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ABSTRACT 13 

Yield improvement certainly depends on breeding new genotypes, but also on identifying the 14 

best genotype for a given location and crop management system. Hence we need to quickly 15 

evaluate the performance of each new variety in different cropping systems and 16 

environmental conditions. 17 

Our objective was to develop a model which can help to improve genotypic assessment in the 18 

sunflower crop (SUNFLO). The present work aimed at identifying, quantifying and 19 

modelling the phenotypic variability of crop performance in response to the main abiotic 20 

stresses occurring in the field (light, temperature, water, nitrogen) but also in the expression 21 

of genotypic variability. 22 

We therefore include just enough genetic information to enable the models to be used with 23 

new genotypes. Each genotype was thus defined by chosen phenotypic traits which were 24 

transcribed into a set of 12 genotype-specific parameters. 25 

The model’s performance was evaluated in both specific field experiments and generic multi-26 

environment trials (MET). The first evaluation assessed model robustness: no variables had a 27 

large prediction error, indicating that the final output error results more from poor prediction 28 

for all variables than from error compensation. An ANOVA on the simulated MET dataset 29 

showed that although the model simulates less variability than in reality (60%), there was 30 

genotype-environment interaction and the ranking of the ANOVA factors was identical in 31 

both observed and simulated networks. The model's accuracy was sufficient to discriminate 32 
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between genotypes from different breeding periods, but was similar to the difference in 33 

performance between actual genotypes (~ 0.2 t.ha-1).  34 

To improve the understanding of crop physiology and crop-environment interactions, this 35 

kind of model shows weaknesses, especially when dealing with environmental stress 36 

integration or biomass allocation. On the other hand, SUNFLO seems sufficiently robust to 37 

estimate the influence on yield of breeding traits or to explore new management practices.   38 

 39 

Key words:  crop model, genotypic variability, water stress, nitrogen stress, yield, oil 40 

content, sunflower (Helianthus annuus L.)41 



 

 

INTRODUCTION 42 

 43 

Sunflower is a major world oilseed crop (ca. 35 Mt, 9% oil production after palm and 44 

rapeseed oil) which recently acquired new interest for biodiesel development (Pereyra-Irujo 45 

et al., 2009). Considering sunflower seed production (source : FAOSTAT 2009), major 46 

production regions are Europe (62 % of world production, mainly by Ukraine, Russia, 47 

France), Americas (19 %, mainly Argentina, USA) and Asia (15%, mainly China, India).  48 

Yield improvement certainly depends on breeding new genotypes, but also on identifying the 49 

best genotype for a given location and crop management. The improvement of genotype 50 

assessment is obvious at the three steps of genotype development: (1) breeding: evaluation of 51 

the impact of a morpho-physiological trait (or an ideotype) on the field performance, (2) 52 

cultivar registration: assessment of the performance of elite plant materials in multi-53 

environment trials and (3) cultivar dissemination: providing advice on stable and high-54 

yielding combinations of genotype, environment and crop management to farmers. Although 55 

Genotype x Environment x Management (G x E x M) interactions may sometimes appear to 56 

breeders as an hindrance to the stable phenotypic response of a genotype, they could be 57 

exploited more fully by advisers to recommend the best cultivar-management combination in 58 

a given environment, especially in a context of low-input production.       59 

Modelling can help in genotype assessment. During breeding, yield improvement does not 60 

result directly from the accumulation of sequencing or functional genomic information due to 61 

very variable and unpredictable cropping environments (Miflin, 2000;  Sinclair et al., 2004). 62 

For example, in sorghum, a QTL for the stay-green physiological trait was identified (Tao et 63 

al., 2000) but its effect on yield was shown to vary greatly (Borell and Hammer, 2000). 64 

Predicting the effects of genotypic traits on yield for contrasting environments is thus a 65 

halfway step for the exploitation of genomic results (Hammer et al., 2005; Hammer et al., 66 

2006). During cultivar evaluation for official registration and advice, field experimentation 67 

remains an essential tool, but modelling could provide additional information on genotype 68 

response to varying soil-weather combinations and could limit the number of trials needed by 69 

siting them in the most appropriate environments (Messina et al., 2006). 70 

Crop models, by their capacity to simulate phenotypic plasticity in response to environmental 71 

variability (weather, soil or practices) can help to solve the inherent difficulty of genotype 72 

evaluation. For sunflower, crop physiology has been incorporated in different and 73 

complementary ways in a few simulation models. In most of these (Steer et al., 1993 ; 74 

Villalobos et al., 1996; Pereyra-Irujo and Aguirrezabal, 2007) biomass accumulation is 75 



 

 

driven by radiation (RUE); only Q-Sun (Chapman et al., 1993) switches to a water-driven 76 

(WUE) submodel if water is the main limiting factor. These models include limiting factors 77 

based on their target environments: in those of Steer et al. (1993) and Pereyra-Irujo and 78 

Aguirrezabal (2007) yield is only limited by temperature and light. To these two factors, 79 

Chapman et al. (1993) added water stress and Villalobos et al. (1996) widened its scope by 80 

the inclusion of nitrogen stress.  81 

How do crop models deal with genotypic variability? Genotypic variability does not appear to 82 

be as explicitly included as environmental responses in current sunflower crop models 83 

(Connor and Hall, 1997). Two models consider different parameterization sets between 84 

genotypes: Villalobos et al. (1996) introduced a statistical optimization to represent three 85 

genotypes through five parameters (phenological stages, yield potential) and Chapman et 86 

al.’s (1993) model did not isolate the values for genotypic parameters but rather indicated 87 

genotypic variability for key parameters (water use efficiency, phyllochrons, phenological 88 

stages). Moreover, the values of these parameters are mostly estimated by optimization, 89 

which limits the parameterization at a larger scale for numerous genotypes. Several generic 90 

crop models have been adapted to the sunflower crop, but they lack genotypic refinement 91 

(Kiniry et al., 1992). 92 

The value of a crop model for evaluating genotypes results mainly from its predictive quality 93 

but also from its ability to be updated for yearly cultivar releases from breeding companies 94 

and the official registration process. A model’s predictive quality is usually linked to the 95 

relevance of simulated stress factors, the description of canopy growth, the robustness of 96 

parameterization and the quality of input data. Updating can be made possible by improving 97 

the ease of genotypic parameterization, which depends as much on the total number of 98 

genotypic parameters as on the methods used to estimate their values. Therefore, an ideal 99 

genotypic parameterization would aim to limit the total parameter number while maintaining 100 

a useful predictive capacity.          101 

Two steps can be distinguished when modelling the link between a phenotype (i.e. leaf area 102 

or grain yield) and a genotype. Firstly, a physiological trait (i.e. reduced conductance with 103 

water stress) could be transcribed as a model parameter (slope of the response curve) 104 

(Casadebaig et al., 2008). Then the robustness of the relation between the trait and the plant 105 

genome should be evaluated (Yin et al., 2004). The study of Chapman et al. (2002) illustrates 106 

this view well, although the sorghum lines evaluated by the model differed only by four 107 

alleles. 108 

Our approach here concerns only the first step: to link a complex phenotype to a set of 109 



 

 

accessible genotype traits. Each genotype is thus defined by chosen traits which were 110 

transcribed into a set of genotype-specific parameters. These genotypic parameters are, 111 

despite their name, under uncertain genetic control (Slafer, 2003). 112 

Unlike estimating parameters by optimization, direct measurement allows parameter values 113 

to be more representative of crop physiology than the paired data / optimization algorithm 114 

(Jeuffroy et al., 1996). In this way, the time and complex procedures needed to introduce new 115 

genotypes can be reduced, improving the accessibility of the model among technical services 116 

(Mavromatis et al., 2001). 117 

Why develop a new sunflower crop model? It was the need to differentiate genotypic 118 

response with as few parameters as possible, rather than a lack of suitability of existing 119 

sunflower crop models, that led us to develop a new crop model for sunflower. An analysis of 120 

the comparative performance of genotypes from different breeding generations (Vear et al., 121 

2003) through the generic approach of biomass production of Monteith (1977) allowed 122 

phenotypic variability to be quantified in this system (Debaeke et al., 2004). That study 123 

confirmed the role of (1) plant leaf area and its control (persistence, efficiency) after 124 

flowering, (2) vertical distribution of this leaf area and (3) phenology (duration from 125 

flowering to maturity) for genotype performance. This knowledge was incorporated into a 126 

crop model intended to evaluate the contribution of identified parameters to the variability of 127 

yield potential (Lecoeur et al., 2009). 128 

Our objective was to identify, quantify and model phenotypic variability of sunflower at the 129 

individual plant level in response to the main abiotic stresses occurring at field level (light, 130 

temperature, water, nitrogen) but also in the expression of genotypic variability (G x E 131 

interactions). 132 

This objective underlies a parsimonious addition of genetic information to increase the 133 

model’s versatility and usefulness. Using a crop model to help to evaluate genotypes thus 134 

requires (1) choosing a suitable modelling framework, (2) setting up genotypic parameters, 135 

(3) estimating their values with a simple and robust methodology, (4) evaluating the model’s 136 

performance on a small-scale evaluation trial network.   137 

 138 

MATERIALS AND METHODS 139 

 140 

1. Experimental design and crop conditions 141 

Crop measurements from 56 experiments, carried out on 27 trials, were used to develop, 142 

calibrate and evaluate the model’s performance.  143 



 

 

