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ABSTRACT In the continuum structural mechanics framework, a unilateral contact condition between two flexible bodies
does not generate impulsive contact forces. However, finite-dimensional systems, derived from a Finite Element
semi-discretisation in space for instance, and undergoing a unilateral contact condition, require an additional
impact law: unilateral contact occurrences then become impacts of zero duration unless (i) the impact law is purely
inelastic, or (ii) the pre-impact velocity is zero. This contribution explores autonomous periodic solutions with one
contact phase per period and zero pre-impact velocity (case (ii)), for any n-dof mechanical systems involving linear
free-flight dynamics together with a linear unilateral contact constraint. A recent work has shown that such solutions
seem to be limits of periodic trajectories with k impacts per period as k increases. Minimal analytic equations
governing the existence of such solutions are proposed and it is proven that, generically, they occur only for discrete
values of the period. It is also shown that the graphs of such periodic solutions have two axes of symmetry in time.
Results are illustrated on a spring-mass system and on a 4-dof two-dimensional system made of 1D Finite Elements.
Animations of SPPs with up to 30 dofs are provided.

KEYWORDS vibration analysis; impact dynamics; periodic solutions; vibro-impact oscillators; nonsmooth modal analysis

1 Introduction 1
2 Unilateral contact condition seen as a stiffness matrix switch 2
2.1 Consequences of energy conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Consequences of gap closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Stiffness matrix switch illustrated on a simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Solution method 3
3.1 Free-flight dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Dynamics of the contacting phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Solutions of Ry D �L2y for some initial conditions y.0/ and Py.0/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Junction at t D 0 of the solutions for t < 0 and t > 0, and symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Methodology to find SPPs 6
5 Summary and examples 7
5.1 Algorithm for finding SPPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 SPPs of 5-dof spring-mass system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3 SPPs with slip and non-diagonal mass matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Special behaviours for specific parameters 10
6.1 Closed gap at rest (g0 D 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Non-symmetric potential SPPs with moving obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 Conclusion 11
8 References 12
A Technical lemma 13

1. Introduction When a continuous medium collides with a rigid obstacle, (i) travelling waves emerge and
(ii) the gap remains closed for some time until the two bodies separate. In the spatially semi-discretised
framework, (i) travelling waves are not properly captured and this is commonly overcome via an additional
impact law [3]. The impact law makes the finite-dimensional dynamics deterministic, meaning that any
initial conditions determines a unique time-evolution. In general, (ii) lasting contact phases are only
possible for inelastic impact laws, resulting in energy dissipation. However, some very specific initial
conditions generate solutions which have the property of being uniquely determined without requiring
an impact law and featuring lasting contact phases. Such non-impulsive solutions “avoid” impacts by
smoothly closing the gap with zero velocity and zero acceleration every time contact is activated. Among
this class of trajectories, this work investigates periodic ones with one contact phase per period. They are
referred to as 1 Sticking phase Per Period (1 SPP or simply SPP) solutions of n-dof autonomous systems
with piecewise-linear dynamics and one unilateral contact constraint. While the investigation of such
trajectories was initially motivated by their similarity with the continuous framework (no requirement
for an impact law and dissipation-free lasting contact phases), they also seem to be limits of periodic
solutions with k impacts per period as k !1 [15, 16].

The dynamics of finite-dimensional systems subject to unilateral contact constraints has been widely
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investigated for several decades. Forced response of 1-dof vibro-impact oscillators were investigated [20]
with particular interest in bifurcations [9, 12]. Multidimensional systems were later studied, see e.g. [11]
and further references. The well-known phenomenon of chattering, consisting in an infinite number of
gap closures in finite time, was also investigated for 1-dof systems [2] and n-dof systems [1, 4]. When
chattering is said to be complete, it is followed by a phase of lasting closed contact, referred to as sticking1,
where the external force maintains the gap closed for a finite amount of time. Such sticking phases have
also been widely investigated [7, 8, 17–19], including stability analysis [10]. The major difference in
this work lies in the fact that autonomous periodic solutions with sticking phases are targeted: there is no
external force. Such trajectories were initially investigated by Le Thi [6] for a 2-dof-spring-mass system
with a unilateral constraint on one mass, where the terminology SPP was first introduced. The present
contribution extends the results to n-degree-of-freedom systems, general mass and stiffness matrices such
as those encountered in the Finite Element Method, as well as any affine unilateral constraint.

More precisely, we consider a system with mass matrix M and stiffness matrix K, both symmetric
positive-definite, undergoing a unilateral contact condition g.x/ � 0 where x is the vector of generalized
coordinates. The gap function g is assumed affine, i.e. there exists a unit vector w such that g.x/ D
w>x C g0 where g0 is the signed gap from the unconstrained resting position. Contact is closed if
g.x/ D 0. We now assume that M , K and w are fixed once for all and in the remaining, the term
generically is to be understood in the sense of for almost every M , K and w.

