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Abstract

Protein-protein docking protocols aim to predict the structures of protein-protein complexes based

on the structure of individual partners. Docking protocols usually include several steps of sampling,

clustering, refinement and re-scoring. The scoring step is one of the bottlenecks in the performance

of many state-of-the-art protocols. The performance of scoring functions depends on the quality of

the generated structures and its coupling to the sampling algorithm. A tool kit, GRADSCOPT (GRid

Accelerated  Directly  SCoring  OPTimizing),  was  designed  to  allow  rapid  development  and

optimization  of  different  knowledge-based scoring  potentials  for  specific  objectives  in  protein-

protein  docking.  Different  atomistic  and  coarse-grained  potentials  can  be  created  by  a  grid-

accelerated  directly  scoring  dependent  Monte-Carlo  annealing  or  by  a  linear  regression

optimization. We demonstrate that the scoring functions generated by our approach are similar to or

even outperform state-of-the-art scoring functions for predicting near-native solutions. Of additional

importance,  we  find  that  potentials  specifically  trained  to  identify  the  native  bound  complex

perform  rather  poorly  on  identifying  acceptable  or  medium  quality  (near-native)  solutions.  In

contrast,  atomistic long-range contact potentials can increase the average fraction of near-native

poses  by  up  to  a  factor  2.5  in  the  best  scored  1%  decoys  (compared  to  existing  scoring),

emphasizing the need of specific docking potentials for different steps in the docking protocol. 



Introduction

Protein interactions play a key role in almost all biological processes [1][2]. While the number of

protein-protein interactions discovered by experimental and computational approaches rises rapidly,

the  number  of  known complex  structures  lags  behind  [3][4].  However,  experimental  structural

biology  methods  such  as  nuclear  magnetic  resonance  (NMR)  spectroscopy  and  X-ray

crystallography  have  been  used  successfully  to  determine  many  of  the  unbound  constituents.

Protein  docking  protocols  aim to  predict  the  structure  of  protein  complexes  from its  unbound

components. Docking protocols have been developed for single protein-protein, multiple protein,

protein-peptide,  protein-RNA and protein-DNA interactions [5][6][7][8].  State-of-the-art  docking

programs  often  achieve  satisfactory  results  for  sampling  near-native  docking  geometries,

particularly  for  cases  with  no  or  little  structural  changes  in  each  constituent  during  complex

formation [9][10].

Docking protocols usually can be divided into two stages: a sampling stage to generate an ensemble

of possible complex solutions (decoys) and a scoring stage to select near-native complex structures

from the sampled ensemble. However, some docking protocols model conformational adjustments

during the binding process by introducing flexibilities during the sampling stage [11][12] and most

approaches include a flexible refinement step after the initial rigid body search [13].

The  selection  of  near-native  docking  solutions  usually  involves  application  of  one  or  several

combined scoring  functions  and diverse  approaches  have  been designed to  generate  successful

scoring  functions  in  the  last  few  decades[14][15].  Physical  approaches  attempt  to  generate  a

universally valid scoring function represented by a model for the free energy. A common method is

to linearly combine models for each energy contribution. The parameters for these models are fitted

to experimentally determined energy values [16][17][18]. However, energy models frequently seem

to be insufficient, since they often neglect or oversimplify more complicated terms such as entropic

contributions or the change in solvation energy upon binding [19]. Moreover, energy funnels of

protein complexes appear  to be narrow towards the native structure [20],  so that already small

deviations on the interface cause large differences in energy. Hence, these methods are less accurate

when scoring sampled complex geometries with rather low interface quality.

Knowledge-based scoring functions for protein-protein docking like ITScore-PP [21], Sipper [22],

ProBinder [23], DECK [24], DARS [25], Tobi [26] and ATTRACT [8], are based on parameters

extracted from the comparison of the scores between near-native or native structures and incorrect

poses. One should note that such scoring functions are affected by the structures in the training set

and  recognize  specific  structural  properties  from  the  sampling  algorithm  used  to  generate  the

decoys  [27].  Consequently,  docking  protocols  generally  use  specific  knowledge-based  scoring

functions for each class of ligands or step in the protocol[6][7][14].