These experiments, described in Table 1, covered a wide range of genotypic variability (2-20 144 

genotypes) and cultural conditions: potential growth conditions (exp. #01, 02, 04, 05), water 145 

(exp. #03, 23, 24-40) and nitrogen (exp. #09-14) stressed situations, water-nitrogen 146 

interaction trials (exp. #15-22). Design was split-plot with 3-4 replicates depending on trials, 147 

plot size was ranging from 20 to 30 m², on mainly silty clay to silt soils (see Tab1 for 148 

available water content estimation).  149 

The first dataset (trials #1-40) was used to estimate the model’s adjustment capacity to 150 

observed datas. It consisted of a detailed phenotyping (7 variables : phenology, absorbed 151 

nitrogen, leaf area index, radiation interception efficiency, above-ground biomass, achene 152 

yield and oil content) performed on different genotypes in various environmental conditions, 153 

together with a precise soil, weather and management description, and was used to reduce 154 

uncertainty from model inputs. Evaluating the model on this dataset would provide insight on 155 

the lowest prediction error attainable. For each intermediate variable, non-genotypic model 156 

parameters were optimized on a subset of experiments chosen to evaluate the variable. In this 157 

way, no single experiment was used to estimate all model parameters. Parameters for the two 158 

statistical models predicting output variables (yield, oil content) were estimated using all the 159 

information available in this dataset, which could be regarded as a “model development” set. 160 

A second dataset (trials #41-56) was created to estimate the model’s prediction capacity and  161 

discriminate genotypic performance. Observations of yield and oil content came from a 162 

multi-environment experimental network (16 trials of 20 genotypes from the combination of 163 

15 sites x 2 years, 2000-2001) which was used in an earlier study to assess the genetic 164 

progress made in France on the sunflower crop (Vear et al., 2003). Environmental description 165 

was less accurate than for the first dataset as these were simply cultivar comparison trials. 166 

These data were not used to estimate the model parameters, but allowed us to test the 167 

predictive capacity of the model for a standard application. This dataset may be viewed as a 168 

“model evaluation” set. 169 

 170 

2. Plant measurements  171 

The timing of developmental stages was determined on six plants per genotype, twice a 172 

week, using the scale proposed by CETIOM for sunflower (CETIOM, 2004). In addition, the 173 

number of visible, senescent (yellowish surface > 50% leaf area) and dead leaves  was also 174 

counted. A particular crop phenological stage was considered as having been reached when 175 

more than 50 % of the plants evinced the features of that phenotype. 176 

Leaf ranking was counted from the base to the top of the stem. Architectural measurements 177 



 

 

were made during successive steps from flower bud appearance to the end of flowering, 178 

provided that leaves were fully expanded. The rank, length, and width of each leaf blade were 179 

measured on 6 plants per genotype with a ruler (± 0.5 mm). Individual leaf area (ILA, mm²) 180 

was estimated from leaf largest length (L) and largest width (W) using a break linear model 181 

[EQ1] calibrated using a planimeter (LI-3100, Li-cor inc., Lincoln, NE, USA).  182 

 183 

[EQ1] ILA = a * LW if LW < c/(a-b) else b * LW + c ;  184 

where a=0.684 ; b=0.736 and c=-8.860 (R²=0.992, RMSE=5.9, n=304) 185 

 186 

Significant genotypic variability was not observed for the parameters of this relationship. 187 

Total leaf area (TLA) was calculated as the sum of the individual leaf areas. 188 

The radiation interception efficiency (RIE) of the non-senescent fraction of the canopy was 189 

measured (400–700 nm wavelength) during crop growth using a hand-held Picqhelios 190 

apparatus (AERIC, Balma) [Picq1988]. Cumulative intercepted radiation was computed from 191 

daily incident PAR and daily RIE, interpolated between the sampling dates. The light 192 

extinction coefficient (k) was obtained from non-linear regressions with Beer's law (Monsi 193 

and Saeki, 2005). 194 

Total shoot dry biomass (TDM) was measured on square meter quadrats (5-7 plants). 195 

Radiation use efficiency (RUE) was then calculated for different phenological stages from 196 

total dry biomass divided by cumulative intercepted radiation (PAR). Total plant nitrogen 197 

content was assessed by the Dumas combustion method, allowing the calculation of the total 198 

absorbed nitrogen in aerial parts. 199 

The photosynthetic parameter (PHS) was estimated from leaf photosynthetic activity 200 

measured with a portable photosynthesis system (CIRAS, PP system, UK) with a control 201 

radiation level of 1500 µmol m-2.s-1. All the photosynthesis genotypic values were 202 

normalized with respect to those obtained for the genotype cv. Melody. 203 

Harvest index (HI) was the ratio of dry grain weight to total dry matter on sampled plants. 204 

Yield was expressed on a dry basis (0% moisture) cleaned of trash. Oil content was 205 

determined by Nuclear Magnetic Resonance (Bruker NMS 110 Minispec NMR Analyzer) on 206 

20g dry achene samplings. 207 

 208 

3. Environment and management description. 209 

The input variables required for simulation were environmental (weather and soil) and related 210 

to crop management. Four weather variables were recorded daily: mean air temperature (°C, 211 



 

 

2m height), global incident radiation (MJ.m-2), potential evapotranspiration (mm, Penman-212 

Monteith) and precipitation (mm). The distance between the crop and the weather station was 213 

greater in the evaluation dataset (10-20 km) than in the development set (0-5 km). The 214 

available soil water content over the maximum rooting depth (the difference between 215 

volumetric moisture content at field capacity and wilting point) was estimated from soil 216 

texture (clay content), apparent soil density and stone content. Crop management (Table 1) 217 

was summarized by sowing operations (date, seed depth, plant density ; 6-7 pnt/m²), fertilizer 218 

regime (dates and amounts), and irrigation schedule (dates and amounts). Soil water and 219 

nitrogen (mean = 40.7 kg/ha) at sowing were initialized from water balance and nitrogen 220 

balance sheet models : in >90% of the cases, initial water content was equal to field capacity.  221 

 222 

4. Statistical analysis and naming conventions. 223 

Observed and simulated values were compared using a range of statistical criteria using mean 224 

squared deviation and its derivative (Kobayashi and Salam, 2000). Relative Root Mean 225 

Square of Errors (RRMSE) was calculated as the quotient of RMSE divided by the mean of 226 

observations in order to facilitate comparison between variables and other models. Statistical 227 

modelling was done using multiple linear regression. All data analysis, statistics and graphics 228 

were done using R software (R Development Core Team, 2006). 229 

Given a variable named V, the rate of increase of V – or its daily increase in the case of a fixed 230 

time-step integration – was named dV. Variables related to the vertical dimension (soil and 231 

rooting depth) were prefixed with z. The name of environmental stress related variables 232 

combined a letter {T, L, W, N} for the source stress (for temperature, light, water and 233 

nitrogen) and the target variable (ex : the effect of water stress on radiation use efficiency is 234 

W.RUE,).     235 

 236 

RESULTS : MODEL DEVELOPMENT  237 

 238 

1. Modelling approach  239 

Starting from a simple modular modelling basis, we used the model SUNFLO_V0 (Lecoeur 240 

et al., 2009) as an initial modelling framework. It estimates the above-ground biomass 241 

production of a sunflower crop from incident radiation and mean air temperature. It works on 242 

a daily time step and describes plant phenology, leaf expansion and biomass production and 243 

its allocation to the grain. Rather classically, actual growth depends on potential growth 244 

modulated by temperature and radiation. Genotypic variability is taken into account by a 245 



 

 

small number (12) of parameters (Lecoeur et al., 2009). Moreover, a fine resolution in 246 

describing biomass production is not always the best starting point (Hammer et al., 2006). 247 

When building a model framework, several groups of equations and parameters can be 248 

proposed to describe a given physiological process. If their inputs and outputs are measurable 249 

and effectively measured, treating these modules as independent sub-models can have several 250 

advantages. Firstly it allows easier knowledge sharing among the scientific community 251 

(Jones et al., 2001). Secondly, evaluating the model response module by module gives to the 252 

overall performance more credibility throughout the simulated growth period and prevents 253 

accidental error compensation (Sinclair and Seligman, 2000). SUNFLO_V1, described 254 

below, consists of 7 modules whose structure appears in Figure 1.  255 

 256 

Adding some genotypic variability. Our objective was to evaluate the possibility of coupling a 257 

biophysical model and a phenotyping approach to quantify phenotypic variability of yield 258 

and oil content in contrasting cropping environments. Each genotype was defined by a set of 259 

parameters whose values are assumed to be constant among environments, thus trying to 260 

mimic gene functioning (Colson et al., 1995; Boote et al., 2003). 261 

When using experimentation to measure genotypic parameters, there are two kinds of 262 

constraint. The first is the amount of work involved, where the number of new genotypes and 263 

time available for phenotyping limit the number of genotypic parameters which can be 264 

investigated in the future. The second is due to the environmental effects on the values of 265 

measured parameters: the use of phenotypic information, as parameter values can only be 266 

taken to be genotypic if they prove to be stable in different environments. We finally 267 

proposed four criteria before choosing a parameter as genotype-specific; it should (1) present 268 

a significant amount of genotypic variability, (2) be stable over environments, (3) markedly 269 

affect the model outputs and (4) be easily measurable.  270 

 271 

2. Model structure  272 

 273 

2.1 Phenology 274 

Plant phenology is driven by thermal time (Aiken, 2005). Cumulative thermal time since 275 

emergence (TTE, °C.d) was calculated [EQ2] as the sum of the daily mean air temperature 276 

from emergence using a base temperature (Tb) of 4.8°C (Granier and Tardieu, 1998) 277 

common to all genotypes. Four key stages, expressed as genotype-dependent thermal dates, 278 

delimited periods of plant growth with changes in plant physiology: floral initiation (FI), 279 