Without loss of generality, the initial time t D 0 is fixed such that the free phase corresponds to time
t 2 Œ�2t1; 0� while the contact phase corresponds to t 2 Œ0; 2t2� (the coefficient 2 is introduced to simplify
further derivations). The unknown period is T D 2t1 C 2t2. The governing equations on Œ�2t1; 0� read

M Rx CKx D 0 (1.1)

complemented on Œ0; 2t2�, by the Signorini conditions [5]:8̂̂̂<̂
ˆ̂:
M Rx CKx D w�

g.x/ � 0

� � 0

g.x/� D 0:

(1.2a)

(1.2b)

(1.2c)

(1.2d)

Since periodic solutions are targeted, the unknowns of the problem are the initial conditions x.0/; Px.0/ 2
Rn, the durations t1; t2 2 R and the normal contact force � 2 R. Ineq. (1.2b) implies that a zero contact
velocity w> Px.0/ D 0 may occur only if w> Rx.0/ > 0 or if w> Rx.0/ D 0. The first case corresponds to
grazing contact and cannot lead to sticking because of ineq. (1.2c). The second case means that if the
obstacle were to be removed, t D 0 would correspond to an inflection point of the normal acceleration
w> Rx. A sticking phase can emerge with a zero contact velocity through this mechanism only. The free
phase of the trajectory is connected to the contact phase via continuity conditions on x and Px, together with
the periodicity condition, the contact condition at 0 and 2t2 and the zero contact velocity and acceleration
equations:8̂̂̂̂
<̂
ˆ̂̂:
x�.0/ D xC.0/; Px�.0/ D PxC.0/ [continuity]

x.�2t1/ D x.2t2/; Px.�2t1/ D Px.2t2/ [periodicity]

w> Px.0/ D 0; w> Rx.0/ D 0 [zero normal velocity and acceleration]

w>x.t/C g0 D 0; t 2 Œ0; 2t2� [contact condition]

(1.3a)

(1.3b)

(1.3c)

(1.3d)

with x 2 C2.Œ�2t1; 2t2�/. The schematic gap and normal contact force of a SPP are represented in fig. 1.
Instead of solving these equations directly, the present approach consists in mimicking the contact

phase by a free phase with a different stiffness matrix QK. The new stiffness matrix should not affect the
solutions of the original problem. That point is addressed in section 2, leading to the explicit characteri-
sation of QK. Necessary conditions on t1, t2 and x.0/; Px.0/ for the existence of solutions with 1 SPP are
given in section 3. The derivations are provided in section 4. Summary of the results and illustrations are
given in section 5.

1 The terminology might be confusing: there is no actual sticking in the sense that the sign of the normal force cannot change, i.e.
there is no glue.
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t

g.x.t// �.t/

0�2t1 2t2
T

free phase
M Rx CKx D 0

contact phase
M Rx C QKx D 0

Figure 1: Example time-evolution of gap g.x/ and normal contact force �.

2. Unilateral contact condition seen as a stiffness matrix switch We consider a solution of the free
system eq. (1.1) meeting the obstacle at t D 0, that is g.x.0// D w>x.0/C g0 D 0, with a zero contact
velocity w> Px D 0. The aim is to describe the contact phase by a differential equation M RxC QKx D 0 (S)
such that:

C1. [gap closure] all the solutions of S satisfy the contact condition during the contact phase: w> Px D 0
over Œ0; 2t2�;

C2. [energy conservation] the solutions of S which satisfy condition w> Px D 0 preserve the energy.

2.1. Consequences of energy conservation The second condition means that w> Px D 0 implies a
constant energy. Equivalently, its time derivative must vanish:

0 D Px>M Rx C Px>Kx D Px>.M Rx CKx/ D Px>.� QK CK/x: (2.1)

This scalar number must be zero for all x so Px>.K � QK/ D 0, which must hold for any Px such that
w> Px D 0. Hence, each column of K � QK must be orthogonal to the hyperplane orthogonal to w, that is
each column must be proportional to w. Accordingly, there exists a vector v such that K � QK D wv>.
We are now going to use the first condition to characterize the vector v such that:

QK D K � wv>: (2.2)

2.2. Consequences of gap closure Since w> Px.0/ D 0, w> Px D 0 over Œ0; 2t2� is equivalent to w> Rx D 0
over Œ0; 2t2�. All solutions of S satisfy Rx D �M�1 QKx, hence w> Rx D 0 becomes w>M�1 QK D 0.
Invoking eq. (2.2) and w>M�1w > 0 because M is definite-positive yields:

w>M�1.K�wv>/ D 0 or w>M�1K D .w>M�1w/v or v D
1

w>M�1w
KM�1w: (2.3)

We have just shown the following result.

