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INTRODUCTION

Sunflower is a major world oilseed crop (ca. 35 Mt, 9% oil production after palm and rapeseed oil) which recently acquired new interest for biodiesel development [START_REF] Pereyra-Irujo | Variability in sunflower oil quality for biodiesel production: A simulation study[END_REF]. Considering sunflower seed production (source : FAOSTAT 2009), major production regions are Europe (62 % of world production, mainly by Ukraine, Russia, France), Americas (19 %, mainly Argentina, USA) and Asia (15%, mainly China, India).

Yield improvement certainly depends on breeding new genotypes, but also on identifying the best genotype for a given location and crop management. The improvement of genotype assessment is obvious at the three steps of genotype development: (1) breeding: evaluation of the impact of a morpho-physiological trait (or an ideotype) on the field performance, (2) cultivar registration: assessment of the performance of elite plant materials in multienvironment trials and (3) cultivar dissemination: providing advice on stable and highyielding combinations of genotype, environment and crop management to farmers. Although Genotype x Environment x Management (G x E x M) interactions may sometimes appear to breeders as an hindrance to the stable phenotypic response of a genotype, they could be exploited more fully by advisers to recommend the best cultivar-management combination in a given environment, especially in a context of low-input production.

Modelling can help in genotype assessment. During breeding, yield improvement does not result directly from the accumulation of sequencing or functional genomic information due to very variable and unpredictable cropping environments [START_REF] Miflin | Crop improvement in the 21st century[END_REF][START_REF] Sinclair | Crop transformation and the challenge to increase yield potential[END_REF].

For example, in sorghum, a QTL for the stay-green physiological trait was identified [START_REF] Tao | Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments[END_REF] but its effect on yield was shown to vary greatly (Borell and Hammer, 2000).

Predicting the effects of genotypic traits on yield for contrasting environments is thus a halfway step for the exploitation of genomic results [START_REF] Hammer | Trait physiology and crop modelling as a framework to link phenotypic complexity to underlying genetic systems[END_REF][START_REF] Hammer | Models for navigating biological complexity in breeding improved crop plants[END_REF]. During cultivar evaluation for official registration and advice, field experimentation remains an essential tool, but modelling could provide additional information on genotype response to varying soil-weather combinations and could limit the number of trials needed by siting them in the most appropriate environments [START_REF] Messina | Model-assisted genetic improvement of crops[END_REF].

Crop models, by their capacity to simulate phenotypic plasticity in response to environmental variability (weather, soil or practices) can help to solve the inherent difficulty of genotype evaluation. For sunflower, crop physiology has been incorporated in different and complementary ways in a few simulation models. In most of these [START_REF] Steer | A model to simulate the development, growth and yield of irrigated sunflower[END_REF][START_REF] Villalobos | OILCROP-SUN: a development, growth and yield model of the sunflower crop[END_REF][START_REF] Pereyra-Irujo | Sunflower yield and oil quality interactions and variability: Analysis through a simple simulation model[END_REF] biomass accumulation is driven by radiation (RUE); only Q-Sun [START_REF] Chapman | A sunflower simulation model: I. model development[END_REF] switches to a water-driven (WUE) submodel if water is the main limiting factor. These models include limiting factors based on their target environments: in those of [START_REF] Steer | A model to simulate the development, growth and yield of irrigated sunflower[END_REF] and Pereyra-Irujo and [START_REF] Pereyra-Irujo | Sunflower yield and oil quality interactions and variability: Analysis through a simple simulation model[END_REF] yield is only limited by temperature and light. To these two factors, [START_REF] Chapman | A sunflower simulation model: I. model development[END_REF] added water stress and [START_REF] Villalobos | OILCROP-SUN: a development, growth and yield model of the sunflower crop[END_REF] widened its scope by the inclusion of nitrogen stress.

How do crop models deal with genotypic variability? Genotypic variability does not appear to be as explicitly included as environmental responses in current sunflower crop models [START_REF] Connor | Sunflower physiology, Sunflower Technology and Production[END_REF]. Two models consider different parameterization sets between genotypes: [START_REF] Villalobos | OILCROP-SUN: a development, growth and yield model of the sunflower crop[END_REF] introduced a statistical optimization to represent three genotypes through five parameters (phenological stages, yield potential) and [START_REF] Chapman | A sunflower simulation model: I. model development[END_REF] model did not isolate the values for genotypic parameters but rather indicated genotypic variability for key parameters (water use efficiency, phyllochrons, phenological stages). Moreover, the values of these parameters are mostly estimated by optimization, which limits the parameterization at a larger scale for numerous genotypes. Several generic crop models have been adapted to the sunflower crop, but they lack genotypic refinement [START_REF] Kiniry | Sunflower simulation using the EPIC and ALMANAC models[END_REF].

The value of a crop model for evaluating genotypes results mainly from its predictive quality but also from its ability to be updated for yearly cultivar releases from breeding companies and the official registration process. A model's predictive quality is usually linked to the relevance of simulated stress factors, the description of canopy growth, the robustness of parameterization and the quality of input data. Updating can be made possible by improving the ease of genotypic parameterization, which depends as much on the total number of genotypic parameters as on the methods used to estimate their values. Therefore, an ideal genotypic parameterization would aim to limit the total parameter number while maintaining a useful predictive capacity.

Two steps can be distinguished when modelling the link between a phenotype (i.e. leaf area or grain yield) and a genotype. Firstly, a physiological trait (i.e. reduced conductance with water stress) could be transcribed as a model parameter (slope of the response curve) [START_REF] Casadebaig | Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes[END_REF]. Then the robustness of the relation between the trait and the plant genome should be evaluated [START_REF] Yin | Role of crop physiology in predicting gene-to-phenotype relationships[END_REF]. The study of [START_REF] Chapman | Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments[END_REF] illustrates this view well, although the sorghum lines evaluated by the model differed only by four alleles.

Our approach here concerns only the first step: to link a complex phenotype to a set of accessible genotype traits. Each genotype is thus defined by chosen traits which were transcribed into a set of genotype-specific parameters. These genotypic parameters are, despite their name, under uncertain genetic control [START_REF] Slafer | Genetic basis of yield as viewed from a crop physiologist's perspective[END_REF].

Unlike estimating parameters by optimization, direct measurement allows parameter values to be more representative of crop physiology than the paired data / optimization algorithm (Jeuffroy et al., 1996). In this way, the time and complex procedures needed to introduce new genotypes can be reduced, improving the accessibility of the model among technical services [START_REF] Mavromatis | Developing genetic coefficients for crop simulation models with data from crop performance trials[END_REF].

Why develop a new sunflower crop model? It was the need to differentiate genotypic response with as few parameters as possible, rather than a lack of suitability of existing sunflower crop models, that led us to develop a new crop model for sunflower. An analysis of the comparative performance of genotypes from different breeding generations [START_REF] Vear | 30 years of sunflower breeding in France, Oleagineux, Corps gras[END_REF] through the generic approach of biomass production of [START_REF] Monteith | Climate and the efficiency of crop production in Britain[END_REF] allowed phenotypic variability to be quantified in this system [START_REF] Debaeke | Crop physiological determinants of yield in old and modern sunflower hybrids[END_REF]. That study confirmed the role of (1) plant leaf area and its control (persistence, efficiency) after flowering, (2) vertical distribution of this leaf area and (3) phenology (duration from flowering to maturity) for genotype performance. This knowledge was incorporated into a crop model intended to evaluate the contribution of identified parameters to the variability of yield potential [START_REF] Lecoeur | SUNFLO: A joint phenotyping and modelling approach to analyse and predict the differences in yield potential of sunflower genotypes[END_REF].