Composite scoring functions such as pyDock [28], RosettaDock [29], HADDOCK [30], Zdock [15]

[31],  FireDock [32],  and FiberDock [33]  usually  use  a  linear  combination  of  scoring  terms  to

further improve their scoring by accounting for independent complex features. The linear weights

for this purpose are determined by optimization or machine learning techniques on a selected set of

decoys. In addition, several efforts were made to compare multiple docking protocols and their

scoring functions to show future prospects of possible combinations [9].

In general, each of the regarded functions or methods do not seem to work equally well for all cases

in the docking benchmark. [10].  In particular,  Vajda and Kozakov pointed out that any scoring

function is  substantially  affected by the properties of  the decoys in the training set  [27].  Each

sampling  or  refinement  method creates  a  different  ensemble  of  solutions  with variant  interface

characteristics  such  as  different  dominant  contacts  or  distances  between  atom-pairs.  As  a

consequence,  scoring  functions  need  to  be  tailored  to  the  targeted  molecules  or  the  sampling

algorithm to improve their performance to predict near-native solutions.

In this work, we present a tool kit  to develop knowledge-based scoring potentials for various decoy

sets, sampling methods and problems in protein-docking. The GRid-Accelerated-Directly-SCoring-

OPTimizing (GRADSCOPT) tool kit enables a choice between several atomistic and coarse-grained

representations  for  various  simple  functional  forms.  The  parameters  of  these  potentials   can

generally be trained on any set of structures of protein complexes by linear regression (LR) models

or  a  directly  scoring-dependent  Monte-Carlo  algorithm  (MC).  Thanks  to  pre-calculations  of

potential-specific  feature  vectors,  re-scoring  and  re-evaluation  of  the  whole  benchmark  can  be

performed very quickly by simple vector  multiplications  to  facilitate  the fast  testing of  several

scoring functions and their combinations.

As an application, we designed ten different scoring functions with four different potential forms  in

our newly defined grouped all atom (GAA) representation.   We used unbound rigid-body protein-

protein docking decoys obtained from the protein-protein docking program ATTRACT  [8]. The

performance  was  evaluated  on  three  different  scoring  problems  on  an  independent  test  set

consisting  of  77  complexes.  Furthermore,  the  contributions  of  the  most  distinctive  scoring

parameters were examined for some of the potentials to explain differences and similarities in their

scoring behaviour. Thereby, we found that scoring functions that find a large fraction of near-native

solutions favour an increased amount of hydrophobic groups on the interface, especially aromatic

rings and end-groups from other hydrophobic side-chains.

We also demonstrate  that  atomistic  potentials  trained on near-native  solutions  from ATTRACT

show very different behaviour from potentials that were trained exclusively on the native structure.

In addition, we show that potentials using short range interactions for their scoring seem to be more

adequate to detect the native bound form whereas potentials using long-range interactions are able



to predict on average more near-native solutions in the ensemble of generated decoys.

Methods

Set up of scoring benchmark:

In this work, we considered 212 protein complexes from the protein-protein docking benchmark 5.0

to form a benchmark for the training of the parameters of our presented scoring potentials [34, 35].

Between 6,000 and 60,000 decoys (depending on the size of the complex) were sampled and scored

by ATTRACT's rigid body docking for each complex from its unbound constituents. The scoring

benchmark was divided into a training set of 135 complexes and a test set of  77 complexes for

evaluation  of the genuine performance.  We took care that the test  and the training sets include

approximately the same fractions of hard, medium and rigid body cases to avoid a bias between

these two sets in the scoring functions performance (see  Supporting Information Table S1A and

S1B).