Theorem 2.1 There exists a unique matrix QK satisfying conditions C1 and C2, given by:

QK D
�
In �

1

w>M�1w
ww>M�1

�
K: (2.4)

2.3. Stiffness matrix switch illustrated on a simple example This abstract result can be easily under-
stood with a simple system. Consider the 2-dof spring-mass system illustrated in fig. 2 (left) as in [6]. The
gap function is g.x/ D g0 � x2 D w

>x C g0 with w> D Œ0 � 1�. The mass and stiffness matrices are
expressed as:

M D

�
m1 0

0 m2

�
K D

�
k1 C k2 �k2

�k2 k2

�
: (2.5)

From theorem 2.1, the equivalent stiffness matrix QK during the contact phase is

QK D

��
1 0

0 1

�
�m2

�
0 0

0 1

� �
m1 0

0 m2

���
k1 C k2 �k2

�k2 k2

�
D

�
k1 C k2 �k2

0 0

�
: (2.6)
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This is interpreted as follows: the first mass does not see any change as its dynamics is still dictated by the
action of both springs. The dynamics of the second mass is not restricted by a unilateral contact condition
since M Rx C QKx D 0 but instead the connected spring induces no action: as a consequence, the second
row of QK vanishes. This can be understood as a “surgery” on the stiffness matrix, resulting in mimicking

m1 m2 g0

k1 k2
x1 x2

(a) System at rest.

F =−kx1 + k2(x2 − x1)

(b) Contact phase viewed from first mass: unchanged.

F = 0

(c) Contact phase viewed from second mass: discon-
nected.

Figure 2: Physical interpretation of QK illustrated on a simple system.

the contact phase by a free phase and thus eliminating the contact force as an unknown—which can be
recovered from:

�w DM Rx CKx DM Rx C QKx

D0

� QKx CKx D .K � QK/x D
1

w>M�1w
ww>M�1Kx: (2.7)

It is noteworthy that QK is not symmetric, meaning it violates Maxwell–Betti reciprocal work theorem: it
is not possible to build a linear (unconstrained!) mechanical system of stiffness matrix QK.

3. Solution method The problem is now reduced to finding one solution satisfying

8t 2 Œ�2t1; 0�;

�
M Rx.t/CKx.t/ D 0

g.x.t// � 0

(3.1a)

(3.1b)

during the free phase and

8t 2 Œ0; 2t2�;

(
M Rx.t/C QKx.t/ D 0

w>M�1Kx.t/ � 0

(3.2a)

(3.2b)

during the contact phase, together with the continuity conditions (1.3a), periodicity conditions (1.3b),
zero contact velocity and acceleration (1.3c) and gap closure (1.3d) at t D 0. For the discussion to come,
we introduce a terminology to distinguish actual solutions (admissible solutions) and solutions satisfying
only the equalities, but not necessarily the two inequalities (potential solutions).

Definition 3.1 A solution of eqs. (1.3), (3.1a) and (3.2a) is referred to as potential solution (or potential
SPP). An admissible solution (or admissible SPP) is a solution of eqs. (1.3), (3.1) and (3.2).

By construction of the solution, eq. (1.2c) is always satisfied during the free phase since � D 0

and eq. (1.2b) is always satisfied during the contact phase, since g.x/ D 0. This implies that eq. (1.2d) is
also verified. It is worth mentioning that eq. (3.2b) follows from eq. (2.7), given that w>M�1w > 0.

We are now showing that the dynamics of both phases can be written in the form Ry D �L2y for
some diagonalisable matrix L and y DM 1=2x.

3.1. Free-flight dynamics The matrix M has a unique symmetric and positive-definite root M 1=2; let
y DM 1=2x. Eq. (3.1a) becomes

Ry CM�1=2KM�1=2y D 0: (3.3)

The matrixK1 WDM
�1=2KM�1=2 is symmetric hence orthogonally diagonalisable; letK1 D Q�

2Q�1

for some orthogonal matrix Q and � D diag.!1; : : : ; !n/ a diagonal matrix of positive diagonal entries.
Let L1 D Q�Q

�1, it follows that

Ry D �L2
1y: (3.4)
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3.2. Dynamics of the contacting phase Expressing eq. (3.2) in terms of y gives:

Ry D �M�1=2 QKM�1=2y: (3.5)

From theorem 2.1 and introducing w1 DM
�1=2K, it comes that

QK D K �
1

w>1 w1

M 1=2w1w
>
1 M

�1=2K DM 1=2
�
In �

1

w>1 w1

w1w
>
1

�
K1M

1=2 (3.6)

so that finally:

Ry D �J1K1y with J1 D In �
1

w>1 w1

w1w
>
1 : (3.7)

