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a b s t r a c t 

Document Indexing is but not limited to summarizing document contents with a small set of keywords or concepts of a 
knowledge base. Such a compact representation of document contents eases their use in numerous processes such as content-

based information retrieval, corpus-mining and classification. An important effort has been devoted in recent years to (partly) 
automate semantic indexing, i.e. associating concepts to documents, leading to the availability of large corpora of semantically 
indexed documents. In this paper we introduce a method that hierarchically clusters documents based on their semantic indices 
while providing the proposed clusters with semantic labels. Our approach follows a neighbor joining strategy. Starting from a 

distance matrix reflecting the semantic similarity of documents, it iteratively se- lects the two closest clusters to merge them in 

a larger one. The similarity matrix is then updated. This is usually done by combining similarity of the two merged clusters, e.g. 

using the average similarity. We propose in this paper an alternative approach where the new cluster is first semantically 

annotated and the similarity matrix is then updated using the semantic similarity of this new annotation with those of the 

remaining clusters. The hierarchical clustering so obtained is a binary tree with branch lengths that convey semantic distances 

of clusters. It is then post-processed by using the branch lengths to keep only the most relevant clusters. Such a tool has 

numerous practical applications as it automates the organi- zation of documents in meaningful clusters (e.g. papers indexed by 

MeSH terms, bookmarks or pictures indexed by WordNet) which is a tedious everyday task for many people. We assess the 

quality of the proposed methods using a specific benchmark of annotated clusters of bookmarks that were built man- ually. 

Each dataset of this benchmark has been clustered independently by several users. Remarkably, the clusters automatically built 

by our method are congruent with the clusters proposed by experts. All resources of this work, including source code, jar file, 

benchmark files and results are available at this address: http://sc.nicolasfiorini.info. 
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. Introduction

In recent years, there has been a great evolution in docu-

ent analysis applications. Clustering is the lion’s share of auto-

ated document processing since it provides relevant organiza-

ion of documents that synthesizes and underlines their proper-

ies and meanings. In our everyday life, organizing documents in

sub)folders is such a recurrent and crucial task that we tend to

orget how tedious and time consuming it is. However, at some

oint we all complain about the emails piling up, the unsorted hol-

day pictures, the web pages that we saved on our bookmark list

ut that we cannot find among the hundred other ones. As more
∗ Corresponding author at: NCBI: National Center for Biotechnology Information,

ational Library of Medicine, Bldg. 38A rm 8N811B, 8600 Rockville Pike, Bethesda,

aryland 20894, USA.

E-mail address: nicolas.fiorini@nih.gov (N. Fiorini).

t  

t  

i  

S  

e  
nd more documents are now semantically tagged, it should be

ossible to automate their semantic organization, providing tools

hat would, for instance, organize your local library of scientific

apers based on their keywords and MeSH annotations, structure

our bookmarks based on the metadata of the corresponding web

ages or sort your emails based on the tags you associate to them

hile accounting for the fact that “conference” and “workshop”

ags are both refinement of a “scientific meeting” tag. 

Conceptual annotation, also called semantic indexing, is pro-

osed as a generic way of representing the content of documents.

t aims at summarizing document contents with a small set of key-

ords or concepts of a knowledge representation such as an on-

ology. Such a compact representation of document contents eases

heir use in numerous automated processing tasks: content-based

nformation retrieval, corpus-mining or documents classification.

emantic indexing is as tedious as complex: a synthetic and rel-

vant semantic annotation requires a good understanding of the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.08.008&domain=pdf
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subject area the documents refer to, as well as a deep familiar-

ity with the chosen knowledge representation. In recent years, an

important effort has been devoted to automate semantic indexing,

leading to the availability of large corpora of semantically indexed

documents. 

In this context, this paper introduces a hierarchical agglomera-

tive clustering method that is based on the conceptual annotations

of documents. The first originality of this approach lies in the use

of a groupwise semantic similarity measure as the metric for docu-

ment similarity: two documents are said to be close when the con-

cept sets annotating them are similar in the sense of the semantic

measure. Its second originality is that the similarity of two clus-

ters is estimated as those of two documents rather than by some

sort of initial document similarities aggregation as usually done.

In our approach, when agglomerating two clusters, the conceptual

index of the resulting larger cluster is automatically computed and

then used to determine its similarity to others clusters consistently

with the proposed cluster hierarchy. The final originality of our

method lies in this tide imbrication of the clustering and labeling

tasks which guarantees their consistence. The semantic similarity

among clusters can hence be represented as tree branch lengths in

the tree representation of the clustering thus underlining semantic

properties of those clusters that can be used to identify the most

meaningful clusters. To this aim, we propose a post-processing of

the cluster hierarchy that takes advantage of branch lengths het-

erogeneity in the tree to only keep the most meaningful clusters. 

The paper is organized as follows. The next section gives

the context and our positioning with respect to the literature.

Section 3 details the method and provides its space and time com-

plexities. Section 4 presents the evaluation protocol. Section 5 pro-

vides the results obtained on a benchmark and their comparison

with end-users’ clusters; it discusses them and opens some per-

spectives. Finally, conclusions are drawn in Section 6 . 

2. Related work

Clustering is central to many applications in very different fields

where people want to analyze and compare documents in the light

of the domain knowledge they belong to: genes indexed by the

Gene Ontology, scientific papers indexed by MeSH terms, book-

marks or pictures indexed by WordNet to cite a few. Organiz-

ing these documents manually within a hierarchy of named clus-

ters/folders is a tedious everyday task. 

As most operating systems use a hierarchical folder structure

to organize electronic documents, people are now very familiar

with this kind of document/folder organization. This organization

provides a hierarchical representation of documents as they are

grouped within imbricated named folders that can be seen as la-

beled clusters (each folder being a cluster labeled by its name). We

all have faced the limit of such an approach. Especially when deal-

ing with new documents that do not properly fit in the current

hierarchy and would thus require to completely reorganize it, or

when dealing with documents that could indifferently be placed

in different folders. It has thus been suggested to replace the hi-

erarchical folder approach by a document tagging system. An ex-

tensive comparison of those two approaches is provided in [1] .

It concludes that there is no clear winner and that both strate-

gies have pros and cons. For instance the folder strategy allows to

declutter mailbox whereas multiple tag approaches facilitate later

document search and allows to reveal unexpected or forgotten

document connections. Tag approaches have been popularized by

websites such as Twitter and its well known hashtag system. Nu-

merous softwares have recently evolved to let users easily add

multiple tags to documents and it is now possible to tag most

document types using everyday life software applications. How-

ever recent work seems to indicate that, for most tasks, end-users
ontinue to favor folder-based organization over tag-based one [2] .

ne can argue that this may be due to the force of the habit but

his does not change the fact that end-users tend to favor hierar-

hical organization of their documents despites the advantages of

he tag approach in certain cases. Here we propose to give the user

he benefit of both approaches, while removing the tedious task of

re)constructing the first draft of their folder hierarchy by automat-

cally building this hierarchy based on the document tags. 