Our objective was to identify, quantify and model phenotypic variability of sunflower at the individual plant level in response to the main abiotic stresses occurring at field level (light, temperature, water, nitrogen) but also in the expression of genotypic variability (G x E interactions). This objective underlies a parsimonious addition of genetic information to increase the model's versatility and usefulness. Using a crop model to help to evaluate genotypes thus These experiments, described in Table 1, covered a wide range of genotypic variability (2-20 genotypes) and cultural conditions: potential growth conditions (exp. #01, 02, 04, 05), water (exp. #03, 23, 24-40) and nitrogen (exp. #09-14) stressed situations, water-nitrogen interaction trials (exp. #15-22). Design was split-plot with 3-4 replicates depending on trials, plot size was ranging from 20 to 30 m², on mainly silty clay to silt soils (see Tab1 for available water content estimation).

The first dataset (trials #1-40) was used to estimate the model's adjustment capacity to observed datas. It consisted of a detailed phenotyping (7 variables : phenology, absorbed nitrogen, leaf area index, radiation interception efficiency, above-ground biomass, achene yield and oil content) performed on different genotypes in various environmental conditions, together with a precise soil, weather and management description, and was used to reduce uncertainty from model inputs. Evaluating the model on this dataset would provide insight on the lowest prediction error attainable. For each intermediate variable, non-genotypic model parameters were optimized on a subset of experiments chosen to evaluate the variable. In this way, no single experiment was used to estimate all model parameters. Parameters for the two statistical models predicting output variables (yield, oil content) were estimated using all the information available in this dataset, which could be regarded as a "model development" set.

A second dataset (trials #41-56) was created to estimate the model's prediction capacity and discriminate genotypic performance. Observations of yield and oil content came from a multi-environment experimental network (16 trials of 20 genotypes from the combination of 15 sites x 2 years, [2000][2001] which was used in an earlier study to assess the genetic progress made in France on the sunflower crop [START_REF] Vear | 30 years of sunflower breeding in France, Oleagineux, Corps gras[END_REF]. Environmental description was less accurate than for the first dataset as these were simply cultivar comparison trials. These data were not used to estimate the model parameters, but allowed us to test the predictive capacity of the model for a standard application. This dataset may be viewed as a "model evaluation" set.

Plant measurements

The timing of developmental stages was determined on six plants per genotype, twice a week, using the scale proposed by CETIOM for sunflower [START_REF] Cetiom | Stades-repères du tournesol[END_REF]. In addition, the number of visible, senescent (yellowish surface > 50% leaf area) and dead leaves was also counted. A particular crop phenological stage was considered as having been reached when more than 50 % of the plants evinced the features of that phenotype.

Leaf ranking was counted from the base to the top of the stem. Architectural measurements were made during successive steps from flower bud appearance to the end of flowering, provided that leaves were fully expanded. The rank, length, and width of each leaf blade were measured on 6 plants per genotype with a ruler (± 0.5 mm). Individual leaf area (ILA, mm²) was estimated from leaf largest length (L) and largest width (W) using a break linear model [EQ1] calibrated using a planimeter (LI-3100, Li-cor inc., Lincoln, NE, USA).

[EQ1] ILA = a * LW if LW < c/(a-b) else b * LW + c ; where a=0.684 ; b=0.736 and c=-8.860 (R²=0.992, RMSE=5.9, n=304) Significant genotypic variability was not observed for the parameters of this relationship.

Total leaf area (TLA) was calculated as the sum of the individual leaf areas.

The radiation interception efficiency (RIE) of the non-senescent fraction of the canopy was measured (400-700 nm wavelength) during crop growth using a hand-held Picqhelios apparatus (AERIC, Balma) [Picq1988]. Cumulative intercepted radiation was computed from daily incident PAR and daily RIE, interpolated between the sampling dates. The light extinction coefficient (k) was obtained from non-linear regressions with Beer's law [START_REF] Monsi | On the factor light in plant communities and its importance for matter production[END_REF].

Total shoot dry biomass (TDM) was measured on square meter quadrats (5-7 plants).

Radiation use efficiency (RUE) was then calculated for different phenological stages from total dry biomass divided by cumulative intercepted radiation (PAR). Total plant nitrogen content was assessed by the Dumas combustion method, allowing the calculation of the total absorbed nitrogen in aerial parts.

The photosynthetic parameter (PHS) was estimated from leaf photosynthetic activity measured with a portable photosynthesis system (CIRAS, PP system, UK) with a control radiation level of 1500 µmol m -2 .s -1 . All the photosynthesis genotypic values were normalized with respect to those obtained for the genotype cv. Melody.

Harvest index (HI) was the ratio of dry grain weight to total dry matter on sampled plants.

Yield was expressed on a dry basis (0% moisture) cleaned of trash. Oil content was determined by Nuclear Magnetic Resonance (Bruker NMS 110 Minispec NMR Analyzer) on 20g dry achene samplings.

Environment and management description.

The input variables required for simulation were environmental (weather and soil) and related to crop management. Four weather variables were recorded daily: mean air temperature (°C, 2m height), global incident radiation (MJ.m -2 ), potential evapotranspiration (mm, Penman-Monteith) and precipitation (mm). The distance between the crop and the weather station was greater in the evaluation dataset (10-20 km) than in the development set (0-5 km). The available soil water content over the maximum rooting depth (the difference between volumetric moisture content at field capacity and wilting point) was estimated from soil texture (clay content), apparent soil density and stone content. Crop management (Table 1) was summarized by sowing operations (date, seed depth, plant density ; 6-7 pnt/m²), fertilizer regime (dates and amounts), and irrigation schedule (dates and amounts). Soil water and nitrogen (mean = 40.7 kg/ha) at sowing were initialized from water balance and nitrogen balance sheet models : in >90% of the cases, initial water content was equal to field capacity.

Statistical analysis and naming conventions.

Observed and simulated values were compared using a range of statistical criteria using mean squared deviation and its derivative [START_REF] Kobayashi | Comparing simulated and measured values using mean squared deviation and its components[END_REF]. Relative Root Mean Square of Errors (RRMSE) was calculated as the quotient of RMSE divided by the mean of observations in order to facilitate comparison between variables and other models. Statistical modelling was done using multiple linear regression. All data analysis, statistics and graphics were done using R software (R Development Core Team, 2006).

Given a variable named V, the rate of increase of Vor its daily increase in the case of a fixed time-step integrationwas named dV. Variables related to the vertical dimension (soil and rooting depth) were prefixed with z. The name of environmental stress related variables combined a letter {T, L, W, N} for the source stress (for temperature, light, water and nitrogen) and the target variable (ex : the effect of water stress on radiation use efficiency is W.RUE,).

RESULTS : MODEL DEVELOPMENT

Modelling approach

Starting from a simple modular modelling basis, we used the model SUNFLO_V0 [START_REF] Lecoeur | SUNFLO: A joint phenotyping and modelling approach to analyse and predict the differences in yield potential of sunflower genotypes[END_REF] as an initial modelling framework. It estimates the above-ground biomass production of a sunflower crop from incident radiation and mean air temperature. It works on a daily time step and describes plant phenology, leaf expansion and biomass production and its allocation to the grain. Rather classically, actual growth depends on potential growth modulated by temperature and radiation. Genotypic variability is taken into account by a small number (12) of parameters [START_REF] Lecoeur | SUNFLO: A joint phenotyping and modelling approach to analyse and predict the differences in yield potential of sunflower genotypes[END_REF]. Moreover, a fine resolution in describing biomass production is not always the best starting point [START_REF] Hammer | Models for navigating biological complexity in breeding improved crop plants[END_REF].

When building a model framework, several groups of equations and parameters can be proposed to describe a given physiological process. If their inputs and outputs are measurable and effectively measured, treating these modules as independent sub-models can have several advantages. Firstly it allows easier knowledge sharing among the scientific community [START_REF] Jones | Approaches to modular model development[END_REF]. Secondly, evaluating the model response module by module gives to the overall performance more credibility throughout the simulated growth period and prevents accidental error compensation [START_REF] Sinclair | Criteria for publishing papers on crop modelling[END_REF]. SUNFLO_V1, described below, consists of 7 modules whose structure appears in Figure 1.