J1 is the matrix of the orthogonal projection on the hyperplane w?1 , so there is an orthogonal change
of basis of matrix P such that P>J1P is the orthogonal projection on the hyperplane H D e?n , of
diagonal matrix J D diag.1; : : : ; 1; 0/. This change of basis transforms K1 into K2 D P

>K1P where
K2 is symmetric positive-definite. The restriction of JK2 to H is symmetric positive-definite, hence
diagonalisable, invertible and has positive eigenvalues. The direct sum of H and the kernel of JK2 is
the whole vector space, hence JK2 is diagonalisable and so is J1K1. Additionally, it follows that JK2

has non-negative eigenvalues (1 zero eigenvalue and n � 1 strictly positive eigenvalues), implying that
J1K1 has a square root L2. In the end, we have shown that the dynamics during the contact phase can be
described by the following ODE:

Ry D �L2
2y: (3.8)

In practice, L1 and L2 are found numerically.

3.3. Solutions of Ry D �L2y for some initial conditions y.0/ and Py.0/ The dynamics of both the free
and contact phases is captured by an ODE of the form Ry D �L2y (see eqs. (3.4) and (3.8)). This simple
ODE can easily be solved as follows. Let

z D

�
y

Py

�
; A D

�
0 I

�L2 0

�
; (3.9)

then the ODE becomes Pz D Az so z.t/ D exp.tA/z.0/, where

exp.tA/ D
1X

iD0

.�1/i
t2i

.2i/Š

�
L2i 0

0 L2i

�
C

1X
iD0

.�1/i
t2iC1

.2i C 1/Š

�
0 L2i

�L2iC2 0

�
(3.10)

D

�
cos.tL/ t sinc.tL/
�L sin.tL/ cos.tL/

�
: (3.11)

where cos, sin and sinc are trigonometric functions of matrices. It follows that�
y.t/ D cos.tL/y.0/C t sinc.tL/ Py.0/

Py.t/ D �L sin.tL/y.0/C cos.tL/ Py.0/:

(3.12a)

(3.12b)

If L is invertible (in particular, L1 is invertible), t sinc.tL/ D L�1 sin.tL/. Since L can be made
diagonal, the matrix operators sinc and sin can be advantageously reduced to scalar operators acting on
the eigenvalues .�1; : : : ; �n/ of L: if L D PDP�1, sinc.L/ D P diag.sinc.�1/; : : : ; sinc.�n//P

�1 and
sin.L/ D P diag.sin.�1/; : : : ; sin.�n//P

�1.

3.4. Junction at t D 0 of the solutions for t < 0 and t > 0, and symmetry We consider one solution
y 2 C2.R/ satisfying Ry D �L2

1y over R� and Ry D �L2
2y over RC, both sharing the same initial

conditions y.0/, Py.0/. Finding a periodic solution reduces to finding t1; t2 > 0 such that there exists a
nonzero solution y defined over Œ�2t1; 2t2�, with y.�2t1/ D y.2t2/ and Py.�2t1/ D Py.2t2/. Introducing
A1, A2 corresponding to L1, L2 in eq. (3.9), this condition can also be written as:

exp.�2t1A1/z.0/ D exp.2t2A2/z.0/ or �z.0/ D 0 (3.13)

with� D exp.�2t1A1/� exp.2t2A2/. Nonzero solutions may only exist for t1; t2 such that� is singular.
We are going to show the following result.
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Theorem 3.1 Instants t1, t2 satisfy det� D 0 iff there exists a nonzero solution y such that
� either y.�t1/ D y.t2/ D 0; in that case, y has a point of symmetry at t1 over Œ�2t1; 0�, and at t2

over Œ0; 2t2�.
� or Py.�t1/ D Py.t2/ D 0; in that case, y has one axis of symmetry at t1 on the interval Œ�2t1; 0�,

and another axis at t2 on the interval Œ0; 2t2�.

Corollary 3.1 All generic solutions have two axes of symmetry per period: one in the middle of the contact
phase and one in the middle of the free flight phase.

Corollary 3.1 directly results from theorem 3.1: if g0 ¤ 0, at the middle of the contact phase, that is
g.x.t2// D 0, then w>x.t2/ D �g0 which is in contradiction with y having a punctual symmetry over
Œ0; 2t2� (we would have y.t2/ D 0 so x.t2/ D 0). It follows from the theorem that any solution has
two axes of symmetry. If g0 D 0 and det.T2/ D 0, by central symmetry w>x.�2t1/ D w>x.�t1/ D

w>x.0/ D 0. If for some t0 2 .�2t1;�t1/, w>x.t0/ > 0, then by punctual symmetryw>x.�2t1� t0/ <
0 with �2t1 � t0 2 .�t1; 0/, which is in contradiction with the unilateral contact condition w>x � 0.

To prove theorem 3.1, we start with the following simple observation.