The whole point of clustering is to find groups of similar items

hat are different from other groups. Clustering methods are nu-

erous [3] and depend on the type of data processed as well as

lustering requirements and objectives that are fixed. In this paper

e only consider hierarchical clustering methods, which produce a

ierarchical representation of items instead of a flat partition of

hose items. The standard bottom-up strategy for this task pro-

esses by considering initial documents as singleton clusters and

epeatedly grouping the two closest clusters into a new one, hence

educing by one the number of current clusters, until only one

luster remains. 

The two main features of hierarchical agglomerative clustering

re (i) the distance measure used to compare singletons and (ii)

he approach used to distinguish which clusters are the closest

nes. The distance measures implicitly determine the features used

o cluster the documents. However, note that several distance mea-

ures can rely on the same features, but using them differently and

ence providing a great diversity of output clusters. In this work,

e focus on clustering approaches that rely on document seman-

ic metadata. More precisely, we consider that each document is

nnotated by a set of concepts that are organized in hierarchi-

al structures (e.g. ontologies, thesaurus) and that the clustering

elies solely on these semantic annotations. Many semantic mea-

ures have been proposed to estimate the semantic similarity of

wo concepts [4] , some relying only on the underlying hierarchical

tructuture (e.g. the path length between the compare concepts,

nformation Content (IC) of the compared concepts, etc.) whereas

thers use additional information such as color spectrum for image

r word count for text documents. Note that the IC of a concept

ould also be defined solely based on the position of the concept

ithin the ontology (roughtly speaking the closer the concept is

o the ontology root the more generic it is and hence the lower is

ts IC) or it could be defined using additional external information

uch as the frequency of the concept in a representative corpus. 

.1. Semantic clustering 

The literature presents some methods called semantic or mix-

ng clustering with ontologies or metadata, however, there is no

roper consensus on a field called semantic clustering the same

ay we define it, which is clustering documents by using their

emantic descriptions. Kuhn et al. [5] for example introduced the

oncept of semantic clustering as the fact of grouping documents

ontaining the same vocabulary. This approach is called semantic

s they try to capture the meaning of the documents to cluster

hem, which is quite different from our objectives of clustering

ocuments based on their semantic indices. Clerkin et al. [6] pro-

ose to use clustering in order to discover and create ontologies —

and not using ontologies to cluster documents. 

Some other studies are nevertheless closer to the scope of our

ork. Some researchers have for instance studied the impact of

ntegrating knowledge base information in clustering algorithms

7] . To the best of our knowledge, Hotho et al. [8–10] have been

the first to consider this kind of approach. Their work consists in

nriching document annotations with background knowledge — in

he most recent part, WordNet. Everything starts with the as-

ociation of each document with a vector of term frequencies,

urther referred to as term vector. After being altered based on
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ordNet information this vector is used as input of a k-means

lustering approach to organize documents using term vector

imilarities. During the alteration the initial values of the term

ector may be filtered to ignore low frequency terms. The Wordnet

oncepts related to the vector frequent terms (and some of their

ypernyms) may also be added to enrich this vector. Their overall

onclusion is that relying on conceptual descriptions of documents

mproves the quality of the proposed clusters. The authors ex-

lain that this improvement is due to the relationships between

oncepts (and thus the presence of common hypernyms, in their

pproach), where classical text clustering lacks such relationships.

or example, they show that documents about coffee and cacao

ere gathered in a food cluster while food was never literally

entioned in those documents. Baghel and Dhir [11] propose a

ariant of this approach also based on WordNet. They also rely on

oncept frequency vectors that are mapped from texts, but they

se them as input of a hierarchical clustering approach instead of

 k-means one. Breaux and Reed [12] as well as Sedding and Kaza-

ov [13] propose slightly analogous techniques relying on variants

f hierarchical and k-means clustering algorithms, respectively. 

Spanakis et al. [14] propose to use Wikipedia to test their novel

onceptual Hierarchical Clustering (CHC). They suggest a richer

odel for representing documents not only using the frequency of

ccurrence of each concept but also consider other features such

s the position of the concept within the document or the number

f links to the corresponding Wikipedia webpage. CHC is a hier-

rchical clustering technique that then relies on a combination of

heir various Wikipedia based features. 

Song et al. [15] are the first to use semantic similarities as

 metric for clustering semantically annotated documents. This

ork features one of the ideas proposed in [10] of mapping the

erm vectors to all the concepts they may refer to. The clustering

ethod they proposed is quite uncommon compared to existing

nes as it relies on a genetic algorithm, a classical meta-heuristic

hat searches the solution space by altering and combining a set of

andidate solutions using principles analogous to natural selection

nd heredity. 

The use of knowledge for enhancing clustering has also been

uccessfully tried for clustering non-text entities that have been

emantically indexed, e.g. genes [16,17] . Transcriptomic expression

nalysis (e.g. using DNA array) deals with a large number of ex-

ression measurements per gene. The clustering of genes, accord-

ng to their expression profiles, can benefit from gene ontology an-

otation. Indeed, Liu et al. [16] show that using the annotations to

rune the search space — so that irrelevant solutions are not ex-

lored — greatly reduces the computation time of the algorithm

hile producing results somewhat comparable in terms of cluster

uality. 

The contributions described in this section are more or less re-

ated to what we call semantic clustering, ontology-based cluster-

ng or ontology-driven clustering. Although it is certain that rely-

ng on an ontology helps clustering documents, few works detail

ow to rely solely on the document annotations and the underly-

ng ontology. For example, Nasir et al. [18] propose an approach

hat extracts semantic relatedness in order to cluster textual docu-

ents. Figueroa and Neumann [19] aim at semantically classifying

ueries based on the — textual — contexts they extract from search

essions. Liu et al. [20] evaluate their results using two datasets, of

hich one is unavailable and the other one is the famous 20 News-

roups 1 , a textual dataset. Finally, the approach detailed by Zhu

t al. [21] seems to be much closer to our work because it uses

he MeSH concepts annotating biomedical documents, but they do

ot provide the list of document identifiers that they use to eval-
1 http://qwone.com/ ∼jason/20Newsgroups/ 

o  

m  

r

ate the method. It is thus impossible to fairly compare our work

o any of these approaches, since there is no case in which the

ource code or intermediate files (e.g. those containing the con-

eptual annotations) are provided. Comparing to these approaches

ould thus require to add a step for extracting concepts from the

exts — which is a whole domain intrinsically —, that can create a

ias for evaluating the sole semantic clustering. 