Adding some genotypic variability. Our objective was to evaluate the possibility of coupling a biophysical model and a phenotyping approach to quantify phenotypic variability of yield and oil content in contrasting cropping environments. Each genotype was defined by a set of parameters whose values are assumed to be constant among environments, thus trying to mimic gene functioning [START_REF] Colson | Soybean reproductive development: adapting a model for European cultivars[END_REF][START_REF] Boote | Genetic coefficients in the CROPGRO-soybean model: links to field performance and genomics[END_REF].

When using experimentation to measure genotypic parameters, there are two kinds of constraint. The first is the amount of work involved, where the number of new genotypes and time available for phenotyping limit the number of genotypic parameters which can be investigated in the future. The second is due to the environmental effects on the values of measured parameters: the use of phenotypic information, as parameter values can only be taken to be genotypic if they prove to be stable in different environments. We finally proposed four criteria before choosing a parameter as genotype-specific; it should (1) present a significant amount of genotypic variability, (2) be stable over environments, (3) markedly affect the model outputs and (4) be easily measurable.

Model structure

Phenology

Plant phenology is driven by thermal time [START_REF] Aiken | Applying thermal time scales to sunflower development[END_REF]. Cumulative thermal time since emergence (TTE, °C.d) was calculated [EQ2] as the sum of the daily mean air temperature from emergence using a base temperature (Tb) of 4.8°C [START_REF] Granier | Is thermal time adequate for expressing the effects of temperature on sunflower leaf development?[END_REF] common to all genotypes. Four key stages, expressed as genotype-dependent thermal dates, delimited periods of plant growth with changes in plant physiology: floral initiation (FI), beginning of flowering (F), beginning of grain filling (early maturation, EM) and physiological maturity (PM) [START_REF] Cetiom | Stades-repères du tournesol[END_REF][START_REF] Lecoeur | SUNFLO: A joint phenotyping and modelling approach to analyse and predict the differences in yield potential of sunflower genotypes[END_REF].

Photoperiodic effects on phenology were not included in the model: [START_REF] Leon | Quantitative trait loci for growing degree days to flowering and photoperiod response in Sunflower (Helianthus annuus L.)[END_REF] showed that flowering date was unaffected by photoperiods between 14.5 and 16h at emergence. Extreme locations and practices for French sunflower crops could lead to photoperiods at emergence from 13.8 h (southern early sowings) to 16.5 h (northern late sowings), thus showing a very slight effect on flowering date in a few cases.

Through the reduction of transpiration, water stress causes overheating of the plant. This heating can accelerate crop development and was modelled using a multiplicative effect with thermal time accumulation [EQ2].

[EQ2] TTE = sum((Tm -Tb) * (1+a(1 -W.TR))) ; where Tb = 4.8 °C and a = 0.1

The duration of the sowing-emergence period (E, °C.d) [EQ3], provided soil water content at seed depth is adequate, is assumed to depend only on temperature [START_REF] Angus | Phasic development in field crops. I. Thermal response in the seedling phase[END_REF].

Adequacy of water content for emergence was assumed and the sowing -emergence phase was modelled as in [START_REF] Villalobos | OILCROP-SUN: a development, growth and yield model of the sunflower crop[END_REF] as a function of air temperature and sowing depth. Hypocotyl elongation (dHE) and germination time (G) were computed with a common base temperature.

[EQ3] E = G + dHE * zSOW ; where G = 86 °C.d and dHE = 1.19 °C.d/mm

Environmental factors limiting crop production

Temperature

Temperature effects on processes are mostly accounted for in the model by using thermal time based relationships. However, we needed to include a direct effect of temperature on radiation use efficiency (RUE, g.MJ -1 ) and on nitrogen net mineralization rate (dMin, Kg.j.ha -1 ).

A depressive function of non-optimal temperature (T.RUE) was applied to RUE, calculated [EQ4] from daily mean air temperature. This relationship was adapted from [START_REF] Horie | Simulation of sunflower growth: I. Formulation and parameterisation of dry matter production, leaf photosynthesis, respiration and partitioning of photosynthesis[END_REF] to a bilinear function as in [START_REF] Villalobos | OILCROP-SUN: a development, growth and yield model of the sunflower crop[END_REF] using upper and lower optimal (Tou, Tol) and critical (Tc) temperature ranges. Nitrogen net mineralization rate (dMin, EQ25) was affected by a logistic function [EQ5] of daily mean air temperature [START_REF] Valé | Irrigation practices may affect denitrification more than nitrogen mineralization in warm climatic conditions[END_REF].

[EQ5] T.NM = 36/(1+(36-1) * exp(-0.119*(Tm-15)))

Light

Competition for light interception, modified by planting density, affects individual leaf expansion rate [EQ] in sunflower [START_REF] Rawson | Light, leaf expansion and seed yield in sunflower[END_REF][START_REF] Rey | Using a 3-D virtual sunflower to simulate light capture at organ, plant and plot levels: contribution of organ interception, impact of heliotropism and analysis of genotypic differences[END_REF]. In an experimental study [START_REF] Rey | Utilisation de la modélisation 3D pour l'analyse et la simulation du développement et de la croissance végétative d'une plante de tournesol en conditions environnementales fluctuantes (température et rayonnement)[END_REF], leaf expansion rate was related to absorbed PAR (APAR) per unit leaf area. By assuming (1) that absorbed PAR is equal to intercepted PAR and ( 2) that all leaves are affected the same way by light restriction, this previously developed model can be used to drive canopy response to light in a simpler crop model. This relation [EQ6] was initially developed using potential leaf areas (at 1 plant.m -² ) as a reference. In the model a scaling parameter (s = 2.5) allows it to be applied to potential leaf areas in cropping conditions (at 6 plant.m -² ). This parameter is measured as the ratio of plant leaf area at 1 plant.m -² to the leaf area at 9 plant.m -² ; [START_REF] Sadras | Quantification of temperature, photoperiod and population effects on plant leaf area in sunflower crops[END_REF] have indicated a larger response to density (s = 3.1).

[

EQ6] L.LE = s * (a + (b/(1 + exp(-(IPAR -c)/d)))) ;
where s = 2.5, a = -0.14, b = 1.13 , c = 4.13 and d = 2.09

Water a. Soil and water budget

The soil water budget model is based on a previously developed model [START_REF] Lecoeur | Field pea transpiration and leaf growth in response to soil water deficit[END_REF] that was used for irrigation scheduling [START_REF] Sarr | Irrigation scheduling of confectionery groundnut (Arachis hypogeaea L.) in Senegal using a simple water balance model[END_REF]. Water movement in the soil is assumed to be only vertical, with runoff and lateral flow being ignored. It is possible to simulate the fraction of transpirable soil water (FTSW), which accounts for the amount of soil water available to the plant within the root zone [START_REF] Sinclair | Theoretical analysis of soil and plant traits influencing daily plant water flux on drying soils[END_REF]. The model treats the soil as a reservoir with three layers (Ci), whose thicknesses (zCi) change as the roots grow.

The required soil physical characteristics are gravimetric moisture content at field capacity (Hfc, % of dry soil) and at permanent wilting point (Hwp, % of dry soil) and the maximum rooting depth (zPR, mm).

Evaporation and N mineralization only take place in the uppermost layer (0-300 mm), in which water is supplied by precipitation (Pr) and irrigation (Irr) and lost by evaporation (EV), transpiration (TR) and drainage (D). Drainage (DCi, mm) occurs when the water content of a layer exceeds its water retention capacity (Hfc).