Structural quality assessment:

To determine the quality of each structure in the ensemble of sampled solutions, the fraction of

native contacts (Fnat), the interface root mean square deviation (Irmsd), the ligand root mean square

deviation (Lrmsd) and the CAPRI-stars [35] are calculated for all cases in the benchmark. To assess

the  quality  of  protein-protein  complexes,  we employed  the  CAPRI quality  scheme which  was

defined  by  the  community  wide  experiment  on  the  Critical  Assessment  of  PRediction  of

Interactions (CAPRI). It distinguishes acceptable (*: IRMSD < 4 Å and 0.1 < Fnat< 0.3), medium

(**: IRMSD < 2 Å and Fnat > 0.3) and high (***: IRMSD < 1 Å and Fnat > 0.5) quality docking

solutions. Generally, acceptable, medium and high quality solutions are summarized under the term

near-native solutions to define geometries that are close to the native complex.

Calculation of potential-specific feature vectors:

To ensure fast enumeration of the parameters and also rapid re-scoring afterwards, potential-specific

feature vectors are generated in advance for each solution in the decoy sets. The content of these

feature vectors is generated based on first, the coarse-grained beads or atom types λ assigned to the

structures and second, the potential form. All feature vectors contain the sum over potential-specific

attributes for each contact-type between two atoms of type A and B.

Our  tool  kit  allows  to  generate  scoring  potentials  of  different functional  forms including  step

potentials, van-der-Waals (vdw) potentials and potentials that are based on atomistic buried surface

areas (BSA). For step potentials, the feature vectors contain the number of contacts for each decoy

in the desired ranges of the steps,  thus single step potentials can also be referred to as contact



potentials. For the BSA-potentials, the buried surface area for each coarse-grained or atom type is

calculated in advance, by the rolling-probe algorithm using a water radii of 1.4Å [36]. The vectors

for the vdw-potentials contain the sum over all distances between two atoms for each contact-type

(A,B) to the power of -8 for the repulsive and -6 for the attractive part (see equation 1).

Evdw=α⃗⋅(
∑ r1,1
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parameters in the feature vectors is determined by the selected molecular representation. By default,

the tool kit offers to use three atomistic representations and the coarse-grained representation used

in the ATTRACT docking engine [14]. For the atomistic representations, the atoms of incomplete

side-chain residues are rebuilt and atom-types can be assigned according to the optimized potential

for liquid simulations (OPLS) [17], according to Tobi [26] or to our newly defined grouped all-atom

model (GAA). The GAA representation defines 27 atom types based on the chemical character of

each group of amino acids, non-polar, polar, aromatic, positively charged and negatively charged

(see supporting Information, Table S1).

Based on these  vectors of each ensemble of solutions, the scoring and re-scoring can be realized by

simple and thus quick vector multiplications between the generated  potential parameters and the

feature vectors of each docking pose (see equation 1 for vdw potentials). 

Parameter training:

To train the parameters of the various scoring potentials,  directly  scoring-dependent Monte-Carlo

Annealing as well as linear regression models are applicable. The Monte-Carlo Annealing method

generates potential parameters by optimizing one of the various default target functions which are

based directly on the comparison between the scoring of near-native and false solutions of each

complex. For this purpose, quality-weights are assigned to the training decoys, either to distinguish

between  near-native  and  incorrect  solutions  or,  depending  on  the  objective,  to  allocate  more

influence to higher quality solutions in the training set. As a quality-weight for instance, one can

consider the fraction of native contacts (Fnat), the interface root mean square deviation (Irmsd), the

ligand root mean square deviation (Lrmsd), the CAPRI-stars [35] (see above) or other alternative

assessments, such as DockQ, a recently developed continuous docking quality measure that avoids

border effects in its classification scheme[todo ref].

To account for diverse quantities of near-native structures among the complexes, the quality weights

are normalized for each complex before optimization. The pre-implemented target functions t are

calculated by the sum over the number of all complexes Nc and the number of all their training

decoys Nd of the product between two weights wr and wq that depend on the score and the quality of



each decoy i of complex c.  The values of the ranking weights can either be set to rise linearly or

quadratically from the last position in the decoy set or be assigned after another functional form,

depending on the desired objective for the scoring function, such as enriching a fraction of near-

natives before refinement or a final ranking.

t ( E⃗ )=∑
c

Nc

∑
i

N d

wq
i,c
⋅wr( E i)