Besides, hierarchical clustering has been barely explored when

onsidering ontologies e.g. [12,22] compared to other methods like

-means. Semantic similarities have been exploited in few works

15,22,23] , but they did not consider the existing and numerous

emantic similarities except in [24] , which focuses on genes. Un-

ortunately, this work has two downsides. First, it is only applica-

le to genes, although the core idea is actually generic. It relies

n GO (Gene Ontology) concepts — so it cannot load another on-

ology — to cluster the genes based on the semantic similarity of

heir annotations. Then, they map the clustering with the expres-

ion data as it is meant to be used for gene clustering after a mi-

roarray analysis. Second, they rely on a basic hierarchical cluster-

ng algorithm with classical linkage functions instead of exploring

he behavior of computing semantic similarities during the cluster-

ng (see Section 3.2 for more details on this aspect). 

.2. Semantic cluster labeling 

In analysis tasks and user interfaces, clusters have to be rapidly

nderstood by the users. In Information Retrieval, for a query

travel to Germany”, the results can be presented as clusters of ho-

els, restaurants, sightseeings, etc. Another common use of cluster

abels is when we want to understand how items have been gath-

red [25] . After clustering genes by using their expression data in

 few environments for example, one may be interested in what

haracterizes each group. Consequently, cluster labeling often fol-

ows a clustering step as it is an important task for cluster analysis

26] .

Role and Nadif [27] state that in most labeling approaches after

ext clustering, labels are simply terms picked from the texts ac-

ording to their frequency. The limitation of such a process is that

elationships among the words are not represented. They thus pro-

ose an approach to make a graph representation of terms for the

lusters that gives the user a better understanding of the cluster

eanings. 

As for clustering, the benefit of using external resources such

s Wikipedia has been predicted and tested [28] . Authors realized

hat even if the gold standard words were present in the docu-

ents of a given cluster, they would rarely be selected to annotate

his cluster. In order to have better labels, they thus propose to de-

ne for each cluster a list of candidate terms (by relying on their

revious work [29] ) then query Wikipedia using those terms and

se the metadata of the returned Wikipedia articles to annotate

he cluster. The results show a significant improvement compared

o simple term extraction based on frequencies for instance. 

Most of the work regarding semantic cluster labeling is related

o gene clusters. The reason is that the scientific community work-

ng with the Gene Ontology (GO) is one of the most dynamic ones

egarding the use of knowledge representation for data analysis.

enes being annotated with GO, the concepts of this ontology can

e used for automatically labeling inferred gene clusters. GOstat

30] proposes to annotate a group of genes by finding overrepre- 

ented GO concepts among their annotations. This approach takes

he ontology structure into account as ancestors of concepts an-

otating the genes are considered to be potential labels. Several

ther tools add slight variations such as different statistical models,

ultiple test corrections [31,32] , a better scalability [33] , a broader

ange of species [34] or new visualization tools [35–37] . 

http://qwone.com/~jason/20Newsgroups/
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Fig. 1. The hierarchical agglomerative clustering. Step 1 initializes the clustering by

creating cluster singletons and a pairwise similarity matrix. Step 2 consists in find- 

ing the closest clusters in the matrix (a), creating a new cluster f gathering them

(b), updating the similarity matrix accordingly (c and d). Step 2 is repeated until

only one cluster remains. At the end of the process, the obtained tree is given as a

result, its topology summarizes the infered clusters and the branch lengths reflect

the semantic distance among those clusters.
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Although these approaches are relevant in a biological con-

text, the suitability of the way GO concepts are picked for label-

ing the clusters in another context can be discussed. Overrepre-

sentation is one way of synthesizing a set of concepts by picking

those that directly or indirectly appear the most. This kind of ap-

proach, however, does not consider the specificity or genericity of

the labels. Especially when labeling hierarchical clusters, the speci-

ficity/genericity ratio needs to be controlled in order not to give

the same labels to successive parent nodes. Besides, the most elab-

orated approaches for cluster labeling are related to GO while this

task is useful in many contexts with various ontologies. In essence,

these methods could certainly be adapted to work with another

ontology, however, the papers are often in application notes format

that do not provide implementation details and the source code is

rarely available. 

Finally, several studies have been proposed to ease document

annotation. Among all indexing models, Yang [38] and Trieschnigg

et al. [39] both stated that the k-Nearest Neighbors (k-NN) ap-

proach is the only method that can scale while providing good

results. This is a two-step approach, first it identifies the neigh-

bors of the document to be annotated (e.g. based on co-authoring

or Natural Language Processing) and second it summarizes those

neighbor annotations to build a candidate annotation of the doc-

ument to be annotated. Note that this second step is similar to

building an annotation of the document cluster, i.e. the cluster is

made of the considered neigbors. Methods designed for this sec-

ond step can thus be used for cluster annotation. Among existing

solutions, the approach developped for the User-oriented Semantic

Indexing (USI) tool [40] fits well in this context as it clearly fo-

cuses on the annotation summary step. It also implements an ex-

plicit objective function so that it can easily be adapted to better

fit hierachical clustering annotation specificity. The objective func-

tion of USI is designed to search for an annotation that is as con-

cise as possible while being as close as possible to the considered

neighbor document annotations. 

Document clustering and semantic cluster annotation are so far

considered as two successive, and rather independent tasks mostly

because the clustering can be done based on different information

types. However when the clustering is based on the document se-

mantic annotations the two tasks could probably benefit from one

another and should probably be done simultaneously to ensure the

overall consistence of the final output. As far as we know our ap-

proach is the first to propose a really tight imbrication of the clus-

tering and labeling process. 

3. Methods

This section details the solution we propose to hierarchically

cluster documents using their semantic indices while providing

semantic labels of the resulting clusters. Note that for complex-

ity analysis we assume here that the ontology has already been

parsed and that pairwise similarities of concepts as well as con-

cepts’ ancestors/descendants have been pre-computed once and for

all. These can then be retrieved efficiently in O(1) . As this assump-

tion is done for both the baseline clustering algorithm and our se-

mantically aware clustering variant this does not bias the complex-

ity comparison of those two methods. 