The depth to the bottom of the second layer (zC2, mm) is equal to the rooting depth (zR, mm). zR is linearly related to thermal time [EQ7] until the potential rooting depth (zPR, mm) is reached. In the model, neither soil moisture nor plant biomass may limit root growth, so the advance of the rooting front (dR) was estimated at 0.7 mm/C.d. The thickness of the bottom layer (zC3, mm) is defined as the difference between potential and actual rooting depth. [EQ13] dPTR = Kc * ETP * RIE ; where Kc = 1.2

[EQ14] fR = zC1/(zC1+zC2) [EQ15] dTRC1 = fR * dPTR * W.TR if (zR > zC1) else dPTR * W.TR [EQ16] dTRC2 = (1-fR)* dPTR * W.TR if (zR > zC1) else 0
The fraction of transpirable soil water (FTSW), the main output from the water budget module [EQ17], is used as a water stress index. FTSW is the ratio of actual to total water content [EQ18] of both root-explored layers.

[EQ17] FTSW = (WC1 + WC2) / (PWC1 + PWC2)

[EQ18] PWCi = zCi * (Hfc.Ci -Hwp.Ci) * sd where sd is soil apparent density b. Modelling the effects of water stress on plant growth Crop growth is explicitly affected by water stress considering three processes: leaf expansion (LE), plant transpiration (TR) and biomass production (RUE). Three water stress factors [0-1] are thus based on FTSW and a genotypic parameter which differs according to the process [EQ19] ; the effect of water on RUE is assumed to be the same as on transpiration. A significant genotypic variability was found in sunflower water stress response when the parameters were estimated in three glasshouse experiments [START_REF] Casadebaig | Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes[END_REF].

[EQ19] W.LE ; W.TR ; W.RUE = -1 + 2/(1+exp(a*FTSW))
where a is a measured genotypic parameter different for expansion (W.LE) and gas exchange (W.TR and W.RUE) .

Net nitrogen mineralization was affected by soil moisture in the surface layer by using a linear relationship previously parameterized by [START_REF] Mary | Calculation of nitrogen mineralization and leaching in fallow soil using a simple dynamic model[END_REF] and used in a dynamic N leaching model.

[EQ20] W.NM = 1 -(1-Fpf) * (1 -RWCC1)
where Fpf = 0.2 is the value of the function at Hpf and RWCC1 is the relative water content in the surface layer (actual by maximal water content).

Nitrogen a. Nitrogen budget

The mineral nitrogen content of the soil layers (kg/ha) depends on mineralization (dMin), fertilization (Fer), leaching (LCi), denitrification (-dDenit) and plant uptake [EQ21-23].

[EQ21] NC1 = +dMin +Fer -dMFC1 -dAAC1 -LC1 -dDenit

[EQ22] NC2 = +LC1 -LC2 -dMFC2 -dAAC2 +dR*(NC3/zC3) [EQ23] NC3 = +LC2 -LC3 -dR*(NC3/zC3)
The time between fertilization and its availability for plant uptake was simply modelled using a threshold of precipitation or irrigation (5 mm) required for N solubilization and incorporation into the surface layer. Moreover, the processes of N immobilization and volatilization were avoided in the model [EQ24] by linking fertilization efficiency (%) and crop growth rate (g.m -2 .°C.d -1 ). [START_REF] Limaux | Relationship between rate of crop growth at date of fertiliser N application and fate of fertiliser N applied to winter wheat[END_REF] showed that nitrogen use efficiency is positively correlated to crop growth rate.

[EQ24] NUE = 30 + 0.34 * CGR * 100

Nitrogen mineralization [EQ25] was modelled as a potential mineralization rate parameter affected by temperature [EQ5] and soil moisture content [EQ20] as described by [START_REF] Mary | Calculation of nitrogen mineralization and leaching in fallow soil using a simple dynamic model[END_REF] and [START_REF] Valé | Irrigation practices may affect denitrification more than nitrogen mineralization in warm climatic conditions[END_REF]. When considering nitrogen loss, leaching (LCi) was the product of drained water and its nitrogen concentration from the soil layer concerned. As the model is to be applied mostly in warm cropping conditions, nitrogen denitrification was added, following [START_REF] Sinclair | Effect of nitrogen supply on maize yield. I: modelling physiological responses[END_REF], as an exponential function of air temperature Generally, plant nutrient uptake in dynamic crop models results from comparing soil supply (determined by the nitrogen budget) and plant demand (based on the crop nitrogen nutrition index). Nitrogen uptake has two components as in the STICS model [START_REF] Brisson | An overview of the crop model STICS[END_REF]: one part is absorbed in the transpirational stream (mass flow, [EQ27]) while the other is directly absorbed by the roots, simulating active nitrogen influx. This active influx was modelled [EQ28] by using a Michaelis-Menten function of soil solution nitrogen concentration, rooting density and layer thickness, using the shape and affinity constants defined previously by (Brisson et al., 2008). Daily nitrogen uptake for the crop is the sum of mass flow and active nitrogen influx.

[EQ27] dMF = dTRC1 * NC1 + dTRC2 * NC2

[EQ28] dAA = Vm1 * NCi / (Km1 + NCi) + Vm2 * NCi / (Km2 + NCi) * zCi * fR
The critical crop nitrogen uptake is defined as the minimum nitrogen uptake necessary to achieve maximum biomass accumulation. Across a range of crops, the critical N uptake is related to biomass accumulation by a power function with a coefficient less than unity which suggests that crop N uptake is regulated by both soil N supply and biomass accumulation [START_REF] Lemaire | Use of the nitrogen nutrition index for the analysis of agronomical data[END_REF]. Two thresholds (critical and maximal) for plant nitrogen content were thus defined. These thresholds were experimentally determined by monitoring nitrogen accumulation in relation to crop biomass for various fertilization levels (0 -160 N) in a sunflower crop [START_REF] Debaeke | Normalized SPAD index and Nitrogen Nutrition Index (NNI): two indicators of plant N status for sunflower crop[END_REF]. Critical nitrogen (%) dilution in the plant biomass (t.ha -1 ) was established as EQ29. Maximal nitrogen content of biomass was defined as 1.3 times the critical content [START_REF] Stockle | Modeling crop nitrogen requirements: a critical analysis[END_REF]. 

Leaf area dynamics

Considering a crop model based on Monteith's notions [START_REF] Monteith | Climate and the efficiency of crop production in Britain[END_REF], where crop growth is driven mainly by light interception, an accurate prediction of leaf area dynamics is essential for a correct estimation of its dependent variables. This is especially true for sunflowers, where light intercepted after flowering is closely related to oil yield [START_REF] Merrien | Comportement hydrique du tournesol[END_REF][START_REF] Sadras | Profiles of leaf senescence during reproductive growth of sunflower and maize[END_REF][START_REF] Aguirrezabal | Intercepted solar radiation during seed filling determines sunflower weight per seed and oil concentration[END_REF]. As leaf area is also an important determinant of plant transpiration, a common adaptive trait for drought tolerance is reduced leaf growth under water stress [START_REF] Jones | Water use efficiency in plant biology[END_REF]. There are significant differences in leaf area and its vertical distribution in commercial hybrids [START_REF] Debaeke | Crop physiological determinants of yield in old and modern sunflower hybrids[END_REF][START_REF] Lecoeur | SUNFLO: A joint phenotyping and modelling approach to analyse and predict the differences in yield potential of sunflower genotypes[END_REF]. When modelling leaf area, it is important to represent the major interactions between genotype, environment and crop management arising at this level.

Crop leaf area depends mainly on the processes of leaf appearance, expansion and senescence, which are affected by various limiting factors -light competition (plant density)

[EQ6], water stress [EQ19] and nitrogen stress [EQ30]. However, at field level, the particular interplay of the timing of stress (due to environment or crop phenology) and individual organ expansion leads to very different patterns of leaf area development. This being so, describing a process at an organ sub-level should improve crop leaf area prediction.