 

 

beginning of flowering (F), beginning of grain filling (early maturation, EM) and 280 

physiological maturity (PM) (CETIOM, 2004; Lecoeur et al., 2009). 281 

Photoperiodic effects on phenology were not included in the model: (Leon et al., 2001) 282 

showed that flowering date was unaffected by photoperiods between 14.5 and 16h at 283 

emergence. Extreme locations and practices for French sunflower crops could lead to 284 

photoperiods at emergence from 13.8 h (southern early sowings) to 16.5 h (northern late 285 

sowings), thus showing a very slight effect on flowering date in a few cases. 286 

Through the reduction of transpiration, water stress causes overheating of the plant. This 287 

heating can accelerate crop development and was modelled using a multiplicative effect with 288 

thermal time accumulation [EQ2]. 289 

 290 

[EQ2] TTE = sum((Tm - Tb) * (1+a(1 - W.TR))) ; where Tb = 4.8 °C and a = 0.1 291 

 292 

The duration of the sowing-emergence period (E, °C.d) [EQ3], provided soil water content at 293 

seed depth is adequate, is assumed to depend only on temperature (Angus et al., 1981). 294 

Adequacy of water content for emergence was assumed and the sowing - emergence phase 295 

was modelled as in (Villalobos et al., 1996) as a function of air temperature and sowing 296 

depth. Hypocotyl elongation (dHE) and germination time (G) were computed with a common 297 

base temperature. 298 

 299 

[EQ3] E = G + dHE * zSOW ; where G = 86 °C.d and dHE = 1.19 °C.d/mm 300 

 301 

2.2 Environmental factors limiting crop production  302 

 303 

2.2.1 Temperature  304 

Temperature effects on processes are mostly accounted for in the model by using thermal 305 

time based relationships. However, we needed to include a direct effect of temperature on 306 

radiation use efficiency (RUE, g.MJ-1) and on nitrogen net mineralization rate (dMin, 307 

Kg.j.ha-1).  308 

A depressive function of non-optimal temperature (T.RUE) was applied to RUE, calculated 309 

[EQ4] from daily mean air temperature. This relationship was adapted from Horie (1977) to a 310 

bilinear function as in (Villalobos et al., 1996) using upper and lower optimal (Tou, Tol) and 311 

critical (Tc) temperature ranges.  312 

 313 



 

 

 [EQ4] T.RUE = Tm*(1/(Tol-Tb))-(Tb/(Tol-Tb)) if Tm < Tol ;  314 

   1 if Tol<Tm<Tou  315 

   Tm*(1/(Tou-Tc))-(Tc/(Tou-Tc)) if Tm > Tou   316 

   else 0  317 

where Tol = 20 °C, Tou = 28 °C, Tc = 37 °C. 318 

 319 

Nitrogen net mineralization rate (dMin, EQ25) was affected by a logistic function [EQ5] of 320 

daily mean air temperature (Valé et al., 2007). 321 

 322 

[EQ5] T.NM = 36/(1+(36-1) * exp(-0.119*(Tm-15))) 323 

 324 

2.2.2 Light  325 

Competition for light interception, modified by planting density, affects individual leaf 326 

expansion rate [EQ] in sunflower (Rawson and Hindmarsh, 1983; Rey et al., 2008). In an 327 

experimental study (Rey, 2003), leaf expansion rate was related to absorbed PAR (APAR) 328 

per unit leaf area. By assuming (1) that absorbed PAR is equal to intercepted PAR and (2) 329 

that all leaves are affected the same way by light restriction, this previously developed model 330 

can be used to drive canopy response to light in a simpler crop model. This relation [EQ6] 331 

was initially developed using potential leaf areas (at 1 plant.m-²) as a reference. In the model a 332 

scaling parameter (s = 2.5) allows it to be applied to potential leaf areas in cropping 333 

conditions (at 6 plant.m-²). This parameter is measured as the ratio of plant leaf area at 1 334 

plant.m-² to the leaf area at 9 plant.m-²; Sadras and Hall (1988) have indicated a larger 335 

response to density (s = 3.1).  336 

 337 

[EQ6] L.LE = s * (a + (b/(1 + exp(-(IPAR - c)/d)))) ; 338 

where s = 2.5, a = -0.14, b = 1.13 , c = 4.13 and d = 2.09 339 

 340 

2.2.3 Water  341 

a. Soil and water budget  342 

The soil water budget model is based on a previously developed model (Lecoeur and Sinclair, 343 

1996) that was used for irrigation scheduling (Sarr et al., 2004). Water movement in the soil 344 

is assumed to be only vertical, with runoff and lateral flow being ignored. It is possible to 345 

simulate the fraction of transpirable soil water (FTSW), which accounts for the amount of 346 

soil water available to the plant within the root zone (Sinclair, 2005). The model treats the 347 



 

 

soil as a reservoir with three layers (Ci), whose thicknesses (zCi) change as the roots grow. 348 

The required soil physical characteristics are gravimetric moisture content at field capacity 349 

(Hfc, % of dry soil) and at permanent wilting point (Hwp, % of dry soil) and the maximum 350 

rooting depth (zPR, mm).  351 

Evaporation and N mineralization only take place in the uppermost layer (0-300 mm), in 352 

which water is supplied by precipitation (Pr) and irrigation (Irr) and lost by evaporation (EV), 353 

transpiration (TR) and drainage (D). Drainage (DCi, mm) occurs when the water content of a 354 

layer exceeds its water retention capacity (Hfc). 355 

The depth to the bottom of the second layer (zC2, mm) is equal to the rooting depth (zR, 356 

mm). zR is linearly related to thermal time [EQ7] until the potential rooting depth (zPR, mm) 357 

is reached. In the model, neither soil moisture nor plant biomass may limit root growth, so the 358 

advance of the rooting front (dR) was estimated at 0.7 mm/C.d. The thickness of the bottom 359 

layer (zC3, mm) is defined as the difference between potential and actual rooting depth. 360 

 361 

[EQ7] zR = sum(dR * Tm) if zR < zPR ;  362 

                   else zR = zPR ;  363 

 where dR = 0.7 mm/C.d 364 

 365 

The water content of each soil layer results from the water balance as described in [EQ8-10]  366 

 367 

[EQ8] WC1 = Pr +Irr -dTRC1 -dEV  -DC1 368 

[EQ9] WC2 = +DC1 -DC2 -dTRC2 +(dR * Tm) * (WC3/zC3) 369 

[EQ10] WC3 = +DC2 -DC3 -(dR * Tm) * (WC3/zC3) 370 

 371 

Soil evaporation is separate from plant transpiration and is calculated [EQ12] as the product 372 

of the fraction of radiation reaching the soil, reference evapotranspiration and daily relative 373 

soil evaporation (dRE). dRE [EQ11] accounts for a reduction of soil hydraulic conductivity 374 

with time from the last effective rain (DWW, Days Without Water), DWW being 375 

incremented if (Pr + Irr < 3 mm). 376 

 377 

[EQ11] dRE = (DWW + 1)0.5 -  (DWW)0.5 378 

[EQ12] dEV = (1 − RIE) * ETP * dRE  379 

 380 

Water loss due to plant transpiration [EQ15-16] is a function of potential transpiration rate 381 



 

 

[EQ13], water effect on transpiration [EQ19] and root distribution over the two first layers 382 

(fR). This distribution is made proportional to the thickness of each soil layer [EQ14]. 383 

 384 

[EQ13] dPTR = Kc * ETP * RIE ; where Kc = 1.2 385 

[EQ14] fR = zC1/(zC1+zC2) 386 

[EQ15] dTRC1 = fR * dPTR * W.TR if (zR > zC1) else dPTR * W.TR 387 

[EQ16] dTRC2 = (1-fR)* dPTR * W.TR if (zR > zC1) else 0 388 

 389 

The fraction of transpirable soil water (FTSW), the main output from the water budget 390 

module [EQ17], is used as a water stress index. FTSW is the ratio of actual to total water 391 

content [EQ18] of both root-explored layers.  392 

 393 

[EQ17] FTSW = (WC1 + WC2) / (PWC1 + PWC2) 394 

[EQ18] PWCi = zCi * (Hfc.Ci - Hwp.Ci) * sd  395 

where sd is soil apparent density 396 

 397 

b. Modelling the effects of water stress on plant growth 398 

Crop growth is explicitly affected by water stress considering three processes: leaf expansion 399 

(LE), plant transpiration (TR) and biomass production (RUE). Three water stress factors [0-400 

1] are thus based on FTSW and a genotypic parameter which differs according to the process 401 

[EQ19] ; the effect of water on RUE is assumed to be the same as on transpiration. A 402 

significant genotypic variability was found in sunflower water stress response when the 403 

parameters were estimated in three glasshouse experiments (Casadebaig et al., 2008).   404 

 405 

[EQ19] W.LE ; W.TR ; W.RUE = -1 + 2/(1+exp(a*FTSW))  406 

where a is a measured genotypic parameter different for expansion (W.LE) and gas exchange 407 