3.1. Hierarchical clustering principles 

The hierarchical clustering, or equivalently the tree represent-

ing it, can be obtained by following two strategies: an agglomer-

ative or a divisive strategy. The construction is said bottom-up for

an agglomerative strategy — the tree is built from the leaves to the

root — and top-down for a divisive strategy. Top-down approaches

require for each iteration to find the most distant pair of clusters
mong a list of 2 n clusters. Usually, top-down approaches use a flat

lustering technique such as the k-means as a subroutine to keep a

olynomial time complexity. Note that in our case, using k-means

s not straightforward as it would require numerous estimations

f the centroid of a cluster of indexed documents. Such centroids

ould be provided using the median annotation of the document

f the considered cluster, using USI, but this would be computa-

ionally costly especially for large clusters. 

The bottom-up construction is conceptually easier as it only

eeds to be able to find the two closest clusters at each iteration.

n total, we need to compare n (n −1) 
2 pairs of clusters. Details of the

ethod are presented in Fig. 1 . There are two main steps in Hier-

rchical Agglomerative Clustering (HAC). One, the algorithm is ini-

ialized. Each document — more commonly called observations in

he clustering community — to cluster is put in a singleton cluster

nd a pairwise similarity matrix of all singletons is computed. Two,

he closest clusters in the matrix are identified ( Fig. 1 a) and gath-

red within a new cluster (b). The matrix is updated accordingly

y removing the rows and columns associated to the two merged

lusters and adding one row and column to store the similarities

f the newly created cluster with others (c,d). This agglomerative

tep is repeated until there is only one remaining cluster, that is all

lusters have been agglomerated. Note that branch lengths of the

utput tree can be used to reflect cluster similarity: the closer the
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lusters, the shorter the branches connecting them. The tree struc-

ure then allows the users to grasp several clustering granularities

t once. 

The key feature of HAC to define is clearly the way to compare

sets of) observations to initialize and update the similarity ma-

rix. In fact, HAC algorithms require the definition of two functions

alled the similarity metric and the linkage criterion. The former

s used to fill the initial matrix of similarities (step 1). Depending

n the kind of data on which the clustering is made, several exist-

ng functions can be used for this purpose. For example, Euclidian

istance is appropriate for comparing numeric vectors and the Lev-

nshtein distance for comparing strings. 

When two clusters are agglomerated, the similarities of the

ewly created cluster with others are calculated by using the link-

ge criterion that defines how to compare two sets of observations.

he choice of this function may impact the clusters shape and the

ranch lengths of the resulting tree. Most of the linkage criteria

re function of the pairwise similarity metric that is used to com-

are the singletons. The average linkage ALINK is one of the most

idespread: 

LINK(C l x , C l y ) = 

1 

| C l x || C l y |
∑ 

x ∈ Cl x 

∑ 

y ∈ Cl y 

s (x, y ) , (1)

here Cl x , Cl y are the two distinct clusters that are compared and

 ( x, y ) is the similarity metric used at step 1 of the HAC. Note that

iven ALINK ( Cl x , Cl z ) and ALINK ( Cl y , Cl z ), the value of ALINK ( Cl x ∪ Cl y ,

l z ) can easily be obtained in O(1) — recall that clusters are dis-

oints. This highlights that the HAC complexity depends on the

hosen pairwise measure complexity and linkage function. Say D

s the set of documents to be clustered, each of the O(| D | 2 ) ini-

ial pairwise similarities can be computed in O(S 2 max ) for the con-

idered semantic similarity measures as in [40] , where S max is the

aximum number of concepts annotating a document. The HAC

as O(| D | ) agglomerative steps, at each step the current similar-

ty matrix is browsed to find the best pair among O(z 2 ) , where

 is the current number of clusters, assuming that the linkage

unction used is a simple one (e.g. ALINK ) that can be computed

n O (1), the agglomerative steps thus have a total complexity of

( 
∑ | D | 

z=1 
(z 2 ) ) = | D | 3 . The overall complexity of this baseline HAC

pproach is O(| D | 2 S 2 max + | D | 3 ) .

.2. Semantic clustering 

In the following section we thoroughly detail our approach con-

idering the following key steps: (i) computation of the initial pair-

ise similarity matrix; (ii) annotation of a newly created clusters

nd update of the similarity matrix; and (iii) post-processing of the

esulting HAC tree. 

.2.1. Computation of the initial pairwise similarity matrix 

As explained above, the similarity metric is chosen according

o the type of data to cluster, e.g. the Levenshtein distance is of-

en used for clustering strings. It thus seems intuitive to rely on

 semantic similarity measure as the elementary metric to build

he similarity matrix of documents annotated by concepts. As in

ur previous work related to semantic indexing [40] we choose to

ely on the Lin measure [41] for pairwise similarities and on Best

atch Average (BMA) [42] for groupwise semantic similarities. In-

eed, although many semantic similarities have been proposed to

stimate the semantic similarity of a pair of concepts, they often

re variations of the same general ideas [43] . Among the various

xisting variants we choose to use the Lin’s measure which is one

f the most widespread ones and have proved to be efficient to

ackle related (semi-)automatic annotation tasks [44,45] . This mea-

ure is strictly based on the information contained in the graph
rovided by the knowledge base. While Resnik’s semantic similar-

ty measure [46] corresponds to the IC (see Section 2 ) of the com-

on ancestor of the concepts that are compared, Lin’s one refines

t by also considering the IC of both concepts individually. More-

ver, as documents/clusters are annotated by a group of concepts

nd not just a single one, we use the Best Match Average (BMA),

 simple groupwise semantic similarity, to aggregate the pairwise

imilarities of annotations into a single value reflecting the over-

ll semantic similarity of the compared elements. This metric es-

imates groupwise similarities in a rather intuitive way, because it

onsists of finding, for each concept of one group, the closest one

n the other group and vice versa. It thus allows key algorithmic

ptimizations to search for the best cluster annotation in reason-

ble time [40] . All the semantic similarities corresponding to these

dentified pairs are averaged. More precisely, we have: 

im (C l x , C l y ) = sim BMA (L x , L y ) 

= 

1

2 | L y |
∑ 

c∈ L y 
sim m 

(c, L x ) + 

1

2 | L x |
∑ 

c∈ L x 
sim m 

(c, L y ) , (2) 

here L x and L y are the set of labels indexing the clusters Cl x and

l y respectively; sim m 

(c, Cl y ) = max c ′ ∈ Cl y 
(sim (c, c ′ )) and sim ( c, c ′ ) is

he Lin pairwise semantic similarity. In other words, sim BMA is the

verage of all maximum similarities of concepts in Cl x w.r.t. Cl y and

ice versa. 