 Equation 2

In order to perform simulated annealing in parameter space,in each step s the protocol consists of:

-changing a randomly picked parameter by a constant or pseudo-temperature T dependent value

-re-scoring and re-ranking the decoys for each complex 

-calculating a new value for the target-function ts(E)

-accepting this  step by the temperature dependent  probability  ps
accept which is  derived from the

Metropolis criterion (Equation 3).

pac c e p t
s

=mi n(1 ,
e t s−t s−1

T
)  Equation 3

After each step, the temperature is decreased by a selected annealing curve down to 0.1% of the

starting temperature in a defined number of steps. In this process, the pre-calculated feature vectors

make it possible to re-score millions of decoys per second in several steps on a single computer

processor.

On the other hand, the linear regression protocol simply fits the parameters on the feature vectors to

the  negative  values  or  their  negative  reciprocals  of  the  structural  assessments.  The  resulting

potentials assign higher negative values to solutions of higher quality. For that purpose, various

regression methods  can be considered from the  scikit-learn  library  [38],  such as  ordinary least

squares  regression,  non-negative  least  squares  regression,  support  vector  regression,  robust

regressions or Bayesian-Ridge regression. Here, we only show potentials that were generated by

ordinary and non-negative least squared regression. Generally, the different linear regressions differ

between their cost-functions  and some approaches might be more valuable in order to generate

simple force-fields on a set of experimentally determined energy values, for instance to predict

binding energies or affinities of specific protein complexes [39].

Performance Assessment:

For a proper performance evaluation of the generated functions,  several simple assessments  are

performed on an independent test set. We considered the percentage of complexes for which at least

one near-native solution can be detected,  the average fraction of  near-native solutions for each

complex and the probability of finding the native structure in the set  of generated decoys.  The



average fraction of near-natives compared to the probability to find one near-native can be used to

estimate the specificity of the scoring function towards certain near-native structures in the decoy

sets. Finding the native structure within a set of sampled decoys represents an artificial problem and

is only used to evaluate the methodology.

Discriminating scoring contribution:

To gain additional  insights  into the particular  scoring performance of  BSA-potentials  and step-

potentials,  we  regarded  the  most  discriminating  parameter  contributions  dp  to  the  scoring.

Analyzing the contribution of each parameter  allowed us to evaluate differences and similarities

between  their  scoring.  As the  discriminating  parameter  contribution  for  an  interaction  between

atoms of type A and B, we defined the product between the parameter σAB withthe  normed absolute

difference between the average number of contacts nc (or size of the buried surface area) of near-

native (n-nat) and incorrect (incor) solutions. 

d p AB=σ A B

|⟨n c A B
n−na t

⟩−⟨n c A B
i nc or

⟩|

⟨n c A B
t ot

⟩

 Equation 4

By this regard, one examines the average contribution of each parameter by the distinction between

near-native and incorrect solutions, taking into account deviating occurrences of each contact-type

in total and between incorrect and near-native solutions. Instead of regarding the absolute difference

however, we plotted the contribution p of near-native, native and incorrect solutions separately to

detect false positive or false negative contributions, for which the parameter is positive/negative but

the average number of contacts is higher in near-native/incorrect solutions. More generally spoken,

the sign of these parameters correlates with the average distribution of contacts between near-native

and  incorrect  solutions  and  points  out  a  difference  between  potentials  generated  by  our

methodology and statistical potentials. 

pA B
nat

=σ AB

⟨n c A B
nat

⟩

⟨n c A B
t o t

⟩

Equation 5

The discriminating contribution dp of each parameter is simply given by the difference between the

contribution  p  for  incorrect  and near-native  solutions.  The  contribution  to  native  complexes  is

shown as well to see possible differences between the scoring of near-native and native complexes.