Symmetries of the solutions of Ry D �L2y Eq. (3.12) implies that y is even iff Py.0/ D 0 and odd iff
y.0/ D 0. Similarly, via a t0 translation, y.t0C t / D y.t0 � t / iff Py.t0/ D 0 and y.t0 � t / D �y.t0C t /
iff y.t0/ D 0. The first case corresponds to an axial symmetry, the second one to a central symmetry.

Proof of Theorem 3.1 Couples .t1; t2/ satisfying periodicity conditions y.�2t1/ D y.2t2/ and Py.�2t1/ D
Py.2t2/ are such that there exists a nonzero z.0/ verifying �z.0/ D 0. Nonzero solutions may thus only
exist if � is singular. Using Eq. (3.11), � reads:

� D

�
cos.2t1L1/ � cos.2t2L2/ 2t1 sinc.2t1L1/ � 2t2 sinc.2t2L2/

L1 sin.2t1L1/C L2 sin.2t2L2/ cos.2t1L1/ � cos.2t2L2/

�
: (3.14)

Then, using matrix trigonometric double-angle identities such as sinc.P / cos.P / D sinc.2P / for any
matrix P , � can be factorized in two different ways:

� D 2

�
t1 sinc.t1L1/ �t2 sinc.t2L2/

cos.t1L1/ � cos.t2L2/

� �
L1 sin.t1L1/ cos.t1L1/

�L2 sin.t2L2/ cos.t2L2/

�
WD 2R1R2 (3.15)

and

� D 2

�
cos.t1L1/ � cos.t2L2/

L1 sin.t1L1/ L2 sin.t2L2/

� �
cos.t1L1/ t1 sinc.t1L1/

cos.t2L2/ t2 sinc.t2L2/

�
WD 2T1T2: (3.16)

From the technical lemma A.1, it follows that det.T1/ D det.R2/ and det.T2/ D det.R1/. In the end, the
following equality holds:

det.�/ D 2n det.R2/ det.T2/: (3.17)

For � to be singular,
� either det.R2/ D 0:�

L1 sin.t1L1/y.0/C cos.t1L1/ Py.0/ D 0

�L2 sin.t2L2/y.0/C cos.t2L2/ Py.0/ D 0

(3.18)

(3.19)

which, through Eq. (3.12), is equivalent to Py.t1/ D Py.t2/ D 0, that is y has two axial symmetries;
� or det.T2/ D 0:�

cos.t1L1/y.0/C t1 sinc.t1L1/ Py.0/ D 0

cos.t2L2/y.0/C t2 sinc.t2L2/ Py.0/ D 0

(3.20)

(3.21)

which is equivalent to y.t1/ D y.t2/ D 0, that is y has two punctual symmetries.
This ends the proof of Theorem 3.1.

Remark 3.1. For some very specific values of M and K, it is possible to find t1; t2 such that det.T2/ D 0,
leading to potential solutions with punctual symmetries instead of axial symmetries. Such an example
is provided in section 6.2, however these cases are never admissible: corresponding � has a point of
symmetry, so cannot satisfy eq. (3.2b).
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4. Methodology to find SPPs Put together, the previous derivations lead to a methodology to compute
SPPs. We assume g0 ¤ 0.

Periodicity as a first condition on .t1; t2/ The condition of periodicity is governed by det.�/ D 0.
However, from eq. (3.17) in the proof of Theorem 3.1, det.�/ D 2n det.R2/ det.T2/. From Corollary 3.1,
det.T2/ D 0 does not lead to admissible solutions, hence it suffices to find .t1; t2/ solution to det.R2/ D 0.
This provides a first equation.

When the periodicity condition det.R2/ D 0 is satisfied, all the columns of adj.R2/
> are colinear

and are in the kernel of R2, hence in the kernel of �, see eq. (3.15). Choosing z.0/ as a nonzero column
of adj.R2/ ensures that det.�/z.0/ D 0, meaning that z.0/ is proportional to a set of initial conditions
leading to a potential SPP.

Smooth normal contact velocity at t D 0 as a second condition on .t1; t2/ The condition of zero
pre-impact normal velocity is satisfied over Œ0; t2� by construction of QK: on Œ0; t2�,

w> Rx C w>M�1 QKx„ ƒ‚ …
D0

D 0 (4.1)

hence w> Px is constant and by symmetry, it vanishes over Œ0; t2�. However eq. (1.3c) also includes
w> Rx.0/ D 0, which yields a condition on the free flight dynamics, since Rx D �M�1Kx on Œ�2t1; 0� so
w>M�1Kx.0/ D 0. In terms of y DM 1=2x, the equality also writes

w>M�1KM�1=2y.0/ D 0: (4.2)

We insist that y.0/ stores the n first rows of a non-zero column of adj.R2/
> and is known: it is completely

determined by .t1; t2/. Equation (4.2) hence provides a second equation on .t1; t2/, which is generically
independent of the first one. Unknowns .t1; t2/ are thus solutions to two independent equations (except
maybe for some peculiar M and K), which yields the following important result.