.2.2. Cluster labeling 

Once the highest value in the similarity matrix has been identi-

ed, the two closest clusters Cl x , Cl y are merged into a new cluster

l new 

and we need to define the labels L new 

that characterize Cl new 

.

his can be done by using the labels L i of documents D i within this

luster L new 

. A simple solution, retained in our baseline approach,

s to merge the labels of those documents. Such a naive solution

as however the drawback of leading to indices of growing size as

he clustering goes on. In order to keep reasonable label sizes even

or very large clusters, an alternative solution is to summarize the

 i annotations using a label set L new 

which, while being similar to

 i annotations, consists of fewer concepts. Building such a sum-

ary annotation is exactly what USI have been developed for. 

As the time complexity of USI strongly depends on the num-

er of annotations to be summarized, the straightforward solu-

ion of considering the annotations of each and every document of

l new 

, that we denote heavy semantic clustering (or HSC in brief), is

ighly time consuming. We thus consider an alternative approach

here the annotation of the new cluster is the USI summary of the

abels L x and L y of the merged clusters Cl x of Cl y . Indeed, while USI

as developed to annotate a document based on neighbor docu-

ent annotations, in this case we want to annotate clusters based

n the annotations of their sub-clusters. This strongly reduces the

ime complexity of this step as the number of annotations (“neigh-

ors”, for USI) is now always 2, regardless of the cluster size. We

enote this variant LSC for Light Semantic Clustering. 

Let us now move on from the objective function originally op-

imized by USI: 

f USI (L ) = 

1

| L K |
∑ 

L d ∈ L K 

(
sim BMA (L, L d ) 

)
− μ| L | . (3) 

 K is the set of neighbor document annotations, L d is the set of

abels of document d and μ represents a trade-off parameter be-

ween the expressivity of the summary and its concision. Note that

he sub-clusters may have very heterogeneous sizes, and they are

y construction more specific than the newly created one that en-

ompasses them. To annotate Cl new 

the cluster agglomerating Cl x 
nd Cl y , we therefore rely on the following adaptation of the USI
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objective function that better fits our needs: 

f (L ) = 

1

W 

∑ 

i ∈{ x,y } 

(
ln (| Cl i | ) × sim BMA (L, L i )

)
− μ| L | ∑

c∈ L
IC(c) , (4)

with W = 

∑ 

i ∈{ x,y } 
ln (| Cl i | ) , (5)

Cl i is one subcluster of Cl n ew, L i is its annotation and IC ( c ) is the

information content of concept c , as mentioned in Section 2 . We

now take the cluster size into account using a log-based weighting

so that when merging two clusters, the labels of the largest one

has more influence but do not obliterate the other cluster annota-

tion. Imagine merging two clusters where the first Cl x contains 20

documents that are all indexed by the same label set L x , whereas

the second cluster Cl y contains a single document indexed by L y ;

then we aim at annotating Cl new 

by providing more weight to la-

bels of L x (as they index 20 out of the 21 documents of Cl new 

)

without masking the fact that Cl new 

has two subclusters that are

semantically heterogeneous and only one of those two subclusters

contains documents indexed by L x . In order to solve the problem

stated in Eq. 4 , we rely on exactly the same algorithm as USI (see

[40] ), where we only replace the calculation of the original objec-

tive function by the one detailed in Eq. 4 .

3.2.3. Cluster postprocessing 

The HAC algorithm per se produces a binary tree which is diffi-

cultly exploitable by a user. Grouping the clusters by pairs is legit-

imate for the algorithm complexity; however, a user would expect

larger categories to appear instead of a dense binary tree. Con-

sider for instance that three documents have the exact same index,

then the HAC produces a first cluster C 1 with two of them and a

higher level cluster grouping C 1 with the third document, whereas

the end-user would expect a single cluster containing the three

documents. Alternatively, consider a corpus made of 3 completely

unrelated documents, once again the HAC produces a binary tree

containing a cluster of two documents picked randomly whereas

the end-user would expect the three documents to appear at the

same level in the hierarchical clustering. The purpose of our post-

processing algorithm is to detect such pattern in the tree output

by our HAC. It relies on branch lengths that reflects the semantic

similarity between the clusters: a cluster that is too close (case 1)

or too far (case 2) from its children and parent is thus removed. 

The threshold values used during this post-processing are au-

tomatically estimated based on the distribution of the HAC branch

lengths. Indeed this distribution is often bimodal. As the distribu-

tion of distances may vary depending on the dataset, we define

two quantiles α, β based on a training set. For example, with the

training set of the benchmark proposed further (see Section 4 ),

best results are obtained with α = 0 . 2 and β = 0 . 87 . Second, we

define two threshold values th l , th h for the low and high val-

ues below or above which distances are considered for the post-

processing tree flattening. A recursive function browses the tree

with a top-down strategy. For each node it browses, if its par-

ent and its children are both highly distant or both highly close,

then it branches the children nodes to the parent one and removes

the current node. Finally, the algorithm stops when it reaches the

leaves and returns the processed tree by providing its root. 

3.3. Time complexities of the proposed algorithms 

We do not aim at ameliorating the generic HAC complexity in

any way, but rather to explore the relevance of using HAC in tight

conjunction with semantic similarity measures to provide more

meaningful clusters. Nevertheless, as we want to provide a scal-

able method, we need to ensure our approach has a complexity
omparable to standard HAC algorithms. To this aim, this section

etails the proposed algorithms we rely on and their complexities.

.3.1. Algorithm details 

The algorithm is a greedy algorithm leading to a binary tree

nspired by the very common Neighbor-Joining method in system-

tic biology [47] . Algorithm 1 details the whole process. During

Algorithm 1: Clustering and labeling of a set D of documents. 

1 Function Cluster (D, μ, S max , θ ) 
Input : The set of documents to cluster D , a real number 

μ ∈ [0 ; 1] , the maximum size of cluster labels 

S max , an ontology θ
Output : Hierarchy of clustered documents and cluster 

labels 

2 if ∃ d ∈ D, | L d | > S max then

3 print an error and exit; 

4 end 

5 clusters ← {} ; 
6 for i ← 1 to | D | do 

7 Create a childless cluster Cl i with labels L i = A i ; 

8 clusters ∪ { Cl i } ;
9 end 

10 Create a matrix M of size 2 | D | × 2 | D | ; 
11 for i ← 1 to | D | do 

12 for j ← i + 1 to | D | do 

13 M(i, j) ← sim g (L i , L j ) ; 

14 end 

15 end 

16 new ← | D | + 1 ; 

17 while | clusters | > 1 do 

18 Find the pair of remaining clusters C l x , C l y with the 

highest similarity; 

19 Create a new cluster Cl new 

; 

20 K ← { C l x , C l y } ;
21 Create L new 

← USI _ Annotate (K, μ, S max , θ ) the labeling 

of Cl new 

; 

22 Add child Cl x to Cl new 

with a distance of 

1 − sim g (C l new 

, C l x ) ; 