(W.TR and W.RUE) . 408 

 409 

Net nitrogen mineralization was affected by soil moisture in the surface layer by using a 410 

linear relationship previously parameterized by Mary et al. (1999) and used in a dynamic N 411 

leaching model. 412 

 413 

[EQ20] W.NM = 1 - (1-Fpf) * (1 - RWCC1)  414 

where Fpf = 0.2 is the value of the function at Hpf and RWCC1 is the relative water content 415 



 

 

in the surface layer (actual by maximal water content). 416 

 417 

2.2.4 Nitrogen 418 

 419 

a. Nitrogen budget  420 

The mineral nitrogen content of the soil layers (kg/ha) depends on mineralization (dMin), 421 

fertilization (Fer), leaching (LCi), denitrification (-dDenit) and plant uptake [EQ21-23].  422 

 423 

[EQ21] NC1 = +dMin +Fer -dMFC1 -dAAC1 -LC1 -dDenit 424 

[EQ22] NC2 = +LC1 -LC2 -dMFC2 -dAAC2 +dR*(NC3/zC3) 425 

[EQ23] NC3 = +LC2 -LC3 -dR*(NC3/zC3) 426 

 427 

The time between fertilization and its availability for plant uptake was simply modelled using 428 

a threshold of precipitation or irrigation (5 mm) required for N solubilization and 429 

incorporation into the surface layer. Moreover, the processes of N immobilization and 430 

volatilization were avoided in the model [EQ24] by linking fertilization efficiency (%) and 431 

crop growth rate (g.m-2.°C.d-1). Limaux et al. (1999) showed that nitrogen use efficiency is 432 

positively correlated to crop growth rate. 433 

 434 

[EQ24] NUE = 30 + 0.34 * CGR * 100 435 

 436 

Nitrogen mineralization [EQ25] was modelled as a potential mineralization rate parameter 437 

affected by temperature [EQ5] and soil moisture content [EQ20] as described by Mary et al. 438 

(1999) and Valé et al. (2007). When considering nitrogen loss, leaching (LCi) was the 439 

product of drained water and its nitrogen concentration from the soil layer concerned. As the 440 

model is to be applied mostly in warm cropping conditions, nitrogen denitrification was 441 

added, following Sinclair and Muchow (1995), as an exponential function of air temperature 442 

[EQ26]. 443 

 444 

[EQ25] dMin = MINP * T.NM * W.NM 445 

[EQ26] dDenit = 6 * exp(0.07738 * Tm - 6.593) 446 

 447 

Generally, plant nutrient uptake in dynamic crop models results from comparing soil supply 448 

(determined by the nitrogen budget) and plant demand (based on the crop nitrogen nutrition 449 



 

 

index). Nitrogen uptake has two components as in the STICS model (Brisson et al., 2003): 450 

one part is absorbed in the transpirational stream (mass flow, [EQ27]) while the other is 451 

directly absorbed by the roots, simulating active nitrogen influx. This active influx was 452 

modelled [EQ28] by using a Michaelis-Menten function of soil solution nitrogen 453 

concentration, rooting density and layer thickness, using the shape and affinity constants 454 

defined previously by (Brisson et al., 2008). Daily nitrogen uptake for the crop is the sum of 455 

mass flow and active nitrogen influx. 456 

 457 

[EQ27] dMF = dTRC1 * NC1 + dTRC2 * NC2 458 

[EQ28] dAA = Vm1 * NCi / (Km1 + NCi) + Vm2 * NCi / (Km2 + NCi) * zCi * fR 459 

 460 

The critical crop nitrogen uptake is defined as the minimum nitrogen uptake necessary to 461 

achieve maximum biomass accumulation. Across a range of crops, the critical N uptake is 462 

related to biomass accumulation by a power function with a coefficient less than unity which 463 

suggests that crop N uptake is regulated by both soil N supply and biomass accumulation 464 

(Lemaire and Meynard, 1997). Two thresholds (critical and maximal) for plant nitrogen 465 

content were thus defined. These thresholds were experimentally determined by monitoring 466 

nitrogen accumulation in relation to crop biomass for various fertilization levels (0 - 160 N) 467 

in a sunflower crop (Debaeke and Raffaillac, 2006). Critical nitrogen (%) dilution in the plant 468 

biomass (t.ha-1) was established as EQ29. Maximal nitrogen content of biomass was defined 469 

as 1.3 times the critical content (Stockle and Debaeke, 1997).  470 

 471 

[EQ29] PNCc = min(a * TDM-b) 472 

 a = 5 is the plant nitrogen content (%) at TDM  = 1 t.ha-1 and b = 0.49 473 

 474 

b. Crop response to nitrogen stress 475 

Two nitrogen stress indexes (NNI, INNI), both based on the ratio of actually absorbed N (Na, 476 

kg.ha-1) to the critical N amount needed to satisfy the demand (Nc), but differing in the way 477 

they are calculated, were used : the nitrogen nutrition index (NNI) depends on cumulated 478 

absorbed N while the instantaneous nitrogen nutrition index (INNI) is derived from the rate 479 

of absorption (dNa/dNc).  480 

Nitrogen stress factors [0-1] are linearly linked to NNI or INNI (Brisson et al., 2008): the 481 

nitrogen stress effect on leaf expansion (N.LE) is governed by NNI while the effect on RUE 482 

(N.RUE) is equal to INNI. 483 



 

 

 484 

[EQ30] N.LE = 1.75 * NNI  - 0.75  if  NNI > 0.6 ; else  N.LE = 0.3 485 

[EQ31] N.RUE = INNI 486 

 487 

2.3 Leaf area dynamics 488 

Considering a crop model based on Monteith's notions (Monteith, 1977), where crop growth 489 

is driven mainly by light interception, an accurate prediction of leaf area dynamics is 490 

essential for a correct estimation of its dependent variables. This is especially true for 491 

sunflowers, where light intercepted after flowering is closely related to oil yield (Merrien and 492 

Grandin, 1990; Sadras et al., 2000; Aguirrezabal et al., 2003). As leaf area is also an 493 

important determinant of plant transpiration, a common adaptive trait for drought tolerance is 494 

reduced leaf growth under water stress (Jones, 2004). There are significant differences in leaf 495 

area and its vertical distribution in commercial hybrids (Debaeke et al., 2004; Lecoeur et al., 496 

2009). When modelling leaf area, it is important to represent the major interactions between 497 

genotype, environment and crop management arising at this level.  498 

Crop leaf area depends mainly on the processes of leaf appearance, expansion and 499 

senescence, which are affected by various limiting factors - light competition (plant density) 500 

[EQ6], water stress [EQ19] and nitrogen stress [EQ30]. However, at field level, the particular 501 

interplay of the timing of stress (due to environment or crop phenology) and individual organ 502 

expansion leads to very different patterns of leaf area development. This being so, describing 503 

a process at an organ sub-level should improve crop leaf area prediction. 504 

Three main modelling procedures have been used so far to predict crop leaf area : (i) the use 505 

of functions of time or thermal time (Gompertz, polynomials, exponentials) (Chapman et al., 506 

1993; Brisson et al., 2003; Pereyra-Irujo and Aguirrezabal, 2007), (ii) the concept of specific 507 

leaf area, which uses biomass as the driving variable of leaf area (Penning de Vries et al., 508 

1989; Villalobos et al., 1996) and (iii) simulating leaf expansion and senescence separately 509 

on the scale of the leaf (Stewart and Dwyer 1994; Lizaso et al., 2003). 510 

These approaches differ mainly in their concepts, but also in their mathematical complexity 511 

and hence in their numbers of parameters. Errors in estimating their values (statistically or 512 

experimentally) have differing impacts, depending on the approach concerned. 513 

(Lizaso et al., 2003) investigated a cut-down version of the CERES-Maize model which 514 

combines accuracy with ease of parameterization. It simulates individual leaf expansion as 515 

the difference between growth and senescence rates. Both expansion and senescence follow a 516 

logistic function of thermal time with parameters for a final state (potential area for 517 



 

 

expansion, actual for senescence), a thermal time at 50% of the final state, and a slope. The 518 

mathematics are described by Lizaso et al. (2003) but the model equations are presented 519 

again in this paper. 520 

We intend to adapt this framework to the sunflower crop by further simplifying it to facilitate 521 

the parameterization of new genotypes as soon as they become available on the market. 522 

 523 

2.3.1 Timing of leaf appearance and senescence 524 

The rate of leaf appearance depends on air temperature and two phyllochrons (°Cd) as 525 

preformed lower leaves appear at a lower rate (Rey, 2003). Thermal time to 50% of final leaf 526 

area was defined by [EQ33] where Tii is the thermal time required for leaf appearance. 527 

 528 

[EQ32] Tii =  i * PHY1 if i < 7 ;  529 

 else Tii  = (i - 5) * PHY2 + 400  530 

where PHY1 = 71.4 and PHY2 = 16.3 °C.d [Rey2003]. 531 

 532 

[EQ33] Tei = Tii + 1 / Kei  533 

where Kei = 0.013 534 

 535 

Leaf longevity [EQ34] was modelled with a bell-shape curve depending on 2 genotypic 536 

parameters and 3 estimated (using plant leaf area as variable) parameters: LL0 (°C.d) was the 537 

asymptote of the curve; a (°C.d), the amplitude and b controlled the width of the curve while 538 