Three main modelling procedures have been used so far to predict crop leaf area : (i) the use of functions of time or thermal time (Gompertz, polynomials, exponentials) [START_REF] Chapman | A sunflower simulation model: I. model development[END_REF][START_REF] Brisson | An overview of the crop model STICS[END_REF][START_REF] Pereyra-Irujo | Sunflower yield and oil quality interactions and variability: Analysis through a simple simulation model[END_REF], (ii) the concept of specific leaf area, which uses biomass as the driving variable of leaf area (Penning de [START_REF] Penning De Vries | Simulation of ecophysiological processes of growth in several annual crops[END_REF][START_REF] Villalobos | OILCROP-SUN: a development, growth and yield model of the sunflower crop[END_REF] and (iii) simulating leaf expansion and senescence separately on the scale of the leaf [START_REF] Stewart | A model of expansion and senescence of individual leaves of fieldgrown maize (Zea mays L.)[END_REF][START_REF] Lizaso | A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves[END_REF].

These approaches differ mainly in their concepts, but also in their mathematical complexity and hence in their numbers of parameters. Errors in estimating their values (statistically or experimentally) have differing impacts, depending on the approach concerned. [START_REF] Lizaso | A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves[END_REF] investigated a cut-down version of the CERES-Maize model which combines accuracy with ease of parameterization. It simulates individual leaf expansion as the difference between growth and senescence rates. Both expansion and senescence follow a logistic function of thermal time with parameters for a final state (potential area for expansion, actual for senescence), a thermal time at 50% of the final state, and a slope. The mathematics are described by [START_REF] Lizaso | A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves[END_REF] but the model equations are presented again in this paper.

We intend to adapt this framework to the sunflower crop by further simplifying it to facilitate the parameterization of new genotypes as soon as they become available on the market.

Timing of leaf appearance and senescence

The rate of leaf appearance depends on air temperature and two phyllochrons (°Cd) as preformed lower leaves appear at a lower rate [START_REF] Rey | Utilisation de la modélisation 3D pour l'analyse et la simulation du développement et de la croissance végétative d'une plante de tournesol en conditions environnementales fluctuantes (température et rayonnement)[END_REF]. Thermal time to 50% of final leaf area was defined by [EQ33] where Tii is the thermal time required for leaf appearance. 

Leaf expansion and senescence

The vertical distribution of leaf area is variable among sunflower genotypes grown in lowstress conditions [START_REF] Debaeke | Crop physiological determinants of yield in old and modern sunflower hybrids[END_REF]. The distribution of individual leaf area (ILA) down the stem (leaf area profile) was modelled with a bell-shape curve [START_REF] Keating | Modelling the fully expanded area of maize leaves[END_REF][START_REF] Lizaso | A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves[END_REF]. Three parameters where genotypic and came from direct measurements [START_REF] Lecoeur | SUNFLO: A joint phenotyping and modelling approach to analyse and predict the differences in yield potential of sunflower genotypes[END_REF]: largest leaf size (LLS, cm²) and height (LLH, rank) and total leaf number (TLN). The two last parameters control the shape : a affects the width and b affects the skewness of the curve. As the values for parameters a and b were not stable across genotypes (CV = 39 %), we derived their value from the 3 other genotypic parameters with a linear model. This model performed 35% better (n = 754, rmse = 68 cm²) for ILA prediction when compared with mean values (constant) for the shape parameters. 

Light interception

The radiation interception efficiency [EQ41] was estimated as an exponential function of LAI [START_REF] Monsi | On the factor light in plant communities and its importance for matter production[END_REF] using an extinction coefficient (k) that varied among genotypes but was constant during crop growth. Genotypic values of k were estimated by non-linear regression between measured LAI and RIE in field conditions under low crop stress [START_REF] Lecoeur | SUNFLO: A joint phenotyping and modelling approach to analyse and predict the differences in yield potential of sunflower genotypes[END_REF].

[EQ41] RIE = 1 -exp (-k * LAI)

Biomass accumulation

Daily intercepted radiation was converted into biomass increment using radiation use efficiency [EQ42] (g.MJ -1 ., PAR) which changes with crop phenology [START_REF] Villalobos | OILCROP-SUN: a development, growth and yield model of the sunflower crop[END_REF]. The pattern of RUE evolution during crop growth was monitored in a field experiment [START_REF] Lecoeur | SUNFLO: A joint phenotyping and modelling approach to analyse and predict the differences in yield potential of sunflower genotypes[END_REF]. In the absence of environmental stress, the model assumed a constant value for RUE at the very beginning of the cycle, a linear increase to a maximal value during flowering and an exponential decrease from early maturity to physiological maturity.

Genotypic parameters were used for 3 phenostages : Thermal date to flowering, early maturity and physiological maturity (respectively TDF, TDEM and TDPM). Similarly to leaf expansion, effective RUE resulted from the multiplicative effects of temperature [EQ4], nitrogen [EQ31], water [EQ19] and a genotype-specific coefficient (PHS). PHS differentiated maximum photosynthetic rates among genotypes in controlled conditions [START_REF] Lecoeur | SUNFLO: A joint phenotyping and modelling approach to analyse and predict the differences in yield potential of sunflower genotypes[END_REF].

Total aerial dry biomass was finally calculated as the integration of the product of PAR, RIE and effective RUE. 

Allocation : calculating crop variables as a statistical model input.

Up to the simulation of crop aerial biomass, the model used process-based dynamic relationships. We propose to calculate yield and oil content by using simple statistical models that depend on a set of 11 previously simulated crop variables and or used genotypic parameters. New genotypic variability was introduced at this point by measuring 2 additional parameters : harvest index (glasshouse experiment, [START_REF] Lecoeur | SUNFLO: A joint phenotyping and modelling approach to analyse and predict the differences in yield potential of sunflower genotypes[END_REF] and oil content (trials #1-40) in low stress conditions (potential). This information, mostly reused from the mechanistic part of the model could be classified in different categories: climatic, abiotic stress, canopy indexes and genotypic parameters. Table 2 describes more precisely these indexes and their method of calculation.

Previously calculated indexes were used as covariables (independent variables) in two multiple linear regression models to explain the value of harvest index and oil content at harvest time. When building these statistical models, we applied a simple selection procedure (stepwise selection on BIC) to prune non-contributing variables, going from 13 to 7 or 8 covariables, depending on the model.

Parameters for the additive statistical models were estimated on the "development" dataset and their robustness was tested in the "evaluation" set of experiments. We adopted statistical modelling as, for example, [START_REF] Hammer | Genotype and Environment Effects on Dynamics of Harvest Index during Grain Filling in Sorghum[END_REF] stated large variations of HI dynamics with environment and, on our data, the statistical approach proved to be more precise for yield prediction [START_REF] Casadebaig | Analyse et modélisation de l'interaction Génotype -Environnement -Conduite de culture : application au tournesol[END_REF] than the parametrisation of a simple mechanistic HI model [START_REF] Moot | Rate of change in harvest index during grain-filling of wheat[END_REF]. We followed a similar statistical approach for modeling oil content to be more exhaustive in the driving factors, whereas the mechanistic models considered only post-flowering light interception [START_REF] Aguirrezabal | Intercepted solar radiation during seed filling determines sunflower weight per seed and oil concentration[END_REF] or grain nitrogen content [START_REF] Triboi | Productivity and grain or seed composition: a new approach to an old problem--invited paper[END_REF]. In this case the processbased approach performed better on low stress conditions, but showed inconsistencies on a larger panel of stress conditions [START_REF] Casadebaig | Analyse et modélisation de l'interaction Génotype -Environnement -Conduite de culture : application au tournesol[END_REF].

RESULTS : MODEL PERFORMANCE

Model performance in cases where the plant environment is well characterized

The model was first evaluated on a dataset where crop environment (soil, weather and management) was accurately characterized, thus minimizing errors in input variables. Seven crop variables were sampled and compared to the simulated ones (Figure 2) covering nearly every module presented in Figure 1.

In general, intermediate variables were predicted with an accuracy (relative RMSE) ranging from 4% to 30%. Table 3 presents an analysis of the model error and its components [START_REF] Kobayashi | Comparing simulated and measured values using mean squared deviation and its components[END_REF].