23 Add child Cl y to Cl new 

with a distance of 

1 − sim g (C l new 

, C l y ) ; 

24 clusters ← clusters ∪ { Cl new 

} ;
25 clusters ← clusters \ { Cl x , Cl y } ;
26 for Cl i in clusters do 

27 i ← index of Cl i in M; 

28 M(i, new ) ← sim g (L i , L new 

) ; 

29 end 

30 new ← new + 1 ; 

31 end 

32 root ← clusters [1] ; 

33 return root 

34 end 

he initialization, the first clusters and the tree are initialized: each

luster is a leaf and its labels are the annotation of the document it

epresents (l.5–9). The similarity matrix of trivial clusters is com-

uted by using semantic similarities of document labels (l.10–15).

hen, the agglomerative process begins and iterates until there is

nly one remaining cluster. Each iteration consists of finding the

air of closest clusters Cl x , Cl y in the matrix (l.18). A new cluster

l new 

is created (l.19). In order to label the newly created cluster

e rely on USI that provides an efficient algorithm to synthesize

he annotations of several documents [40] — in our case, the two

hildren (l.20) of the new cluster. The new cluster is hence labeled
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y a synthesis of the annotation of its two children clusters using

he variant of the USI objective function provided in Eq. 4 . We also

stimate and store the distance of the new cluster with each of its

hild by computing the semantic similarity of their labels (l.22–23).

his step allows us to build a tree with branch lengths represent-

ng the semantic similarities of the nodes/clusters. The transforma-

ion of semantic similarities into semantic distances is done using

he following equation, which assume that the semantic similarity

easure is bounded in an interval [0; 1], as most of them are so

4] :

d(C l n , C l x ) = 1 − sim g (C l n , C l x ) , 
d(C l n , C l y ) = 1 − sim g (C l n , C l y ) . 

(6) 

Finally, the similarity matrix must be updated. The new cluster

s added to it and all the similarities with other clusters are com-

uted. The rows and columns corresponding to the two agglomer-

ted clusters are removed (l.24–29). 

.3.2. Complexity analysis 

Algorithm 1 features S max ∈ N as an input that aims at bounding

he maximal size of labels associated to the clusters. In practice,

 max has been set to 20 in the experiments detailed in Section 5.2 .

his is subject to variations depending on the dataset because if

ocuments are heavily annotated, S max should be higher, although

 document is more likely to be annotated by few concepts in gen-

ral. S max is used as a parameter of the USI_Annotate ( · ) function.

ote that the first lines of the algorithm guarantee that there is

o inconsistency between D and S max . Let us detail the few steps

receding the actual clustering of the documents. Creation of ini-

ial clusters (l.5–9) is in O(| D | ) . Filling the matrix requires to fill

(| D | 2 ) cells, each of which is computed in O(S 2 max ) for the BMA

omposite average. Initialization of the algorithm (l.2–15) is thus

ade in 

(| D | 2 S 2 max ) . (7) 

The clustering process consists of | D | − 1 iterations during

hich three main processes occur. At each iteration, the matrix is

rowsed once to find the best cluster pair (l.18) in O(z 2 ) where z

s the current number of clusters. The label of the cluster is then

omputed by using a modified version of the USI annotating algo-

ithm for which the complexity is O(knS max + n 3 ) ; where k is the

umber of document annotations to be summarized, n is the size

f the set L 0 of candidate concepts and S max is the maximum size

f any annotation. For cluster labeling, k = 2 (the annotations of

he two merged clusters, Cl x and Cl y ), the initial set for labeling

he cluster, denoted L 0 , is made of the concept annotating Cl x and

l y plus their first hypernyms. Indeed, to control the scalability of

he algorithm, we introduce a hypernymy parameter h that limits

he search among ancestors. That is, anc ( c, h ) are the h direct an-

estors of concept c . As a result, the search space size n = | L 0 | is

n O(hS max ) . As k = 2 and n is in O(hS max ) , the complexity of the

dapted USI algorithm is O(2(hS max ) S max + (hS max ) 3 ) = O(h 3 S 3 max ) .

he third and last important task is the computation of new se-

antic similarities with the (z − 1) other clusters, which is done

n O(zS 2 max ) . Consequently, the complexity of each iteration in the

hile loop is a browsing of the matrix, a labeling of the new clus-

er and the computation of new similarities, leading to an overall

omplexity of each while iteration (l.18–29) of 

(z 2 + h 

3 S 3 max + zS 2 max ) . (8)

The complexity of all iterations of the while loop, which domi-

ates the one of the initialization and is thus the time complexity
f the whole algorithm, is hence: 

 

( | D −1 | ∑ 

z=1

(
z 2 + h 

3 S 3 max + zS 2max

))
(9) 

= O 

(| D | 3 + | D | h 

3 S 3 max + | D | 2 S 2 max

)
. (9) 

As complexity is particularly crucial for large datasets, i.e. large

 D |, S max can safely be considered smaller than | D | leading to 

(| D | 3 + | D | h 

3 S 3 max ) . (10)

. Evaluation protocol

This section introduces the evaluation protocol adopted in this

tudy; it covers technical details related to the datasets as well as

he metrics that have been used. 

Considering a set of documents annotated by concepts defined

nto a partial ordering, the main aim of the evaluation is to discuss

he relevance of the clusters of documents that are automatically

roposed by evaluated approaches with regard to those that would

e expected by some end-users or domain experts. The dataset

sed to implement this evaluation protocol is based on the data

ade available by [48] : free terms annotations for sets of book-

arks, each of them being linked to a specific user account of the

el.icio.us real-world bookmarking platform. 2 More particu-

arly, the dataset we used was derived from the WordNet-based

isambiguated version of the aforementioned bookmark annota-

ions [49] — WordNet is an established and largely used knowl-

dge organization providing a partial ordering among unambigu-

us sets of synonyms [50] . In this version, the free terms anno-

ating the bookmarks have been replaced by synsets defined into

ordNet 3. Unfortunately this specific version of WordNet contains

ycles, which makes impossible the use of most of classical seman-

ic similarity measures that have been proposed to deal with con-

epts defined into partial orders. We therefore used Wordnet 3 to

ornet 3.1 mappings, i.e. correspondences, to obtain the bookmark

nnotations that are compatible with WordNet 3.1 — this latter

ersion defining a (cycle-free) partial order, which is compatible

ith all semantic similarity measures. Technical aspects related to

he mapping are provided in the documentation associated to the

ataset that can be used to reproduce the experiments. 3 Because

f these modifications, the dataset we obtain provides a set of 591

ocuments (i.e. bookmarks) annotated by unambiguous concept-

like objects defined into a partial order. The number of annota-

ions per document ranges from one to seven with an average of

.67 annotations per bookmark. Fig. 2 shows the distribution of an-

otations of the bookmarks composing the collection. 