LLH controlled the rank of the most persistent leaf (identical to the largest leaf) and TLN was 539 

the total leaf number of the genotype. Leaf senescence date [EQ35] was calculated by adding 540 

leaf longevity to the 50% expansion date (Tei).  541 

 542 

[EQ34] LLi = LL0 + a  * exp(- ((i - LLH)²) / ((b * TLN)²))  543 

where LL0 = 153 °C.d, a = 850 °C.d, b = 0.78, LLH and TLN values are defined in Lecoeur 544 

et al. (2009) 545 

[EQ35] Tsi = Tei + LLi 546 

 547 

2.3.2 Leaf expansion and senescence 548 

The vertical distribution of leaf area is variable among sunflower genotypes grown in low-549 

stress conditions (Debaeke et al., 2004). The distribution of individual leaf area (ILA) down 550 

the stem (leaf area profile) was modelled with a bell-shape curve (Keating and Wafula, 1992; 551 



 

 

Lizaso et al., 2003). Three parameters where genotypic and came from direct measurements 552 

(Lecoeur et al., 2009): largest leaf size (LLS, cm²) and height (LLH, rank) and total leaf 553 

number (TLN). The two last parameters control the shape : a affects the width and b affects 554 

the skewness of the curve. As the values for parameters a and b were not stable across 555 

genotypes (CV = 39 %), we derived their value from the 3 other genotypic parameters with a 556 

linear model. This model performed 35% better (n = 754, rmse = 68 cm²) for ILA prediction 557 

when compared with mean values (constant) for the shape parameters. 558 

 559 

[EQ36] Aei = LLS * exp(a*((i-LLH)/(LLH-1))² + b*((i-LLH)/(LLH-1))3) 560 

where b = 1.5 - 0.22*LLH - 3.53E-4*LLS + 0.082*TLN  561 

and a = - 2.31 + 0.018*LLH - 1.64E-3*LLS + 0.0199 *TLN + 0.92 *b 562 

 563 

Individual leaf expansion rate (dAei) combined temperature, final individual leaf area 564 

[EQ36], thermal time to half-expansion [EQ33] and slope of expansion in a logistic relation 565 

[EQ37]. The slope parameter (Kei) was constant for all the leaves and also during 566 

senescence. As previously stated (Villlalobos et al., 1996) changes in leaf size along the stem 567 

are largely due to variation in the rate of expansion rather than to its duration. Consequently, 568 

expansion rate was limited by the multiplicative effects of light [EQ6], nitrogen [EQ30] and 569 

water [EQ19] without further prioritization.  570 

 571 

[EQ37] dAei = Teff * (Aei * Kei) * exp(-Kei * (TTE - Tei)) / (1 + exp(-Kei * (TTE - Tei)))² 572 

[EQ38] SFei = int (dAei  * W.LE  * N.LE * L.LE) 573 

 574 

The progression of leaf senescence (dAsi) was modelled on the same basis as expansion, 575 

except that variables Aei and Tei were swapped with actual expanded leaf area (Asi) and time 576 

to half-senescence [EQ35]. The senescent area of each leaf was the result of direct integration 577 

of senescence rate, without stress effects.    578 

 579 

[EQ39] dAsi = Teff * (Asi * Kei) * exp(-Kei * (TTE - Tsi)) / (1 + exp(-Kei * (TTE - Tsi)))² 580 

[EQ40] TLA = sum(SFei – Sfsi) 581 

 582 

Plant total green leaf area (TLA) was calculated from the difference of total and senescent 583 

individual leaf areas [EQ40]. 584 

 585 



 

 

2.4 Light interception 586 

The radiation interception efficiency [EQ41] was estimated as an exponential function of LAI 587 

(Monsi and Saeki, 2005) using an extinction coefficient (k) that varied among genotypes but 588 

was constant during crop growth. Genotypic values of k were estimated by non-linear 589 

regression between measured LAI and RIE in field conditions under low crop stress (Lecoeur 590 

et al., 2009).  591 

 592 

[EQ41] RIE = 1 – exp (-k * LAI) 593 

 594 

2.5 Biomass accumulation 595 

Daily intercepted radiation was converted into biomass increment using radiation use 596 

efficiency [EQ42] (g.MJ-1., PAR) which changes with crop phenology (Villalobos et al., 597 

1996). The pattern of RUE evolution during crop growth was monitored in a field experiment 598 

(Lecoeur et al., 2009). In the absence of environmental stress, the model assumed a constant 599 

value for RUE at the very beginning of the cycle, a linear increase to a maximal value during 600 

flowering and an exponential decrease from early maturity to physiological maturity. 601 

Genotypic parameters were used for 3 phenostages : Thermal date to flowering, early 602 

maturity and physiological maturity (respectively TDF, TDEM and TDPM). Similarly to leaf 603 

expansion, effective RUE resulted from the multiplicative effects of temperature [EQ4], 604 

nitrogen [EQ31], water [EQ19] and a genotype-specific coefficient (PHS). PHS differentiated 605 

maximum photosynthetic rates among genotypes in controlled conditions (Lecoeur et al., 606 

2009).    607 

Total aerial dry biomass was finally calculated as the integration of the product of PAR, RIE 608 

and effective RUE. 609 

 610 

[EQ42] RUE = 1 if TTE < 300 °C.d 611 

          = 1 + ((TTE - 300) * 2/(TDF - 300)) if TTE < TDF 612 

          = 3 if TTE < (TDEM - 100) 613 

          = a * exp(b * (1-((TDE-TDEM)/(TDPM-TDEM)))) if TTE < TDPM 614 

where a = 0.015 is the asymptote and b = 4.5 is the slope of the curve. TDF, TDEM and 615 

TDPM value were defined in Lecoeur et al. (2009) 616 

 617 

[EQ43] dTDM = 0.48 * Rg * RIE * RUE * W.RUE * N.RUE * T.RUE * PHS 618 

 619 



 

 

2.6 Allocation : calculating crop variables as a statistical model input. 620 

Up to the simulation of crop aerial biomass, the model used process-based dynamic 621 

relationships. We propose to calculate yield and oil content by using simple statistical models 622 

that depend on a set of 11 previously simulated crop variables and or used genotypic 623 

parameters. New genotypic variability was introduced at this point by measuring 2 additional 624 

parameters : harvest index (glasshouse experiment, Lecoeur et al., 2009) and oil content 625 

(trials #1-40) in low stress conditions (potential). 626 

This information, mostly reused from the mechanistic part of the model could be classified in 627 

different categories: climatic, abiotic stress, canopy indexes and genotypic parameters. Table 628 

2 describes more precisely these indexes and their method of calculation.  629 

Previously calculated indexes were used as covariables (independent variables) in two 630 

multiple linear regression models to explain the value of harvest index and oil content at 631 

harvest time. When building these statistical models, we applied a simple selection procedure 632 

(stepwise selection on BIC) to prune non-contributing variables, going from 13 to 7 or 8 633 

covariables, depending on the model. 634 

Parameters for the additive statistical models were estimated on the “development” dataset 635 

and their robustness was tested in the “evaluation” set of experiments. 636 

We adopted statistical modelling as, for example, Hammer and Broad (2003) stated large 637 

variations of HI dynamics with environment and, on our data, the statistical approach proved 638 

to be more precise for yield prediction (Casadebaig, 2008) than the parametrisation of a 639 

simple mechanistic HI model (Moot et al., 1996). We followed a similar statistical approach 640 

for modeling oil content to be more exhaustive in the driving factors, whereas the 641 

mechanistic models considered only post-flowering light interception (Aguirrezabal et al., 642 

2003) or grain nitrogen content (Triboi and Triboi-Blondel, 2002). In this case the process-643 

based approach performed better on low stress conditions, but showed inconsistencies on a 644 

larger panel of stress conditions (Casadebaig, 2008). 645 

 646 

RESULTS : MODEL PERFORMANCE 647 

 648 

1. Model performance in cases where the plant environment is well characterized 649 

The model was first evaluated on a dataset where crop environment (soil, weather and 650 

management) was accurately characterized, thus minimizing errors in input variables. Seven 651 

crop variables were sampled and compared to the simulated ones (Figure 2) covering nearly 652 

every module presented in Figure 1. 653 



 

 

In general, intermediate variables were predicted with an accuracy (relative RMSE) ranging 654 

from 4% to 30%. Table 3 presents an analysis of the model error and its components 655 

(Kobayashi and Salam, 2000).  656 

Phenology (sowing – flowering period) is accurately predicted (3.5%); further analysis 657 

revealed that most of the error came from the sowing-emergence phase. Trends for 658 

dynamically sampled variables (absorbed nitrogen, leaf area, RIE and biomass) over the crop 659 

season were predicted with most of the error coming from LCS, indicating that the model 660 

had neither a significant bias from measurements (low SB, 1 – 6% of mean square deviation) 661 

nor a lack or excess of sensitivity (low SDSD). The outputs, more integrative variables (yield 662 

and oil content), showed bias (~ 25%) but relative RMSE was in the standard range of crop 663 

model performance (8-15%, Pereyra-Irujo and Aguirrezabal, 2007; Villalobos et al., 1996). 664 

Regression lines relating these two variables showed that the simulated range was narrower 665 

than the observed one. Two groups of prediction confidence can be drawn showing good 666 

prediction accuracy (RRMSE ~ 15%) for all variables except for LAI and absorbed nitrogen 667 

which had RRMSE above 20%. No variable had a large prediction error, indicating that the 668 

final output error results from poor prediction for all variables rather than error 669 

compensation.      670 

 671 

2. Model performance in a small-scale trial network 672 

Our objective here was to evaluate the model in its usual application conditions, with regional 673 