Phenology (sowingflowering period) is accurately predicted (3.5%); further analysis revealed that most of the error came from the sowing-emergence phase. Trends for dynamically sampled variables (absorbed nitrogen, leaf area, RIE and biomass) over the crop season were predicted with most of the error coming from LCS, indicating that the model had neither a significant bias from measurements (low SB, 1 -6% of mean square deviation) nor a lack or excess of sensitivity (low SDSD). The outputs, more integrative variables (yield and oil content), showed bias (~ 25%) but relative RMSE was in the standard range of crop model performance (8-15%, Pereyra-Irujo and [START_REF] Pereyra-Irujo | Sunflower yield and oil quality interactions and variability: Analysis through a simple simulation model[END_REF][START_REF] Villalobos | OILCROP-SUN: a development, growth and yield model of the sunflower crop[END_REF].

Regression lines relating these two variables showed that the simulated range was narrower than the observed one. Two groups of prediction confidence can be drawn showing good prediction accuracy (RRMSE ~ 15%) for all variables except for LAI and absorbed nitrogen which had RRMSE above 20%. No variable had a large prediction error, indicating that the final output error results from poor prediction for all variables rather than error compensation.

Model performance in a small-scale trial network

Our objective here was to evaluate the model in its usual application conditions, with regional (instead of local) weather data or more uncertainty about soil analysis. Yield and oil content were collected for 20 genotypes over 16 situations (locations x year). Genotypic variability was wide as the genotypes' release date ranged from 1970 to 2000 in a uniform distribution [START_REF] Vear | 30 years of sunflower breeding in France, Oleagineux, Corps gras[END_REF]. Two important model properties for genotype evaluation were analysed: the prediction capacity (ability to predict quantitative values) and the ranking capacity (ability to rank the genotypes) (Figures 34).

Considering all genotypes and trials, RMSEP was 0.45 t ha -1 for yield and 3.7% for oil content (RRMSEP were 16% and 9%, respectively); here values were slightly higher than for the "development" dataset. Considering each trial individually, RRMSEP ranged from 9% to 30% for crop yield and from 3% to 14% for oil content, with a skewed distribution towards well-predicted situations. Ranking capacity (Kendall's correlation coefficient) for each trial was between 0.23 and 0.67 (mean=0.46) for yield, and between -0.1 and 0.75 (mean=0.54) for oil content. Surprisingly, prediction capacity (RMSEP) and ranking capacity were not correlated for yield (r=0.05, p=0.83) or for oil content (r=-0.04, p=0.86).

Different factors could explain the observed errors: genotypic factors (linked to genotypic parameterization), environmental factors (linked to environment description or the inclusion of stress in the model) and the interaction between these factors. To further unravel these error factors, the model performance was evaluated on mean effects (Figures 56).

Prediction errors were clearly lower for mean effects when discarding G x E interactions (~ 40% less error for yield). This analysis also pointed out that environmental effects were stronger in reality than modelled: this was mostly the case with oil content where environmental means RMSE showed a five-fold increase compared with genotypic means.

From now, we will focus the model evaluation on grain yield, as this is the most commonly recorded variable. The yield E or G prediction error (~ 0.28 t.ha -1 ) was still below the least significant difference which discriminates between situations (LSD = 0.40 t.ha -1 ) or genotypes (LSD = 0.42 t.ha -1 ). This indicated that the model was able to discriminate betweens trials and genotypes when dealing with mean effects. There was also a trend towards yield overestimation for the most productive genotypes and underestimation for the least productive.

An analysis of variance on yield was done on actual and simulated trial networks (Table 4) to quantify the G x E contribution to total yield variability. All tested main effects were highly significant whether dealing with observed or simulated data. Interaction effects were not tested (but were calculated) as there were no replications in the simulated data.

Mean deviations [START_REF] Denis | Panorama des méthodes statistiques d'analyse des interactions génotype X milieu[END_REF] of the effects were calculated for observed yields: the environmental effect was the biggest (0.71 t.ha -1 between trials) followed by the genotypic effect (0.45 t.ha -1 between genotypes) and G x E interactions (0.27 t.ha -1 ).

Although the G x E interaction should not be neglected (10% of the overall mean), this network presented a relatively weak G x E effect (3% of G effect) compared with other results on sunflower network trials [START_REF] Foucteau | Interpretation of genotype by environment interaction in two sunflower experimental networks[END_REF][START_REF] De La Vega | Genotype by environment interaction and indirect selection for yield in sunflower: II. Three-mode principal component analysis of oil and biomass yield across environments in Argentina[END_REF], in which the G x E effect was between 11% and 39% of the G effect .

In the simulated network, mean sum of squares (MS) was about 60% of the observed one, i.e. the crop model predicted less yield variance than actually ocurred. Nevertheless, the ranking of the ANOVA factors was identical in both networks with the same MS ratios (Table 4). The G x E effect, which was in fact low in the field, was predicted to be 9-fold smaller by the simulation (0.1%).

Finally, genotypic stability was computed to investigate whether the same genotypes were subject to G x E interactions in the real and simulated network. Stability was plotted against performance (Figure 7) to identify "high performance, low variability" response in the genotype list. Model simulations strongly linked variability and performance (r=0.81, p<0.001), but this was not the case in reality (r=-0.05, p>0.8) where no relation was found.

Nevertheless a group of four genotypes (Melody, LG5660, Prodisol, Allstar) could be picked out, based on their performance. In both plots, these genotypes outperformed the others but their variability was among the lowest in the actual network and relatively higher in the simulated network. Thus the model helped more to discriminate genotypes due to their intrinsic performance rather than their sensitivity to environmental effects.

DISCUSSION

The "model performance" in itself is not an easy term to define, so improving it can be difficult. For statistical models, the error level calculation is a systematic and important part of the analysis. A confidence interval is often estimated and associated with the model but this approach is not easily applied to crop models. The general method is to compare, in different situations (weather patterns, soils), the model predictions and crop observations to estimate a mean error level. But this method is not ideal. First, the model has often been fitted to the data (through parameter estimation); in this case, the measured error level corresponds to the fitting error and underestimates the prediction error. The representativeness or reliability of observed data is rarely discussed, although the error level can vary widely in situations where the model is used. In this section, we will discuss the model's use-cases in relation with its performance.

The SUNFLO crop model can simulate variations in genotypic performance between different environments (GEM interactions). These interactions played a significant part in yield variability in both the actual and simulated network although they were higher in the actual network. Such results raise several methodological points for discussion concerning the relevance of a dynamic crop model for genotype evaluation, the limitations of the modelling approach and finally the prospects for the use of the model.

Does SUNFLO succeeded in evaluating a range of sunflower genotypes?

The ability of the model to rank genotypes (relative performance) was independent from its absolute predictive quality which means that the model can still be used even if simulation biases are detected.

Ranking performance. The ranking capacity of SUNFLO is mainly due to an appropriate description of the phenotypic variability among genotypes and to a correct parameterization (statistical or measurement). Half of the genotypic parameters were related to resource acquisition (leaf area) or resource management (water response parameters) processes, which play a significant role in the environmental conditions in which sunflower is grown. But this overview of crop behaviour through genotypic parameters is incomplete, as a recent study showed extra phenotypic variability in rooting depth and water extraction among commercial sunflower hybrids [START_REF] Guilioni | Root system and water extraction variability for sunflower hybrids[END_REF]. Extending the crop description to the rooting system would probably improve the model's capacity to generate more complex interactions in dry environments.

Absolute prediction performance. In addition, improving the model's capacity to predict absolute yield is a more demanding objective as it depends on the quality of input data and observed values as well as on the nature of the dataset (for instance, the relative importance of yield-limiting factors not simulated by the model). The model prediction error (15%, 0.45 t.ha -1 ) when estimated on a dataset was however within the range of the other sunflower crop models although the input variables lacked site-specific values. This error remained very close to the least significant difference or between genotypes in microplots but the list of genotypes covered a long period of genotype release (30 years) and potential yield range.