Theorem 4.1 For generic M and K, if g0 ¤ 0 then SPPs may only occur for isolated couples .t1; t2/,
and thus isolated period T . If g0 D 0 and there is no SPP.

In particular, there is no continuum of SPP, contrary to trajectories with k impacts per period [15].
The case g0 D 0 can be shown by observing that w>x.0/ D 0 yields an additional scalar condition

on x.0/, a priori independent of the other ones, resulting in an over-determined system, generically with
no solution. A subgeneric example where M and K have been specially designed to induce an SPP with
g0 is provided in section 6.1. Until then, it is assumed that g0 ¤ 0.

Gap closure at t D 0 We have just seen that an appropriate doublet .t1; t2/ determines z.0/> D
Œy.0/; Py.0/� chosen as a non-zero column of adj.R2/

>, up to a multiplicative constant. This constant is
fixed by the condition g.x.0// D 0: w>x.0/ D �g0, that is:

x.0/ D �
g0

w>M�1=2y.0/
M�1=2y.0/: (4.3)

This sets the initial velocities to

Px.0/ D �
g0

w>M�1=2y.0/
M�1=2

Py.0/: (4.4)

The value g0 ¤ 0 does not affect the potential existence of SPPs, only dictated by .t1; t2/. It shows that
generically, there is no non-trivial SPP with g0 D 0.

Recall that admissible SPPs must also satisfy the two following conditions, corresponding to eqs. (3.1b)
and (3.2b).
� Gap non-negativeness on Œ�2t1; 0�: The global solution on Œ�2t1; 2t2�, expended to R via 2.t1Ct2/-

periodicity, can be recovered from x.0/ and Px.0/ through eq. (3.12). The inequality w>xC g0 � 0

can hence be verified, numerically.
� Non-sticking condition on Œ0; 2t2�: The positiveness of the contact force also has to be verified

numerically, i.e. using eq. (2.7): w>M�1Kx � 0 on Œ0; 2t2�.

Remark 4.1. Whether the two above inequalities are satisfied depends on the sign of g0, but not on its
magnitude. In particular, if there is a SPP for some .t1; t2/ and a g0 ¤ 0, there will be no SPP for the
same .t1; t2/ and the opposite gap �g0.
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5. Summary and examples

5.1. Algorithm for finding SPPs To find an admissible SPP:
1. Compute QK from (2.4), the positive definite square roots L1 of M�1K and a square root L2 of
M�1 QK.

2. Find .t1; t2/ such that:8̂<̂
: det.R2/ D

ˇ̌̌̌
L1 sin.t1L1/ cos.t1L1/

�L2 sin.t2L2/ cos.t2L2/

ˇ̌̌̌
D 0

w>M�1KM�1=2y.0/ D 0

(5.1a)

(5.1b)

where y.0/ is a non-zero column of adj.R2/
>.

3. For such .t1; t2/ and y.0/, define the potential SPP via its initial conditions:8̂̂<̂
:̂
x.0/ D �

g0

w>M�1=2y.0/
M�1=2y.0/

Px.0/ D �
g0

w>M�1=2y.0/
M�1=2

Py.0/:

(5.2a)

(5.2b)

4. Check the admissibility of the potential SPP determined by .x0; Px0/ via eq. (3.12) and definition
y DM 1=2x:(

w>x.t/C g0 � 0; 8t 2 Œ�2t1; 0�

w>M�1Kx.t/ � 0; 8t 2 Œ0; 2t2�:

(5.3a)

(5.3b)

5. If not admissible, return to step 2.

Remark 5.1. A solution is actually solution to the initial problem formulated by eqs. (1.2) and (1.3).
First, let’s focus on Œ�2t1; 0/. By construction M Rx CKx D 0 corresponding to eq. (1.2a) with � D 0,
so eqs. (1.2c) and (1.2d) are also satisfied. Inequality (1.2b) is satisfied because of step 3 above. Then, over
.0; 2t2�: M Rx C QKx D 0 or equivalently M Rx CKx D w� with � D w>M�1Kx.t/. By construction of
QK, g.x/ D 0 so inequality (1.2b) and eq. (1.2d) are satisfied. Inequality (1.2c) is not violated because of

step 3. Continuity of x and Px at t D 0 (eq. (1.3a)) is ensured by construction, and periodicity (eq. (1.3b))
is ensured as det.�/ D 0. Equation (1.3d) is verified by choice of the prefactor of M�1=2y.0/ in step 2.
Finally, eq. (1.3c) is satisfied because of symmetry and periodicity.