(instead of local) weather data or more uncertainty about soil analysis. Yield and oil content 674 

were collected for 20 genotypes over 16 situations (locations x year). Genotypic variability 675 

was wide as the genotypes’ release date ranged from 1970 to 2000 in a uniform distribution 676 

(Vear et al., 2003). Two important model properties for genotype evaluation were analysed: 677 

the prediction capacity (ability to predict quantitative values) and the ranking capacity 678 

(ability to rank the genotypes) (Figures 3-4).     679 

Considering all genotypes and trials, RMSEP was 0.45 t ha-1 for yield and 3.7% for oil 680 

content (RRMSEP were 16% and 9%, respectively); here values were slightly higher than for 681 

the “development” dataset. Considering each trial individually, RRMSEP ranged from 9% to 682 

30% for crop yield and from 3% to 14% for oil content, with a skewed distribution towards 683 

well-predicted situations. Ranking capacity (Kendall's correlation coefficient) for each trial 684 

was between 0.23 and 0.67 (mean=0.46) for yield, and between -0.1 and 0.75 (mean=0.54) 685 

for oil content. Surprisingly, prediction capacity (RMSEP) and ranking capacity were not 686 

correlated for yield (r=0.05, p=0.83) or for oil content (r=-0.04, p=0.86). 687 



 

 

Different factors could explain the observed errors: genotypic factors (linked to genotypic 688 

parameterization), environmental factors (linked to environment description or the inclusion 689 

of stress in the model) and the interaction between these factors. To further unravel these 690 

error factors, the model performance was evaluated on mean effects (Figures 5-6).  691 

Prediction errors were clearly lower for mean effects when discarding G x E interactions (~ 692 

40% less error for yield). This analysis also pointed out that environmental effects were 693 

stronger in reality than modelled: this was mostly the case with oil content where 694 

environmental means RMSE showed a five-fold increase compared with genotypic means. 695 

From now, we will focus the model evaluation on grain yield, as this is the most commonly 696 

recorded variable. The yield E or G prediction error (~ 0.28 t.ha-1) was still below the least 697 

significant difference which discriminates between situations (LSD = 0.40 t.ha-1) or 698 

genotypes (LSD = 0.42 t.ha-1). This indicated that the model was able to discriminate 699 

betweens trials and genotypes when dealing with mean effects. There was also a trend 700 

towards yield overestimation for the most productive genotypes and underestimation for the 701 

least productive. 702 

An analysis of variance on yield was done on actual and simulated trial networks (Table 4) 703 

to quantify the G x E contribution to total yield variability. All tested main effects were 704 

highly significant whether dealing with observed or simulated data. Interaction effects were 705 

not tested (but were calculated) as there were no replications in the simulated data. 706 

Mean deviations (Denis and Vincourt, 1982) of the effects were calculated for observed 707 

yields: the environmental effect was the biggest (0.71 t.ha-1 between trials) followed by the 708 

genotypic effect (0.45 t.ha-1 between genotypes) and G x E interactions (0.27 t.ha-1). 709 

Although the G x E interaction should not be neglected (10% of the overall mean), this 710 

network presented a relatively weak G x E effect (3% of G effect) compared with other 711 

results on sunflower network trials (Foucteau et al., 2001; de la Vega and Chapman, 2001), 712 

in which the G x E effect was between 11% and 39% of the G effect .     713 

In the simulated network, mean sum of squares (MS) was about 60% of the observed one, 714 

i.e. the crop model predicted less yield variance than actually ocurred. Nevertheless, the 715 

ranking of the ANOVA factors was identical in both networks with the same MS ratios 716 

(Table 4). The G x E effect, which was in fact low in the field, was predicted to be 9-fold 717 

smaller by the simulation (0.1%). 718 

Finally, genotypic stability was computed to investigate whether the same genotypes were 719 

subject to G x E interactions in the real and simulated network. Stability was plotted against 720 

performance (Figure 7) to identify “high performance, low variability” response in the 721 



 

 

genotype list. Model simulations strongly linked variability and performance (r=0.81, 722 

p<0.001), but this was not the case in reality (r=-0.05, p>0.8) where no relation was found. 723 

Nevertheless a group of four genotypes (Melody, LG5660, Prodisol, Allstar) could be picked 724 

out, based on their performance. In both plots, these genotypes outperformed the others but 725 

their variability was among the lowest in the actual network and relatively higher in the 726 

simulated network. Thus the model helped more to discriminate genotypes due to their 727 

intrinsic performance rather than their sensitivity to environmental effects.    728 

    729 

DISCUSSION 730 

The “model performance” in itself is not an easy term to define, so improving it can be 731 

difficult. For statistical models, the error level calculation is a systematic and important part 732 

of the analysis. A confidence interval is often estimated and associated with the model but 733 

this approach is not easily applied to crop models. The general method is to compare, in 734 

different situations (weather patterns, soils), the model predictions and crop observations to 735 

estimate a mean error level. But this method is not ideal. First, the model has often been fitted 736 

to the data (through parameter estimation); in this case, the measured error level corresponds 737 

to the fitting error and underestimates the prediction error. The representativeness or 738 

reliability of observed data is rarely discussed, although the error level can vary widely in 739 

situations where the model is used. In this section, we will discuss the model’s use-cases in 740 

relation with its performance.   741 

The SUNFLO crop model can simulate variations in genotypic performance between 742 

different environments (GEM interactions). These interactions played a significant part in 743 

yield variability in both the actual and simulated network although they were higher in the 744 

actual network. Such results raise several methodological points for discussion concerning 745 

the relevance of a dynamic crop model for genotype evaluation, the limitations of the 746 

modelling approach and finally the prospects for the use of the model.   747 

1. Does SUNFLO succeeded in evaluating a range of sunflower genotypes? 748 

The ability of the model to rank genotypes (relative performance) was independent from its 749 

absolute predictive quality which means that the model can still be used even if simulation 750 

biases are detected. 751 

Ranking performance. The ranking capacity of SUNFLO is mainly due to an appropriate 752 

description of the phenotypic variability among genotypes and to a correct parameterization 753 

(statistical or measurement). Half of the genotypic parameters were related to resource 754 

acquisition (leaf area) or resource management (water response parameters) processes, which 755 



 

 

play a significant role in the environmental conditions in which sunflower is grown. But this 756 

overview of crop behaviour through genotypic parameters is incomplete, as a recent study 757 

showed extra phenotypic variability in rooting depth and water extraction among commercial 758 

sunflower hybrids (Guilioni et al., 2008). Extending the crop description to the rooting 759 

system would probably improve the model’s capacity to generate more complex interactions 760 

in dry environments. 761 

Absolute prediction performance. In addition, improving the model’s capacity to predict 762 

absolute yield is a more demanding objective as it depends on the quality of input data and 763 

observed values as well as on the nature of the dataset (for instance, the relative importance 764 

of yield-limiting factors not simulated by the model). The model prediction error (15%, 0.45 765 

t.ha-1) when estimated on a dataset was however within the range of the other sunflower crop 766 

models although the input variables lacked site-specific values. This error remained very 767 

close to the least significant difference or between genotypes in microplots but the list of 768 

genotypes covered a long period of genotype release (30 years) and potential yield range. 769 

This error would probably be too large to discriminate between genotypes from the same 770 

release period because of their similar performance level ( ~ 0.2 t.ha-1).  771 

The model performance strongly relies on the quality of the dataset used for evaluation (input 772 

data or field assessments). Poor reliability of input data may be attributable to weather being 773 

recorded too far from the experimental location, from a rough estimation of available soil 774 

water content, or, sometimes, from omissions in the components of crop management (timing 775 

and amounts). The prediction error was doubled at the less reliable sites of the network (data 776 

not shown). The different sampling methods used in the experimental network and the soil 777 

variability within each trial resulted in different yield or precision levels, with direct 778 

consequences for the evaluation of model performance. 779 

As we evaluated the model in multi-environment trials used for official cultivar registration, 780 

we accepted a default environmental characterization. Trials on experimental stations would 781 

have facilitated model evaluation by giving a more complete and reliable environment 782 

description, but the number of locations would have been limited. In spite of its limitations, 783 

the users’ network was a good opportunity for testing the model’s robustness in real 784 

conditions. 785 

2. What limitations result from the modelling options? 786 

Genotypic variability was better simulated than environmental variability (Figure 2). This 787 

may be due to the model’s structure (internal limitations) and from processes not considered 788 



 