This error would probably be too large to discriminate between genotypes from the same release period because of their similar performance level ( ~ 0.2 t.ha -1 ).

The model performance strongly relies on the quality of the dataset used for evaluation (input data or field assessments). Poor reliability of input data may be attributable to weather being recorded too far from the experimental location, from a rough estimation of available soil water content, or, sometimes, from omissions in the components of crop management (timing and amounts). The prediction error was doubled at the less reliable sites of the network (data not shown). The different sampling methods used in the experimental network and the soil variability within each trial resulted in different yield or precision levels, with direct consequences for the evaluation of model performance.

As we evaluated the model in multi-environment trials used for official cultivar registration, we accepted a default environmental characterization. Trials on experimental stations would have facilitated model evaluation by giving a more complete and reliable environment description, but the number of locations would have been limited. In spite of its limitations, the users' network was a good opportunity for testing the model's robustness in real conditions.

What limitations result from the modelling options?

Genotypic variability was better simulated than environmental variability (Figure 2). This may be due to the model's structure (internal limitations) and from processes not considered by the model (external limitations).

Internal limitations. Modelling the action of combined environmental stresses (temperature, light, water, nitrogen) on a given biological variable is a conceptual problem to which little attention has been paid. Separating the effect of stresses is an oversimplification of field reality which cannot be observed on a daily basis. Experimenting in controlled environments (greenhouse, CE chambers) helps to separate stresses, but plant growth is suboptimal and population effects are lost. A common solution to this problem is to create stress scalars which are multiplicative or to assume a hierarchy of stresses (the main limiting factor concept). These approaches can lead to an erratic sensitivity of the model: multiplicative solutions tend to overestimate stress effects while ordering constraints using min/max functions introduces threshold effects into the simulation. In our approach, the model slightly overestimated crop performance when using multiplicative stresses, which might lead to bias if new stresses are to be included in the future.

Environmental stress modelling can also be viewed as a trade-off between a mechanistic and an empirical integration. In the first case, modelling the mechanisms can be complex: for example, assuming an acceleration of leaf senescence under drought stress may result in a lower light interception and a lower grain yield. On the other hand, the need for simplicity leads one to adopt a more implicit and integrative view whereby drought stress can directly affect the harvest index (instead of active leaf area) and thus yield. It is reasonable to believe that the first solution should generate more realism in plant-environment interactions while demanding more physiological insight.

We finally decided to mix mechanistic and statistical approaches to deal with highly integrative variables such as harvest index (HI) or oil content (OC). These variables were modelled at harvest using a simple statistical model dependent on covariables previously simulated by the mechanistic part of the crop model throughout the growing season. But by doing so, feedback effects between different dynamic variables of the model and static output variables cannot be taken into account. However, this statistical solution made it possible to account for environmental variability in the prediction of HI and OC and the large dataset used for parameterization conferred some robustness to the prediction of these final variables.

External limitations. Modelling the detrimental effects of plant diseases (phoma, phomopsis, sclerotinia, mildew) is a bottleneck to any progress in the prediction of yield and oil content in sunflower fields. These diseases are difficult to control by crop management; plant susceptibility is largely genetic. In 2000 and 2001, in the multi-environmental trials, we can be sure that diseases were responsible for some discrepancies between simulated and observed yields. This problem was indirectly brought to light by analysing the contribution of environments (locations x year) to G by E interactions (environmental ecovalence, [START_REF] Becker | Stability analysis in plant breeding[END_REF]. In the actual network, two kinds of environment were subject to strong interactions: (1) low-stress environments ; (2) water-stressed environments. In the simulated network, the interactions were just apparent in the low-stress environments, probably because of the lack of information about pathogens, which are often more severe in dense canopies resulting from deep soils or wet conditions. On the other hand, the G x E interaction was well predicted in water-stressed environments, as the main components of the response of sunflower to water availability were included in the model.

The validity domain of SUNFLO includes environments where fluctuating water and nitrogen levels occur due to combinations of weather patterns and soils in western Europe. Photoperiodic effects were not modelled, leading to a possible bias in the prediction of anthesis date in other geographical areas.

SUNFLO, a model for engineering in the domain of varietal evaluation ?

SUNFLO has several characteristics of an engineering model as defined by [START_REF] Passioura | Simulation models: science, snake oil, education, or engineering?[END_REF]: ease of use and extensibility (new genotypes) of the parameterization based on measurements, input data easily available from soil and weather records.

The field determination of the genotypic parameters requires potential growth conditions but from different experiments: maximal LAI will be obtained in non-limiting conditions before anthesis, maximal HI requires low vegetative growth before anthesis but sufficient water during grain filling; oil content will be maximized under low nitrogen but well-watered conditions. To cope with the regular appearance of new genotypes, these parameterization experiments together with greenhouse measurements could be optimised to take advantage of official genotype assessment trials.

From its capacity to evaluate the consequences on yield of different variety types defined by a limited set of parameters, the model might be used for various applications in the field of varietal evaluation (selection of the best variety x management combinations and evaluation of ideotypes) or environmental diagnosis (detection of G x E interactions, identification of stress patterns). If the model should be used during breeding, for variety registration testing and development, more emphasis shoud be given on reducing uncertainty on inputs (genetic parameters, soil and climate characterization)

CONCLUSION

The inclusion of genotypic traits within a crop model succeeded in differentiating the response of a range of varieties grown in a wide range of environmental conditions (soil, climate). G by E interactions were reproduced by dynamic simulation with the E term resulting from crop management acting at the resource level. To have a model useful for newly registered varieties, all the genotypic parameters were meant to be measurable. The model performance was evaluated by using independent data representative of practical application rather than specific research trials. This evaluation showed that both the model framework and the uncertainty on inputs resulting from practical application limits early discrimination of close-performing cultivars. (anthesis, date of year), nitrogen budget (absorbed N, kg.ha -1 ), leaf area index, radiation interception efficiency (%), aerial dry matter (t.ha -1 ), achene yield (t.ha -1 ) and oil content (%). Absorbed nitrogen, leaf area, RIE (Radiation Interception Efficiency) and biomass were sampled dynamically along the crop cycle. Filled symbols correspond to data used for parameter estimation ; solid line represent the 1:1 line ; dotted line is a regression line on all data ; model efficiency and RMSE (calculated on all data) are displayed in upper-left corner of the plots. 
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[

  EQ4] T.RUE = Tm*(1/(Tol-Tb))-(Tb/(Tol-Tb)) if Tm < Tol ; 1 if Tol<Tm<Tou Tm*(1/(Tou-Tc))-(Tc/(Tou-Tc)) if Tm > Tou else 0where Tol = 20 °C, Tou = 28 °C, Tc = 37 °C.

[

  EQ7] zR = sum(dR * Tm) if zR < zPR ; else zR = zPR ; where dR = 0.7 mm/C.d The water content of each soil layer results from the water balance as described in [EQ8-10] [EQ8] WC1 = Pr +Irr -dTRC1 -dEV -DC1 [EQ9] WC2 = +DC1 -DC2 -dTRC2 +(dR * Tm) * (WC3/zC3) [EQ10] WC3 = +DC2 -DC3 -(dR * Tm) * (WC3/zC3) Soil evaporation is separate from plant transpiration and is calculated [EQ12] as the product of the fraction of radiation reaching the soil, reference evapotranspiration and daily relative soil evaporation (dRE). dRE [EQ11] accounts for a reduction of soil hydraulic conductivity with time from the last effective rain (DWW, Days Without Water), DWW being incremented if (Pr + Irr < 3 mm). [EQ11] dRE = (DWW + 1) 0.5 -(DWW) 0.5 [EQ12] dEV = (1 -RIE) * ETP * dRE Water loss due to plant transpiration [EQ15-16] is a function of potential transpiration rate [EQ13], water effect on transpiration [EQ19] and root distribution over the two first layers (fR). This distribution is made proportional to the thickness of each soil layer [EQ14].