Detailed training recipe for the generation of example scoring potentials:

We generated ten potentials in four functional forms: five by linear regression (LR) and five by the

Monte Carlo Annealing (MC) method.  Two long-range step potentials  are  based on atom-atom

contacts  between  0-10Å  (MC_gaa_10,  LR_gaa_10).  Further,  two  short-range  step  potentials



(MC_gaa_4-6_nat, LR_gaa_4-6_nat) consider two steps between 0-4Å and 4-6Å. The four vdw-

like potentials  (“_vdw”) use the distance r  to  the power of -8 for the repulsive and -6 for  the

attractive parts (soft Lennard-Jones potential), respectively. Since the decoys were generated in a

coarse-grained model from ATTRACT, clashes (too close contacts or structural overlap) may result

from the change to an atomistic resolution. Hence, for the atomistic vdw-potentials, the contacts

between the receptor and the ligand in the range of 0-2 Å were shifted to 2 Å to reduce their

influence on the potentials. The potentials based on the buried surface areas consider only heavy

atoms (type(“_BSA”)).

All potentials created by the MC approach used an adaptive search for  parameter optimization,

which altered the parameters by a factor d that started at  1.  The temperature was decreased in

300,000 and 100,000 steps respectively from 50 down to 0.05 by a “ziczac” annealing scheme in

which  the  temperature  fluctuates  between  two  decreasing  exponential  functions  with  a  sin²-

function. When a convergence criterion was fulfilled in the last 2,000 steps, the search was stopped

automatically. For the vdw-potentials, the parameter space was restricted. Sigma was kept between

1.5-6 Å and epsilon between 0-50 (see Equation 1). As target-functions for the potentials created by

MC,  a  linearly  increasing  position  weight  was  used  for  MC_gaa_4-6_nat,   MC_gaa_BSA,

MC_gaa_vdw and  MC_gaa_vdw_nat. For MC_gaa_10 a quadratically increasing weight was used

instead.

For the potentials from the linear regression approach, the fraction of BSAs and contacts was taken

as features rather than the absolute number in order to prevent over-fitting on complexes with large

interfaces.  The  potentials  LR_gaa_10,  LR_gaa_4-6_nat  and  LR_gaa_BSA were  created  by  an

ordinary least squares regression. For the vdw-potentials a non-negative least squares fit was used

to generate only positive values for the parameters α=σ⁸ε and β=σ ε.⁶

For all potentials, 5 parameter sets were created by leave-one-out cross-validation. Each parameter

set was examined on its validation set to exclude the possibility of potential over-fitting. For step

and BSA-potentials, the scaled parameter averages of the five generated sets were taken as our final

set. Therefore, each of the five parameter sets was scaled by dividing the parameters through their

standard deviation before taking their average. For the vdw-potentials, the set of parameters with

the highest performance in the validation set was considered to be a consistent choice.

Results

Generating  knowledge-based  scoring  potentials  with  the  GRADSCOPT  tool  kit  involves  the

following steps (Figure 1). First,  a benchmark is set up with a sampling protocol generating an

ensemble of decoys for each complex in it. The benchmark is then divided into a training and test

set of complexes. Secondly, atom or coarse-grained residue types are assigned to the 3D structures



of  the  receptor  and  the  ligand.  According  to  this  representation  and  the  form  of  the  desired

interaction potential, potential-specific feature vectors are calculated for the generated decoys (see

Methods subsection  Calculate  potential-specific feature vectors). Subsequently, the parameters of

the potential are trained on a subset of decoys from the training complexes by a directly scoring-

dependent Monte-Carlo annealing algorithm (MC) or by linear regression (LR). Finally, the whole

benchmark is re-scored using the feature vectors of the whole ensemble, and afterwards the scoring

performance  of  the  generated  potential  is  evaluated  on  a  training-independent  test  set.  This

procedure can be performed in parallel or sequentially to generate several distinct scoring potentials

in order to find the best suited variant.

We applied the GRADSCOPT tool kit  to design ten different  scoring functions  based on three

different potential types for unbound rigid protein-protein docking with ATTRACT. All ten scoring

potentials are based on the GAA representation of the partners (using the 27 GAA atom types, see

Methods  and  Supplementary  Information,  Table  S2).  In  order  to  check  the  dependence  of  the

potentials on the type of optimization method, the parameters were either optimized by the MC or

the LR method. (see Table 1, further details on the optimization in Table S3).

