly from 
the lattice. The datasets with 100 loci are indicated in italics. 
 
 

Spatial 
Model 

Nem 
g Ksim Nloc 

Coverage (%) Unexpected (%) 
Large 

sampling 
Small 

sampling 
Large 

sampling 
Small 

sampling 
Panmixia 

(test dataset 
)

NA NA 1 10 NA NA 0.10 0.05 

IBD 
(test 

datasets 1) 

NA 0.250 1 10 NA NA 0.07 0.53 
NA 0.250 1 100 NA NA 0.00 2.75 
NA 0.500 1 10 NA NA 0.06 0.23 
NA 0.500 1 100 NA NA 0.04 0.70 
NA 0.675 1 10 NA NA 0.06 0.06 
NA 0.750 1 10 NA NA 0.06 0.26 

Barrier 
(test 

datasets 2) 
 

0.1 NA 2 10 99 84 0.03 0.21 
1 NA 2 10 65 31 0.08 0.35 

2.5 NA 2 10 7 2 0.15 0.27 
2.5 NA 2 100 98 85 0.04 0.06 
10 NA 2 10 0 0 0.12 0.11 
10 NA 2 100 30 13 0.09 0.28 

 
Barrier 

& 
IBD 

(test 
datasets 3) 

 

0.1 0.250 2 10 100 90 0.04 0.29 
1 0.250 2 10 100 81 0.07 0.24 

2.5 0.250 2 10 90 66 0.04 0.61 
10 0.250 2 10 41 21 0.08 0.49 
0.1 0.500 2 10 100 92 0.02 0.21 
1 0.500 2 10 96 79 0.01 0.36 

2.5 0.500 2 10 92 62 0.07 0.21 
10 0.500 2 10 44 26 0.10 0.21 
10 0.500 2 100 99 82 0.05 0.31 
0.1 0.675 2 10 100 94 0.02 0.23 
1 0.675 2 10 96 74 0.02 0.35 

2.5 0.675 2 10 85 53 0.08 0.21 
2.5 0.675 2 100 100 96 0.03 0.36 
10 0.675 2 10 23 7 0.13 0.21 
0.1 0.750 2 10 99 94 0.03 0.15 
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1 0.750 2 10 93 65 0.05 0.27 
2.5 0.750 2 10 79 47 0.07 0.24 
10 0.750 2 10 15 6 0.02 0.12 

 
 
 
 
 
Table 3. Performance of MAPI under different landscape models. For each simulated dataset and 
sampling scheme, we extracted cell-specific mw values and habitat type (1 or 2) to fit the following 
regression model: =∝ + , where ∝  is an intercept depending on the habitat type in 
cell i and error term εi includes a structured and an unstructured component. Here are presented 
the posterior probability that ∝ <∝  (P(α1< α2)) averaged over 20 replicates ( ) as well as the 
proportion of P(α1< α2) ≥ 0.95 (P95%) and ≤ 0.05 (P5%). Note that for all simulated test datasets, the 
regression model was well adjusted with a mean predictive p-value very close or equal to 0.5 and 
residuals not overly structured in space (see landscape genetics illustrations on the website).  
 
 

Landscape 
model 

Sampling 
scheme 

P95% P5% 

Large 
sampling 

Small 
sampling 

Large 
sampling

Small 
sampling 

Large 
sampling 

Small 
sampling

 
Gradient 

(test datasets 1) 
 

Random 0.945 0.883 80 55 0 0 

Balanced 0.614 0.709 10 15 5 5 

Gridded 0.972 0.862 90 40 0 0 

 
Fragmentation 

(test datasets 2) 

Random 0.999 0.999 100 100 0 0 

Balanced 0.999 0.998 100 100 0 0 

 Gridded 0.999 0.999 100 100 0 0 
 

Random 
(test datasets 3) 

Random 0.762 0.741 40 25 0 0 

Balanced 0.655 0.546 15 15 0 5 

 Gridded 0.780 0.639 10 15 0 0 
 
Figure legends. 

Figure 1. Schematic view of MAPI components. 

Figure 2. Steps in the test for spatial structure. Computation of mw values for the observed (A1, A2) 

and np permuted datasets (B1, B2); Ranking of the observed mw value against the cumulative null 

distribution for each cell (C1, example for one cell represented by a red hexagon on A2, B2 outputs);  

Lower-tail (LT) and upper-tail (UT) p-values of the cells (C2, significant LT and UT p-values after FDR 

corrections are delineated by thin and large black contours, respectively); Visualisation of the final 
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output with raw mw values and significant areas (D).  

Figure 3. Subset of MAPI graphical outputs from datasets simulated under panmixia (A), IBD (E, I), 

barrier to gene flow between panmictic (B-D) and IBD (F-H, J-L) populations. Significant continuous 

and discontinuous areas are denoted by thin and large black contours, respectively. The white line 

localise the simulated barrier. NB: colour scale varies. 

Figure 4. Subset of MAPI graphical outputs for the gradient, fragmented and random landscape 

configurations and three sampling schemes (random: 500 genotypes sampled anywhere, balanced: 

250 genotyped sampled in each habitat and gridded: 56 genotypes sampled in each cell of a 3x3 

lattice (not shown) covering the study area). NB: colour scale varies. 

Figure 5. Interactions between eccentricity and β parameter values on MAPI performance. For the 

different values of β, the y-axis shows, when applicable, the percentage of the simulated barrier 

covered by significant discontinuous areas (i.e. Coverage, left panel) or the percentage of significant 

discontinuous areas having no contact with the barrier (Unexpected, right panel). Eccentricity is on 

the x-axis. We considered large regular sampling schemes (200 samples, top row) and small irregular 

sampling schemes (75 samples, bottom row). We used a subset of ten datasets simulated under 

spatial genetics models (see the section 2.1 in the Appendix to identify test datasets). 

Figure 6. MAPI graphical output for the forest specialist species of ground beetle. Cell-specific mw 

values appear as a colour scale. The hatched area corresponds to the location of the significant area 

of genetic discontinuity. Variation in tree coverage follows a greyscale from a minimum of 11% to a 

maximum of 75%. Sampling locations are illustrated by white circles proportional to sampling sizes.  
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