Animated SPPs are provided in ref. [14], for all the following examples as well as larger systems
with up to 30 dofs.

5.2. SPPs of 5-dof spring-mass system The mathematical results are first illustrated using the spring-
mass system depicted in fig. 3. For simplicity, all masses and stiffnesses are chosen equal to one, so that:

M D In; K D

2666664
2 �1

�1 2 �1
: : :

: : :
: : :

�1 2 �1

�1 1

3777775 : (5.4)

The resting positions of the masses are zero so that positions and displacements are equal. The gap writes
g0 � x5 or g.x/ � 0 with g.x/ D w>xCg0 and w> D

�
0 0 0 0 �1

�
, and g0 is arbitrarily chosen

equal to one.
Equation (2.4) yields

QK D

266664
2 �1 0 0 0

�1 2 �1 0 0

0 �1 2 �1 0

0 0 �1 2 �1

0 0 0 0 0

377775 (5.5)

which physically corresponds to disconnecting the last mass, only from the point of view of the last mass
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Figure 3: First model used to illustrate SPPs.
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Figure 4: Roots of the system (5.1). Each curve i corresponds to .t1; t2/ such that w>M�1KM�1=2

is orthogonal to column i of adj.R2/
>. Potential SPP. Admissible SPP. Admissible SPP

illustrated in 5.

(see 2.3). Square roots L1 and L2 can be easily computed and we can proceed with finding numerically
.t1; t2/ solutions of eq. (5.1), see fig. 4. Instead of plotting the roots of det.R2/, in this figure each curve
corresponds to .t1; t2/ such that a column ci of adj.R2/

> is orthogonal to v D w>M�1KM�1=2. This
“trick” reduces the computational cost and originates from the fact that when R2 is singular, adj.R2/

is generally of rank one; the conditions vci D 0 for i 2 f1; : : : ; ng become identical, meaning that
solution points .t1; t2/ are located at the intersections of all the root curves of vci D 0. Figure 4 illustrates
theorem 4.1: SPPs are admissible points.

Then, the admissibility of the trajectories emanating from each solution point of fig. 4 has to be
verified numerically (steps 3 and 4). Two admissible SPPs, corresponding to points .t1; t2/ marked as A
and B in fig. 4, are depicted in fig. 5. Conclusions of theorem 3.1 are observed: both solutions have an
axis of symmetry at t D �t1 and t D t2.

5.3. SPPs with slip and non-diagonal mass matrix The presented results also apply to more complex
geometries and general mass or stiffness matrices. In this subsection, an application is presented on the
4-dof system depicted in fig. 6. Contrary to the previous system with concentrated masses, here the mass
and stiffness matrices are chosen as

M D

2664
4 1 0 0

1 2 0 0

0 0 3 1:5

0 0 1:5 6

3775 ; K D

2664
2 �1 0 0

�1 1 0 0

0 0 2:5 �2:5

0 0 �2:5 5

3775 (5.6)

so their structure matches bar elements in the Finite Element Method. With a zero resting position and the
equation of the obstacle given by y D ax C b, the gap writes

g.x/ D
y � ax � b
p
1C a2

D w>x C g0 with w D
1

p
1C a2

2664
0

a

�1

0

3775 ; g0 D
b

p
1C a2

(5.7)
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Figure 5: Time-evolution of two SPP trajectories of the 5-dof spring-mass system. Left: point A
of fig. 4. Right: point B of fig. 4. Top: gap and normal contact force. Bottom: positions. See ref. [14]

for the animated versions.

with x> D
�
x1 x2 y2 y3

�
corresponding to fig. 6. We arbitrarily place the obstacle at position

x1 x2

y2

y3

g0

y = ax+b

Figure 6: FEM-model with exact slip condition to illustrate SPPs. Rod elements with linear mass.

4y D 1 � x so that w> D
�
0 �1 �4 0

�
=
p
17 and g0 D 1=17. As previously, computing QK, L1 and

L2 is straightforward. Solutions of system eq. (5.1) have to be found numerically, then ineqs. 5.3 have to
be verified (steps 3 and 4). Solutions of an admissible SPP are represented in fig. 7 (left) together with the
non-negative gap and the non-negative normal contact force (right). Again, the trajectories feature two
axes of symmetry, at t D �t1 and t D t2. (theorem 4.1).

6. Special behaviours for specific parameters In this section, subgeneric cases are investigated, for
completeness.

6.1. Closed gap at rest (g0 D 0) Theorem 4.1 assumes g0 ¤ 0. We now investigate the case when g0 D 0.
The gap closure at t D 0 implies w>x.0/ D �g0 D 0: non-trivial solutions can be found only if x.0/ is
orthogonal to w. This adds one independent scalar equation to the system (5.1), requiring an additional
unknown. To illustrate SPPs with zero initial gap, we consider a 2-dof spring-mass system, with an
unknown stiffness k2:

M D I2; K D

�
1C k2 �k2

�k2 k2

�
(6.1)
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Figure 7: Time-evolution of a SPP of the FEM-model with slip. See [14] for the animated version.