 

by the model (external limitations). 789 

Internal limitations. Modelling the action of combined environmental stresses (temperature, 790 

light, water, nitrogen) on a given biological variable is a conceptual problem to which little 791 

attention has been paid. Separating the effect of stresses is an oversimplification of field 792 

reality which cannot be observed on a daily basis. Experimenting in controlled 793 

environments (greenhouse, CE chambers) helps to separate stresses, but plant growth is 794 

suboptimal and population effects are lost. A common solution to this problem is to create 795 

stress scalars which are multiplicative or to assume a hierarchy of stresses (the main limiting 796 

factor concept). These approaches can lead to an erratic sensitivity of the model: 797 

multiplicative solutions tend to overestimate stress effects while ordering constraints using 798 

min/max functions introduces threshold effects into the simulation. In our approach, the 799 

model slightly overestimated crop performance when using multiplicative stresses, which 800 

might lead to bias if new stresses are to be included in the future. 801 

Environmental stress modelling can also be viewed as a trade-off between a mechanistic and 802 

an empirical integration. In the first case, modelling the mechanisms can be complex: for 803 

example, assuming an acceleration of leaf senescence under drought stress may result in a 804 

lower light interception and a lower grain yield. On the other hand, the need for simplicity 805 

leads one to adopt a more implicit and integrative view whereby drought stress can directly 806 

affect the harvest index (instead of active leaf area) and thus yield. It is reasonable to believe 807 

that the first solution should generate more realism in plant-environment interactions while 808 

demanding more physiological insight.   809 

We finally decided to mix mechanistic and statistical approaches to deal with highly 810 

integrative variables such as harvest index (HI) or oil content (OC). These variables were 811 

modelled at harvest using a simple statistical model dependent on covariables previously 812 

simulated by the mechanistic part of the crop model throughout the growing season. But by 813 

doing so, feedback effects between different dynamic variables of the model and static 814 

output variables cannot be taken into account. However, this statistical solution made it 815 

possible to account for environmental variability in the prediction of HI and OC and the 816 

large dataset used for parameterization conferred some robustness to the prediction of these 817 

final variables.  818 

External limitations. Modelling the detrimental effects of plant diseases (phoma, 819 

phomopsis, sclerotinia, mildew) is a bottleneck to any progress in the prediction of yield and 820 

oil content in sunflower fields. These diseases are difficult to control by crop management; 821 



 

 

plant susceptibility is largely genetic. In 2000 and 2001, in the multi-environmental trials, 822 

we can be sure that diseases were responsible for some discrepancies between simulated and 823 

observed yields. This problem was indirectly brought to light by analysing the contribution 824 

of environments (locations x year) to G by E interactions (environmental ecovalence, 825 

Becker and Leon, 1988). In the actual network, two kinds of environment were subject to 826 

strong interactions: (1) low-stress environments ; (2) water-stressed environments. In the 827 

simulated network, the interactions were just apparent in the low-stress environments, 828 

probably because of the lack of information about pathogens, which are often more severe 829 

in dense canopies resulting from deep soils or wet conditions. On the other hand, the G x E 830 

interaction was well predicted in water-stressed environments, as the main components of 831 

the response of sunflower to water availability were included in the model.  832 

The validity domain of SUNFLO includes environments where fluctuating water and 833 

nitrogen levels occur due to combinations of weather patterns and soils in western Europe. 834 

Photoperiodic effects were not modelled, leading to a possible bias in the prediction of 835 

anthesis date in other geographical areas. 836 

 837 

3. SUNFLO, a model for engineering in the domain of varietal evaluation ?  838 

SUNFLO has several characteristics of an engineering model as defined by Passioura (1996): 839 

ease of use and extensibility (new genotypes) of the parameterization based on 840 

measurements, input data easily available from soil and weather records.  841 

The field determination of the genotypic parameters requires potential growth conditions but 842 

from different experiments: maximal LAI will be obtained in non-limiting conditions before 843 

anthesis, maximal HI requires low vegetative growth before anthesis but sufficient water 844 

during grain filling; oil content will be maximized under low nitrogen but well-watered 845 

conditions. To cope with the regular appearance of new genotypes, these parameterization 846 

experiments together with greenhouse measurements could be optimised to take advantage of 847 

official genotype assessment trials. 848 

From its capacity to evaluate the consequences on yield of different variety types defined by 849 

a limited set of parameters, the model might be used for various applications in the field of 850 

varietal evaluation (selection of the best variety x management combinations and evaluation 851 

of ideotypes) or environmental diagnosis (detection of G x E interactions, identification of 852 

stress patterns). If the model should be used during breeding, for variety registration testing 853 

and development, more emphasis shoud be given on reducing uncertainty on inputs (genetic 854 



 

 

parameters, soil and climate characterization)    855 

 856 

CONCLUSION 857 

The inclusion of genotypic traits within a crop model succeeded in differentiating the 858 

response of a range of varieties grown in a wide range of environmental conditions (soil, 859 

climate). G by E interactions were reproduced by dynamic simulation with the E term 860 

resulting from crop management acting at the resource level. To have a model useful for 861 

newly registered varieties, all the genotypic parameters were meant to be measurable. The 862 

model performance was evaluated by using independent data representative of practical 863 

application rather than specific research trials. This evaluation showed that both the model 864 

framework and the uncertainty on inputs resulting from practical application limits early 865 

discrimination of close-performing cultivars. 866 
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 873 

Table 1. Characteristics of the experiments used in the model development. Trial number, 874 

site name and geographical location, year, sowing and harvest date, number of genotypes, 875 

total N fertilization and irrigation, soil average water content usable by the crop, total 876 

precipitation, climatic water deficit (precipitation – PET), mean temperature and incident 877 

radiation sum. Integrative variables (sums, means) were computed for the whole growth 878 

period. Trials #1-40 were partly used to estimate some model parameters while the remaining 879 

data were used to estimate the model prediction capacity on a larger genotypic pool. 880 

 881 

Table 2.  Variables and parameters used as covariables (upper table) in statistical models of 882 

harvest index and oil content (lower).  883 

 884 

Table 3. Analysis of model prediction for 7 variables based on mean squared deviation 885 

(MSD). Statistical criteria are root mean square of error (RMSE) and RMSE as the fraction 886 

of the observed mean (Relative RMSE) ; bias (SB), squared difference between standard 887 

deviations (SDSD), lack of correlation weighted by the standard deviations (LCS) for the 888 

components of MSD. 889 

 890 

Table 4. ANOVA tables of yield for actual and simulated trial networks. The ANOVA model 891 

is a two way (Genotype, Environment) with interactions (G x E) model. The last column (% 892 

MS) is the relative contribution of the effect to the mean square sum.  893 

 894 

Figure 1. Chaining for different modules defining yield and oil production. Crop growth, 895 

displayed in the centre part, is viewed as the interaction between environmental and 896 

management-related limiting factors (left part) and genotypic information (right).  897 

Intermediate variables appear in modules (rectangles) with references to equations in the text. 898 

The schematic modules reflect the paragraphs' structure in the “model structure” section  of 899 

the text.  Parallelograms (parameters) and ellipses (variables) represent model inputs.   900 

 901 

Figure 2.  Evaluation of the fit of the model. Estimated Vs observed data for phenology 902 

(anthesis, date of year), nitrogen budget (absorbed N, kg.ha-1), leaf area index, radiation 903 

interception efficiency (%), aerial dry matter (t.ha-1), achene yield (t.ha-1) and oil content 904 

(%). Absorbed nitrogen, leaf area, RIE (Radiation Interception Efficiency) and biomass were 905 



 

 

sampled dynamically along the crop cycle. Filled symbols correspond to data used for 906 

parameter estimation ; solid line represent the 1:1 line ; dotted line is a regression line on all 907 

data ; model efficiency and RMSE (calculated on all data) are displayed in upper-left corner 908 

of the plots.   909 

 910 

Figure 3. Achene yield prediction for 20 genotypes at 16 sites. Prediction capacity was 911 

assessed quantitatively through RMSEP and qualitatively with Kendall's correlation 912 

coefficient (ranking).  The solid line represent the 1:1 line ; the dotted line is a regression line 913 

on all data. 914 

 915 

Figure 4. Achene oil concentration prediction for 20 genotypes at 16 sites. Prediction 916 

capacity was assessed quantitatively through RMSEP and qualitatively with Kendall's 917 

correlation coefficient (ranking).  Solid line represent the 1:1 line ; dotted line is a regression 918 

line on all data. 919 

 920 

Figure 5. Predicting mean environmental effects. Model performance was evaluated by 921 

RMSEP and Efficiency for the two output variables.  922 

 923 

Figure 6. Predicting mean genotypic effects. Model performance was evaluated by RMSEP 924 

and Efficiency for the two output variables.  925 

 926 

Figure 7. Variability vs Performance plot for the genotype set in the actual and simulated 927 

networks. Variability was calculated as the environmental variance (S², t.ha-1) [Becker1981, 928 

Piepho1998] and performance is the mean yield for each genotype. 929 

 930 
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 1095 



trial site dep year sowing harvest genotype fert. irr. AWC precipitation deficit mean temp. PAR sum label
number number (kg.ha-1) (mm) (mm) (mm) (mm) (°C) (MJ.m-2)