The final part of the evaluation dataset construction consists of

btaining the expected clusters of documents that will be used to

riticize the hierarchical clusters automatically generated by eval-

ated approaches. To our knowledge, no existing dataset provides

xpected hierarchical clusters among documents annotated by sets

f concepts only. To answer our need, we therefore developed a

ool enabling end-users to define expected hierarchical clusters for

ets of documents annotated by concepts defined into a partial or-

er. This tool gives the user the possibility (i) to consult the an-

otations associated to a specific document, (ii) to navigate into

he partial ordering of concepts, (iii) to group documents into clus-

ers, and (iv) to define hierarchical ordering among those clusters.

n the performed evaluation, the set of evaluators was composed

f 12 adult users, all familiar with the intuitive notion of concept

artial ordering. Independently to each other, and through a web

https://delicious.com
http://benchmark.nicolasfiorini.info
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Fig. 2. Distribution of the number of annotations associated to the bookmarks of

the whole collection (D1,... ,D8).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1

Evaluation of clustering results. The average distance of expert trees with each

other and of LSC, HSC and the baseline (including the post process) with the

expert trees for each dataset ( D 1 . . . D 7 ). Lower values are better.

D 1 D 2 D 3 D 4 D 5 D 6 D 7

expert 0 .138 0 .156 0 .168 0 .197 0 .159 0 .131 0 .166

LSC 0 .186 0 .240 0 .240 0 .208 0 .206 0 .271 0 .210

HSC 0 .186 0 .216 0 .215 0 .225 0 .206 0 .244 0 .207

baseline 0 .269 0 .274 0 .267 0 .283 0 .288 0 .326 0 .276

Table 2

Evaluation of clustering computation times. The average running time (in

ms) of the different clustering approaches (LSC, HSC, baseline), for each

dataset ( D 1 . . . D 7 ). Lower values are better.

D 1 D 2 D 3 D 4 D 5 D 6 D 7

LSC 846 927 1073 1018 908 967 946

HSC 4680 4772 4749 5131 5424 4342 4670

baseline 595 622 564 485 485 482 487
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graphical interface, they have been asked to organize several col-

lections of documents. For each collection, an evaluator had to de-

fine a hierarchical clustering of the set of documents by consider-

ing the annotations associated to the documents. In order not to

introduce any bias into the experiment, no definition of expected

results other than the following has been provided: “build a hier-

archical clustering in order to manage the collection of proposed

documents with regard to their topics (as defined by their anno-

tations)”. Prior to the data acquisition, all evaluators have been in-

troduced to the tool and to the task by participating to an intro-

ductory session explaining the aim of the experiment as well as

the functionalities provided by the tool. It is however important

to stress that the evaluators were asked not to reconsider the an-

notations of the documents. Webpages have been anonymized, so

they could not take into account additional information obtained

by consulting the webpages corresponding to the bookmarks– the

aim being to evaluate human vs machine hierarchical clusters that

are obtained with the same input data. Each evaluator has pro-

vided one to three hierarchical clusters, each of them correspond-

ing to a set of about 70 randomly selected bookmarks among the

collection introduced above. Fig. 3 shows the number of annota-

tions associated to the bookmarks of the seven datasets built from

the original collection — these datasets are used for the evaluation.

We note that on average a bookmark has two annotations with a

maximal number of seven annotations. 

Hierarchical clusters have been compared using the Robinson-

Foulds distance [51] that calculates the topological differences of

two (non-)binary trees. The output is not normalized and repre-

sents the number of basic operations needed to transform a tree

into the other one. In order to normalize it, we use the statement

from Pattengale et al. [52] that an unrooted tree of n leaves in-

duces at most 2 n − 3 clusters. As all datasets have a variable num-

ber of documents, the similarity of two trees t 1 , t 2 is thus esti-

mated as T reeSim (t 1 , t 2 ) = 

sim RF (t 1,t 2) 
l en (t 1 )+ l en (t 2 ) −3 

, where sim RF ( t 1 , t 2 ) is the

Robinson-Foulds distance of t 1 , t 2 and len (t 1 ) = len (t 2 ) is the num-

ber of leaves (documents) in the trees. 

Analyses related to evaluator inter-agreement, i.e. dispersion

among the clusters they have defined, have been made on the set

of evaluators who have been asked to organize the same 7 sets

of documents. To this end, for each dataset, we have studied the

average distance between two hierarchical clusters as a way to ob-

jectively measure expert agreement. With an average distance of

0.159 between hierarchical clusters, the results clearly highlight the

fact that an agreement between proposed expected document or-

ganizations exists — details of these results are discussed in the

next section. 
. Results

Let us compare our two approaches called Light Semantic Clus-

ering (LSC) and Heavy Semantic Clustering (HSC), with a clas-

ical HAC combined with a naive cluster annotation (further re-

erred to as the baseline approach). The baseline clustering ap-

roach starts with a matrix of pairwise document semantic sim-

larities (the same that is used for LSC and HSC) but it updates

his matrix using the average linkage criterion instead of a seman-

ic similarity measure between node labels. The other difference

ith LSC and HSC is that in this baseline approach, each cluster is

nnotated by all labels annotating at least one of the documents

resent in this cluster (further refer to as the merge annotation

pproach). 

.1. Evaluation of the clustering approach 

Expert trees differ from one another, so by calculating for each

ataset the average distance between two expert trees we ob-

ain a measure of expert inter-agreement. Ideally, we would like

utomatically generated cluster trees to have an average distance

o expert trees lower than or close to this inter-agreement value,

hich would indicate that the automatic solution is as consistent

ith experts as experts are with one another. We compare clus-

er trees using the normalized Robinson-Foulds distance that re-

ects the percentage of clusters present in one tree but not in

he other. Therefore the lower the distance, the higher the re-

emblance. Table 1 summarizes the average distance among ex-

ert trees and the average distance of LSC, HSC and the baseline

rees with the expert ones for each dataset. It appears that both

SC and HSC clearly outperform the baseline on all datasets. Note

hat LSC has perfomances close to that of HSC. Indeed, LSC is as

ood as HSC for datasets D 1 and D 5 ; slightly better for dataset D 4

0.208 vs 0.225) but slightly less good for D 2 (0.240 vs 0.216), D 3

0.240 vs 0.215), D 6 (0.271 vs 0.244) and D7 (0.201 vs 0.27). 