Introducing an additional unknown k2 (compared to 5.2, for example) compensate the additional equation
w>x.0/ and solutions can be found numerically by solving:8̂<̂

:
detR2.t1; t2/ D 0

w>M�1Kx.0/ D 0

w>x.0/ D 0;

(6.2)

(6.3)

(6.4)

as illustrated in Fig. 8.
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Figure 8: 2-dof SPP with g0 D 0. Such motions occur only for specific values of M and K: here,
k2 � 5:716. See [14] for the animated version.

6.2. Non-symmetric potential SPPs with moving obstacle The system of the previous subsection is
considered. Solving for det.T2/ D 0 instead of det.R2/ D 0 provides .t1; t2/ leading to SPPs with points
of symmetry in position, see fig. 9. However, since on Œ0; 2t2�, �w and w>M�1Kx have the same sign
(see eq. (2.7)), and because x has a point of symmetry at t D t2, w>M�1Kx is either zero on Œ0; 2t2� or
its sign changes, breaking condition 1.2c. In other words, there is no admissible SPP with axial symmetry.
Moreover, because of the punctual symmetry of the positions, the obstacle cannot be still (except if
g0 D 0) and may only have a linear velocity during the contact phase. In fig. 9, the motion of the obstacle
has been smoothly extrapolated on Œ�2t1; 0� to satisfy periodicity.
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Figure 9: 2-dof potential SPP with punctual symmetry. Such motions may happen only if det.T2/ D 0

(here, with m � 4:875). Signs C indicates points of symmetry over Œ�2t1; 0� and Œ0; 2t2�. Like all
SPPs with punctual symmetry, it is not admissible because � is not non-negative over Œ�2t1; 2t2�.

See [14] for the animated version.

7. Conclusion Previous works have shown that autonomous periodic motions with one sticking phase per
period (SPP) play a particular role in the frequency–energy plot of piecewise-linear dynamical systems
with one unilateral constraint. Indeed, they seem to be the limit of autonomous periodic trajectories with
k impacts per period (IPP) as k goes to infinity. Additionally, SPPs are uniquely determined by a set of
initial conditions even though no impact law is specified.

The minimal set of equations governing 1 SPPs was derived in the general n-dof framework with a
single unilateral constraint. The first step is to solve a system of two scalar equations (one nonlinear and
one linear) for the duration 2t1 of the free flight phase and the duration 2t2 of the contact phase. As with
k IPP solutions for which the sequence of free flight durations determine appropriate initial conditions,
these two durations then determine 1 SPPs. It was shown that if g0 ¤ 0, 1 SPPs may only be isolated,
irrespective of the sign of g0. The displacements of SPPs trajectories were shown to exhibit two axis of
symmetry in time: one in the middle of the free flight (t D �t1) and one in the middle of the contact
phase (t D t2). It was proven that 1 SPP occur only for discrete values of .t1; t2/. Results were illustrated
using various geometries, unilateral constraints and mass matrices. Using the proposed methodology,
computation of SPPs with 30 dofs was straightforward. No attempt with a larger number of dofs was
made, but the equations are indeed expected to be challenging to solve numerically.

While it is clear that potential SPPs exist, there is no result on the existence of admissible SPPs.
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A. Technical lemma

Lemma A.1 Let A, B , C , D be four matrices of order n. If AB D BA and CD D DC , thenˇ̌̌̌
A B

C D

ˇ̌̌̌
D

ˇ̌̌̌
B �D

A �C

ˇ̌̌̌
D det.DA � CB/: (A.1)

This result is known [13], however it can be briefly proven.

Proof. Let’s first assume A is invertible. Then�
A B

C D

�
D

�
In 0

CA�1 D � CA�1B

� �
A B

0 In

�
(A.2)

so that ˇ̌̌̌
A B

C D

ˇ̌̌̌
D det.D � CA�1B/ det.A/ D det.D � CBA�1/ det.A/ D det.DA � CB/: (A.3)

If A is singular, for all x, A � xI and B commute and the equalityˇ̌̌̌
A � xI B

C D

ˇ̌̌̌
D det.D.A � xI / � CB/ (A.4)

holds at least for any x which is not eigenvalue of A, hence for all x (it’s a polynomial equality), in particular
for x D 0. Similarly, if C is invertible,�

B �D

A �C

�
D

�
In D

0 C

� �
B �DC�1A 0

C�1A �In

�
(A.5)

and it comes thatˇ̌̌̌
B �D

A �C

ˇ̌̌̌
D det.DA � CB/; (A.6)

which also holds for singular C . �
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