[

  dMin = MINP * T.NM * W.NM [EQ26] dDenit = 6 * exp(0.07738 * Tm -6.593)

[

  EQ29] PNCc = min(a * TDM -b ) a = 5 is the plant nitrogen content (%) at TDM = 1 t.ha -1 and b = 0.49 b. Crop response to nitrogen stress Two nitrogen stress indexes (NNI, INNI), both based on the ratio of actually absorbed N (Na, kg.ha -1 ) to the critical N amount needed to satisfy the demand (Nc), but differing in the way they are calculated, were used : the nitrogen nutrition index (NNI) depends on cumulated absorbed N while the instantaneous nitrogen nutrition index (INNI) is derived from the rate of absorption (dNa/dNc). Nitrogen stress factors [0-1] are linearly linked to NNI or INNI (Brisson et al., 2008): the nitrogen stress effect on leaf expansion (N.LE) is governed by NNI while the effect on RUE (N.RUE) is equal to INNI. [EQ30] N.LE = 1.75 * NNI -0.75 if NNI > 0.6 ; else N.LE = 0.3 [EQ31] N.RUE = INNI

[

  EQ32] Tii = i * PHY1 if i < 7 ; else Tii = (i -5) * PHY2 + 400 wherePHY1 = 71.4 and PHY2 = 16.3 °C.d [Rey2003].[EQ33] Tei = Tii + 1 / Kei where Kei = 0.013 Leaf longevity [EQ34] was modelled with a bell-shape curve depending on 2 genotypic parameters and 3 estimated (using plant leaf area as variable) parameters: LL0 (°C.d) was the asymptote of the curve; a (°C.d), the amplitude and b controlled the width of the curve while LLH controlled the rank of the most persistent leaf (identical to the largest leaf) and TLN was the total leaf number of the genotype. Leaf senescence date [EQ35] was calculated by adding leaf longevity to the 50% expansion date (Tei). [EQ34] LLi = LL0 + a * exp(-((i -LLH)²) / ((b * TLN)²)) where LL0 = 153 °C.d, a = 850 °C.d, b = 0.78, LLH and TLN values are defined in Lecoeur et al. (2009) [EQ35] Tsi = Tei + LLi

[

  EQ36] Aei = LLS * exp(a*((i-LLH)/(LLH-1))² + b*((i-LLH)/(LLH-1)) 3 ) where b = 1.5 -0.22*LLH -3.53E-4*LLS + 0.082*TLN and a = -2.31 + 0.018*LLH -1.64E-3*LLS + 0.0199 *TLN + 0.92 *b Individual leaf expansion rate (dAei) combined temperature, final individual leaf area [EQ36], thermal time to half-expansion [EQ33] and slope of expansion in a logistic relation [EQ37]. The slope parameter (Kei) was constant for all the leaves and also during senescence. As previously stated (Villlalobos et al., 1996) changes in leaf size along the stem are largely due to variation in the rate of expansion rather than to its duration. Consequently, expansion rate was limited by the multiplicative effects of light [EQ6], nitrogen [EQ30] and water [EQ19] without further prioritization. [EQ37] dAei = Teff * (Aei * Kei) * exp(-Kei * (TTE -Tei)) / (1 + exp(-Kei * (TTE -Tei)))² [EQ38] SFei = int (dAei * W.LE * N.LE * L.LE) The progression of leaf senescence (dAsi) was modelled on the same basis as expansion, except that variables Aei and Tei were swapped with actual expanded leaf area (Asi) and time to half-senescence [EQ35]. The senescent area of each leaf was the result of direct integration of senescence rate, without stress effects. [EQ39] dAsi = Teff * (Asi * Kei) * exp(-Kei * (TTE -Tsi)) / (1 + exp(-Kei * (TTE -Tsi)))² [EQ40] TLA = sum(SFei -Sfsi) Plant total green leaf area (TLA) was calculated from the difference of total and senescent individual leaf areas [EQ40].

[

  EQ42] RUE = 1 if TTE < 300 °C.d = 1 + ((TTE -300) * 2/(TDF -300)) if TTE < TDF = 3 if TTE < (TDEM -100) = a * exp(b * (1-((TDE-TDEM)/(TDPM-TDEM)))) if TTE < TDPM where a = 0.015 is the asymptote and b = 4.5 is the slope of the curve. TDF, TDEM and TDPM value were defined in Lecoeur et al. (2009) [EQ43] dTDM = 0.48 * Rg * RIE * RUE * W.RUE * N.RUE * T.RUE * PHS

(

  MSD). Statistical criteria are root mean square of error (RMSE) and RMSE as the fraction of the observed mean (Relative RMSE) ; bias (SB), squared difference between standard deviations (SDSD), lack of correlation weighted by the standard deviations (LCS) for the components of MSD. Table 4. ANOVA tables of yield for actual and simulated trial networks. The ANOVA model is a two way (Genotype, Environment) with interactions (G x E) model. The last column (% MS) is the relative contribution of the effect to the mean square sum.

Figure 1 .

 1 Figure 1. Chaining for different modules defining yield and oil production. Crop growth, displayed in the centre part, is viewed as the interaction between environmental and management-related limiting factors (left part) and genotypic information (right).Intermediate variables appear in modules (rectangles) with references to equations in the text.The schematic modules reflect the paragraphs' structure in the "model structure" section of the text. Parallelograms (parameters) and ellipses (variables) represent model inputs.

Figure 2 .

 2 Figure 2. Evaluation of the fit of the model. Estimated Vs observed data for phenology

Figure 3 .

 3 Figure 3. Achene yield prediction for 20 genotypes at 16 sites. Prediction capacity was assessed quantitatively through RMSEP and qualitatively with Kendall's correlation coefficient (ranking). The solid line represent the 1:1 line ; the dotted line is a regression line on all data.

Figure 4 .

 4 Figure 4. Achene oil concentration prediction for 20 genotypes at 16 sites. Prediction capacity was assessed quantitatively through RMSEP and qualitatively with Kendall's correlation coefficient (ranking). Solid line represent the 1:1 line ; dotted line is a regression line on all data.

Figure 5 .

 5 Figure 5. Predicting mean environmental effects. Model performance was evaluated by RMSEP and Efficiency for the two output variables.

Figure 6 .

 6 Figure 6. Predicting mean genotypic effects. Model performance was evaluated by RMSEP and Efficiency for the two output variables.

Figure 7 .

 7 Figure 7. Variability vs Performance plot for the genotype set in the actual and simulated networks. Variability was calculated as the environmental variance (S², t.ha -1 ) [Becker1981, Piepho1998] and performance is the mean yield for each genotype.

Table 1 .

 1 Characteristics of the experiments used in the model development. Trial number, site name and geographical location, year, sowing and harvest date, number of genotypes, total N fertilization and irrigation, soil average water content usable by the crop, total precipitation, climatic water deficit (precipitation -PET), mean temperature and incident radiation sum. Integrative variables (sums, means) were computed for the whole growth period. Trials #1-40 were partly used to estimate some model parameters while the remaining data were used to estimate the model prediction capacity on a larger genotypic pool.

Table 2 .

 2 Variables and parameters used as covariables (upper table) in statistical models of harvest index and oil content (lower).

Table 3 .

 3 Analysis of model prediction for 7 variables based on mean squared deviation

Table 3

 3 

	Table 4		Df	SS	MS	F	Pr(>F)	% MS
	Observed	E	15	79.0	5.27	74.2 ***	69.0
		G	19	43.7	2.30	32.4 ***	30.1
		GxE	285	20.2	0.07			0.9
	Simulated	E	15	50.2	3.35	693.9 ***	71.1
		G	19	25.7	1.36	280.9 ***	28.8
		GxE	285	1.4	0.01			0.1
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