01 Montpellier 34 2001 5-May 19-Sep  5 140 305 225 131 -553 21.4 3344 MTP.01
02 Montpellier 34 2002 15-May 13-Sep  5 120 125 225 290 -317 21.3 2950 MTP.02
03 Montpellier 34 2002 15-May 13-Sep  5  60  40 225 290 -317 21.3 2950 MTP.02
04 Auzeville 31 2004 9-Apr 7-Sep  2 120  55 225 236 -449 19.1 3312 AUZ.04
05 Auzeville 31 2003 16-Apr 23-Aug 13  60 133 225 85 -604 21.9 3053 AUZ.03
06 Auzeville 31 2002 16-Apr 12-Sep  8  25  20 225 296 -329 18.5 3071 AUZ.02
07 Auzeville 31 2002 16-Apr 12-Sep  8  70  20 225 296 -329 18.5 3071 AUZ.02
08 Auzeville 31 2002 16-Apr 12-Sep  8  70  60 225 296 -329 18.5 3071 AUZ.02
09 Auzeville 31 2005 12-Apr 15-Sep  2  0 125 225 237 -492 19.7 3365 AUZ.05
10 Auzeville 31 2005 12-Apr 15-Sep  2  40 125 225 237 -492 19.7 3365 AUZ.05
11 Auzeville 31 2005 12-Apr 15-Sep  2  80 125 225 237 -492 19.7 3365 AUZ.05
12 Auzeville 31 2005 12-Apr 15-Sep  2 120 125 225 237 -492 19.7 3365 AUZ.05
13 Auzeville 31 2005 12-Apr 15-Sep  2  80 125 225 237 -492 19.7 3365 AUZ.05
14 Auzeville 31 2005 12-Apr 15-Sep  2 160 125 225 237 -492 19.7 3365 AUZ.05
15 Auzeville 31 2006 19-Apr 12-Sep  2  0 219 225 115 -648 20.9 3356 AUZ.06
16 Auzeville 31 2006 19-Apr 12-Sep  2  50 219 225 115 -648 20.9 3356 AUZ.06
17 Auzeville 31 2006 19-Apr 12-Sep  2 100 219 225 115 -648 20.9 3356 AUZ.06
18 Auzeville 31 2006 19-Apr 12-Sep  2 150 219 225 115 -648 20.9 3356 AUZ.06
19 Auzeville 31 2006 19-Apr 4-Sep  2  0  50 225 115 -606 20.6 3201 AUZ.06
20 Auzeville 31 2006 19-Apr 4-Sep  2  50  50 225 115 -606 20.6 3201 AUZ.06
21 Auzeville 31 2006 19-Apr 4-Sep  2 100  50 225 115 -606 20.6 3201 AUZ.06
22 Auzeville 31 2006 19-Apr 4-Sep  2 150  50 225 115 -606 20.6 3201 AUZ.06
23 Le Magneraud 17 2005 18-Apr 8-Sep  2  60  35 70 184 -455 18.6 3233 MGN.05
24 Le Magneraud 17 1997 28-Mar 18-Sep  2  78  0 120 387 -207 17.2 3134 MGN.97
25 Le Magneraud 17 1997 18-Apr 18-Sep  2  78  0 120 387 -135 18.0 2728 MGN.97
26 Le Magneraud 17 1997 15-May 18-Sep  2  78  0 120 295 -144 19.1 2252 MGN.97
27 Le Magneraud 17 1997 28-Mar 18-Sep  2  78 100 120 387 -207 17.2 3134 MGN.97
28 Le Magneraud 17 1997 18-Apr 18-Sep  2  78 100 120 387 -135 18.0 2728 MGN.97
29 Le Magneraud 17 1997 15-May 18-Sep  2  78 100 120 295 -144 19.1 2252 MGN.97
30 Le Magneraud 17 1998 26-Mar 11-Sep  2  70  0 120 433 -114 16.6 2946 MGN.98
31 Le Magneraud 17 1998 22-Apr 11-Sep  2  70  0 120 205 -298 17.9 2619 MGN.98
32 Le Magneraud 17 1998 13-May 11-Sep  2  70  0 120 157 -287 18.6 2279 MGN.98
33 Le Magneraud 17 1998 26-Mar 17-Sep  2  70 195 120 433 -114 16.6 2946 MGN.98
34 Le Magneraud 17 1998 22-Apr 17-Sep  2  70 195 120 205 -298 17.9 2619 MGN.98
35 Le Magneraud 17 1998 13-May 17-Sep  2  70 225 120 157 -287 18.6 2279 MGN.98
36 Le Magneraud 17 1999 31-Mar 8-Sep  2  70  0 120 364 -149 17.6 2808 MGN.99
37 Le Magneraud 17 1999 22-Apr 8-Sep  2  70  0 120 286 -190 18.6 2532 MGN.99
38 Le Magneraud 17 1999 25-May 24-Sep  2  70  0 120 361 -61 19.6 2200 MGN.99
39 Le Magneraud 17 1999 31-Mar 24-Sep  2  70 110 120 502 -40 17.6 2983 MGN.99
40 Le Magneraud 17 1999 22-Apr 24-Sep  2  70 110 120 424 -81 18.6 2707 MGN.99

41 Auzeville 31 2001 17-Apr 11-Sep 20 51 0 225 293 -355 19.0 3220 AUZ.01
42 Auzeville 31 2000 22-Apr 29-Aug 20 121 81 225 292 -316 20.0 2864 AUZ.00
43 Levroux-Trégonce 36 2000 3-May 12-Sep 20 60 50 100 242 -302 17.8 2313 LEV.00
44 Lusignan 86 2000 5-May 2-Oct 20 60 0 270 287 -286 17.7 2950 LUS.00
45 Chaunay 86 2000 6-May 5-Oct 20 40 0 195 313 -254 18.3 2980 CAY.00
46 Levignac/Saves 31 2000 13-May 18-Sep 20 20 30 150 277 -370 20.7 2559 SAV.00
47 Montech 82 2000 22-Apr 11-Sep 20 60 0 270 286 -353 19.8 2863 MON.00
48 Oucques 41 2000 11-Apr 8-Sep 20 60 0 150 339 -180 16.7 2798 OUC.00
49 Gaillac 81 2000 25-Apr 1-Sep 20 40 60 120 253 -233 19.8 2407 GAL.00
50 Blois 41 2000 19-May 7-Oct 20 60 0 195 281 -226 17.0 2392 BGY.00
51 Longré 16 2000 23-May 24-Oct 20 60 0 105 356 -224 18.1 2702 LON.00
52 Puy Laroque 82 2001 12-May 21-Sep 20 60 35 270 261 -315 19.9 2742 PLR.01
53 Lempdes 63 2001 18-Apr 7-Sep 20 80 0 225 242 -333 17.4 2724 LEM.01
54 Gaillac 81 2001 25-Apr 5-Sep 20 40 60 120 328 -201 19.7 2664 GAL.01
55 Ruffec 16 2001 15-May 21-Sep 20 60 0 50 185 -351 18.5 2782 RUF.01
56 Fleurance 32 2001 2-Apr 27-Aug 20 60 0 105 312 -225 17.7 2899 FLE.01

Table 1



Estimate Std. Error t value Pr(>|t|)
(Intercept)65.320223 19.856358 3.290 0.001204 ** 
SIRF -0.244884 0.038339 -6.387 1.37e-09 ***
TTF -0.009100 0.002769 -3.286 0.001218 ** 
SDM -0.441561 0.052941 -8.341 1.79e-14 ***
LAD -0.215173 0.031512 -6.828 1.24e-10 ***
NNIF 9.646419 3.357145 2.873 0.004544 ** 
TDF -0.049909 0.012870 -3.878 0.000147 ***
k 30.973272 5.965681 5.192 5.53e-07 ***
OCP 1.266167 0.139389 9.084 < 2e-16 ***
---
Signif. codes:0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Adjusted R-squared: 0.5749

Oil Content
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.370e-02 6.996e-02 1.339 0.182276
TDMF -1.552e-04 6.376e-05 -2.434 0.015982 *
SDV -2.828e-03 1.335e-03 -2.118 0.035650 *
SDF -2.557e-03 1.174e-03 -2.178 0.030813 *
SDM -1.940e-03 4.995e-04 -3.884 0.000148 ***
TRF -3.907e-04 1.696e-04 -2.304 0.022464 *
TTF 1.274e-04 3.190e-05 3.992 9.80e-05 ***
IRP 8.189e-01 1.540e-01 5.317 3.34e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
Adjusted R-squared: 0.3036

Harvest Index

Id Type Description Unit
SIRF climate Sum of intercepted radiation after flowering MJ
TTF climate Temperature Sum after Flowering °C.d
SDV stress Stress Days during Vegetative development d
SDF stress Stress Days during Flowering d
SDM stress Stress Days during Maturity d
TRF stress Transpirated water after flowering mm
NNIF stress Nitrogen nutrition Index at flowering NA
TDMF canopy Biomass at flowering g.m-2
LAD canopy Leaf Area Duration d
IRP genotype Potential Harvest Index NA
OCP genotype Potential Oil Content %
TDF genotype Thermal Date of flowering °C.d
k genotype Light Extinction Coefficient NA

Table 2



Variables RMSE RRMSE (%) SB (%) SDSD (%) LCS (%)
2.7 3.5 0 0 100

23.0 22.7 4 8 88
0.6 31.0 1 0 99
0.1 17.5 6 0 94
1.1 18.1 0 4 95
0.5 15.0 22 5 73

Grain Oil Content (%) 4.3 8.4 27 0 73

Sowing - Flowering (days)
Absorbed Nitrogen (kg/ha)
Leaf Area Index
Interception Efficiency
Dry Biomass (t/ha)
Yield (t/ha)

Table 3



Df SS MS F Pr(>F) % MS
Observed E 15 79.0 5.27 74.2 *** 69.0

G 19 43.7 2.30 32.4 *** 30.1
GxE 285 20.2 0.07 0.9

Simulated E 15 50.2 3.35 693.9 *** 71.1
G 19 25.7 1.36 280.9 *** 28.8
GxE 285 1.4 0.01 0.1

Table 4
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Observed yield (t/ha)
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Observed Oil Content (%)
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Mean Performance (t/ha)
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