We also compare the computation times that have been ob-

ained by running each method 100 times for each dataset, as

hown in Table 2 . As expected, the baseline is faster than our more

laborated approaches since the node labeling step is trivial. The

omputation times achieved by LSC are still reasonable as they are

bout twice those of the baseline whereas HSC is often more than

0 times slower. 

As LSC provides results almost as good as those of HSC while

eing much faster, hence more scalable, we favor LSC over HSC and

rom now on we will only compare LSC to the baseline to keep the

ext clear. 
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We conducted a more thorough study on the impact of the

ost-processing on LSC and the baseline. Two strategies are ex-

lored regarding the post-processing: with the flattening post-

rocess (pp) and without it (nopp). Fig. 4 provides, for the seven

atasets, the average distance to expert trees for LSC and baseline

pproaches with or without the flattening. The figure also depicts

he expert tree inter-agreement to ease the comparison. 

The results show that the flattening is an important process for

oth approaches. With no post-process, both methods are equally

ad as they do not fit the expert expectation of a non-binary clus-

er tree. When the post-process is applied, LSC systematically per-

orms better than the baseline. This emphasizes the benefit of con-

ucting a tight imbrication of clustering and annotation, as done in

SC, so that the resulting cluster tree has a topology that is consis-

ent with its node annotations. In fact, for some datasets (1, 2 and

) the results of LSC (with post-processing) are congruent with the

xperts as they are close to the inter-agreement values that repre-

ent the experts discrepancies. 

.2. Evaluation of cluster labeling 

Unfortunately, it is impossible to simultaneously evaluate the

lusters along with their labels. Indeed, the experts provide differ-

nt trees with different labels that can thus not be summarized
n a gold standard labeled tree for each dataset. Cluster labels are

hus evaluated as follows. An expert tree is provided to our method

nd the module — hereafter denoted by CL — that annotates each

ode in LSC is run. The result of such an approach is an index for

ach node of each expert tree for each dataset. The evaluation of

abels follows our previous work proposal [40] , in tune with other

tudies that suggested that semantic similarities better assess the

uality of a semantic annotation [45] . For each expert tree we thus

ompute the average semantic similarity of our labels with the ex-

ert ones. Then, for each dataset, the scores are averaged over the

xpert trees hence leading to a single label score per dataset. La-

el scores obtained with our CL annotation approach and with the

aive merge annotation approach are proposed in Fig. 5 . 

At first glance, the scores seem to be pretty close. In fact, they

ostly depend on the datasets. The worst scores are obtained with

ataset 2 for both methods. Although the scores of merge are sim-

lar to those of CL for three datasets, CL provides overall slightly

ore accurate labels — the average semantic score of CL is 0.494

nd that of merge is 0.469. 

The main difference between those two labelling procedures re-

ides not so much in the accuracy of the proposed labels but in

heir concision. Table 3 contains the label sizes for each method.

he merge approach contains many more concepts than the other

s it does not process them. The sizes of labels for CL compared
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Table 3

Comparison of the average label sizes of our cluster labeling approach ( CL )
with the baseline and the expert data for each dataset ( D 1 . . . D 7 ). Lower values

are better.

D 1 D 2 D 3 D 4 D 5 D 6 D 7

CL 2 .16 1 .96 2 .05 1 .82 2 .05 1 .84 1 .75

merge 16 .02 11 .85 12 .70 13 .84 14 .72 15 .97 16 .28

experts 1 .11 1 .05 1 .03 1 .08 1 .13 1 .12 1 .06
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to that of merge demonstrate that we can clearly summarize 10 to

15 concepts in 2 concepts in average without decreasing the qual-

ity of the labels — in fact, it even increases it. Note also that the

number of concepts provided by CL is pretty close to that provided

by the experts, compared to merge . 
We observe that the scores in general are less good than for

document annotation for example, where we usually get semantic

scores around 0.8 [53] . The reason here is that there are outliers

in each dataset that are hardly clusterizable because their anno-

tation is vague or has nothing in common with other documents.

Some examples are “corner”, or “tip”. Because there is no access to

the corresponding webpages, it is difficult to classify these outliers.

Some experts gather them in a cluster labeled various for instance,

some others strive to find a category for them. Our algorithm can-

not predict the former cognitive strategy and fails at labeling the

resulting “catch-all” cluster. Our cluster labeling also fails to mimic

the expert labels of the latter strategy, because usually, once the

expert has put the outlier in a cluster, he/she ignores it to annotate

the cluster. When our algorithm annotates a cluster it can possibly

ignore outliers when they are really underrepresented — because

there must be enough leaves to veil them. Note that when outliers

are (manually) removed from the expert trees, the semantic score

of labels is of 0.78 in average, which proves their impact on our

approach. 

6. Conclusion

The semantic hierarchical agglomeration clustering method this

paper proposes was motivated by previous works both in cluster-

ing and labeling. Although several approaches tried to make use

of semantic data (GO concepts, metadata, concept mapping, etc.)

there was no generic approach relying on solid solutions such as

semantic similarities. When documents are annotated by groups of

concepts from a taxonomy, the method we propose uses a group-

wise semantic similarity measure to compute the pairwise similar-

ities between documents, first for creating the label-based similar-
ty matrix. When two clusters are agglomerated into a new one, a

emantic annotation is automatically computed for this new clus-

er and then used to iteratively update the label-based similarity

atrix. In this way, our clustering method guarantees the con-

istency between the agglomeration phase and the labeling one:

emantic similarities help building more interpretable and mean-

ngful clusters. We have proposed a benchmark containing eight

atasets of about 70 bookmarks each, one for tuning the method

nd seven others to evaluate the approach: the hierarchical la-

eled clusters our method generates has been compared to trees

xperts proposed as a bookmark organization. Furthermore, an al-

orithmic effort has been made to optimize the time complexity

f the proposed solution. As a result our solution has a time com-

lexity equivalent to a naive hierarchical clustering approach (and

omparable running time on our benchmarks) while providing sig-

ificantly more accurate results. Such a hierarchical clustering and

abeling indicates seemingly good prospects for future works con-

erning adaptive indexing: indexing may be context dependent

e.g. an algebra book is not labeled in the same way in a scientific

ibrary as in a municipal library; the required granularity of the

nnotation hangs on the use that is made of it) and our approach

rovides relevant hints to adaptively manage the indexing process.

To the best of our knowledge, this is the only approach

hat proposes a so tight imbrication of document clustering and

luster annotation. A consequence of the resulting tree topol-

gy/annotation consistence is that the cluster post-processing we

ropose, to filter out meaningless clusters, is more efficient and

llows to provide a non-binary hierarchical organization of docu-

ents that meets human expert expectations. 

All resources and results are made available at: http://sc.

icolasfiorini.info 
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