The forms of the presented potentials can be considered as general representatives for the types of

scoring functions typically used in the protein-protein docking field: we generated two long-range

step potentials with core-core distances between 0-10Å (MC_gaa_10, LR_gaa_10), two short-range

step potentials (MC_gaa_4-6_nat, LR_gaa_4-6_nat) with two steps between 0-4Å and 4-6Å, four

vdw-like potential (“_vdw”), and two potentials based on the buried surface areas of each atom-

type(“_BSA”) (see Table 1 for an overview). To prevent over-fitting, all potentials were created by

5-fold cross-validation and scaled parameter averaging and evaluated on an independent validation

set. For the vdw-potentials, the parameter set with the highest performance in the validation set was

considered as an appropriate choice. A detailed overview of the parameters used for the generation

of  the  ten  scoring  potentials  is  given  in  Table  S3  (see  also “Detailed  training  recipe  for  the

generation of example scoring potentials” in Materials and Methods). The parameter files of the

generated potentials are included in the tool kit.

In order to investigate the dependence on the structures,  defined as correct  during training,  we

trained our potentials to consider all near-native solutions as successes by using the Capri-stars as

their quality-weight, or by exclusively giving weights to artificially inserted native structures. The

latter potentials were designed only for the case of  step potentials (MC/LR_gaa_4-6_nat) and for

continuous  vdw-potentials  (MC/LR_gaa_vdw_nat).  It  must  be  pointed  out  that  in  a  practical

docking algorithm, there is a zero probability of sampling the native structure from its unbound

constituents and in addition, only docking geometries with a significant deviation from the native

structure are typically included in the set of solutions. Small deviations between the unbound and



bound structure in backbone and side-chain atoms prevent the sampling algorithm from finding the

native  structure  or  approaching  the  native  complex  structure  closely  without  causing  clashes

(clashes  with  the  unbound  structure  at  the  native  position  are  shown  in  Figure  2b).  Instead,

structures  with  different  contacts  at  the  interface  are  usually  formed;  this  includes  non-native

contacts  and different  distances  between  atoms that  are  in  contact  in  the  native  complex.  The

deviation of acceptable, medium and high quality docking solutions relative to the native structure

is illustrated in Figure 2a. Thus, as also emphasized by Vajda et al. [27], to generate a practically

useful  scoring  function  for  any  molecular  docking  protocol,  training  should  be  performed  on

complex structures sampled from their unbound constituents.

The performances of the generated protein-protein docking scoring potentials were evaluated on a

separate test set (77 complexes) by three different assessments: (i) the probability to detect at least

one near-native solution; (ii)  the probability to detect the inserted native structure; and (iii)  the

average fraction of near-native geometries in a subset (e.g. enrichment). The performances in these

tests  were  compared  to  ATTRACT's  coarse-grained  scoring  [14]  and  to  the  scoring  of  Tobi's

atomistic  short  range step  potential [26].  As a further  control,  the performances for near-native

structures were also compared to a random scoring.

Identification of the native structure

In order to test the performance of our methodology to generate high quality scoring functions, we

first tested the capacity of the designed scoring potentials to identify the native complex structure

among all other decoy structures (Figure 3, Supplementary Information Table S4b). We expected

that a scoring function that was trained entirely on native structures could easily solve this problem,

since  native interface contacts are typically much better  aligned than  contacts  in sampled near-

native decoys. Indeed, our potentials trained exclusively to distinguish the native structure yielded

very impressive results in predicting the native structure in the top-ranked 10 poses for 88% (two-

step potentials) and 91% (vdw-potentials) of the cases (Figure 3). The designed potentials closely

approached the performance achieved by the scoring function of Tobi [26]. Other potentials not

trained to identify the native structure showed much less impressive results (35-62% top 10 success

rate, see also Supporting Information Table S4).

Identification of near-native structures

In a second evaluation, we tested the ability to identify near-native (that is at least Capri one-star

quality) docking solutions among the decoys in the test set (Figure 4, Supplementary Information

Tables S5). Note, that the decoy set did not include the native complex but only docking solutions

obtained from systematic docking using ATTRACT. This corresponds to a realistic protein-protein

docking experiment.  All  optimized potentials  scored far  better  than random. The two 10Å step

potentials outperformed ATTRACT by detecting a near-native solution in the top 10 for 31 % and



29 % of the complexes versus 22 % for  ATTRACT. The two simple BSA-potentials still predicted a

near-native solution for 25 % of the cases in the test set. Considering the top 100, other functions

such as LR_gaa_vdw and MC_gaa_vdw also showed good performance, identifying structures for

62% and 57% of the complexes, respectively. Interestingly, the two two-step potentials trained on

native structures, MC_gaa_4-6_nat and LR_gaa_4-6_nat, performed very well, predicting a near-

native structure in the top 100 for 65 % and 68 % of the cases. In contrast, the vdw-potentials that

were trained exclusively on the native structure (and showed great performance in identifying the

native complex, Figure 3) lagged far behind these results with only 27 % and 30 % of cases with a

near-native solutions scored among the top 100. The comparison between the results for near-native

and native  structures  indicates  that  vdw-potentials  are  more  sensitive  towards  certain  distances

between contacts of the training structures than step potentials. Therefore, the two-step potentials

may  be  able  to  score  near-native  solutions  well  whereas  vdw-potentials  are  unable  to  show a

sufficient scoring. Also here, the results for the training sets were similar to the results in the test set

(see Supplementary Information Table S5).  

Enrichment of near-native solutions

To improve the quality of docking poses, many groups consider a subsequent refinement of a small

fraction of their sampled structures. Refinement protocols allow atoms to adjust to the right position

on the interface by introducing more flexibility than in the initial sampling. The chance to generate

a  high  quality  structure  by  refinement  increases  with  the  number  of  near-native  structures

considered. Therefore, we looked at the average fraction of near-native solutions found in the best

scored 0.1%, 1%, 2% and 5% of the decoy sets. 

We found that the long-range and the BSA-potentials outperform the standard ATTRACT score by a

factor 2.5 and 2 respectively,  for the fraction in the best 1% (see Figure 5. and Supplementary

Information Tables S6b). On average they predicted 39 % and 33 % of all generated near-natives

whereas ATTRACT only scores 17 % in the top 1 %. The vdw-potentials that were trained on near-

natives (LR_gaa_vdw and MC_gaa_vdw) predicted slightly more near-natives as ATTRACT with

about 50 % in the top 5 % compared to 39 %(out of 6,000 to 60,000 decoys). Thus, MC_gaa_10

predicts on average as many near-natives in the top 1 % as ATTRACT in the top 5 %. Again, most

potentials trained to find only the native structure performed worse: the potential by Tobi and the

vdw-potentials identified on average less than 26 % of the near-native structures in the best scoring

5%, while the two-step potentials still placed 48 % and 54 % of the near-natives in the top 5%.

Comparing the long-range step and the BSA-potentials,  we observed that  potentials  created by

Monte-Carlo Annealing worked slightly better than their counterpart from ordinary least squares fit.

This might result from the target function in the MC algorithm that aims at improving the score of

all near-native structures in the decoy set. The results further indicate that compared to atomistic or



coarse-grained  vdw-potentials,  simple  long-range  step  potentials  and  BSA-potentials  are  more

likely to identify structurally diverse near-native complexes. Both our generated atomistic potential

and the coarse-grained vdw-potential from ATTRACT seem to be more specific towards structures

of higher quality, since contacts on the interface have to be within a certain distance in order to

achieve a significant score. Hence, vdw-potentials generally do not seem to be a good choice to deal

with the diversity of the different near-native solutions of each complex.

Discriminating parameter contributions to near-native enrichment for BSA- and long-range step

potentials

After the designed long-range step potentials and the BSA-potentials achieved impressive results

for the fraction of near-native solutions, we wanted to investigate their scoring in more detail. We

analysed the 20 most positive and negative discriminating scoring contributions (dp) for the step

potentials along with all the scoring contributions of the BSA-potentials (see Discriminating scoring

contribution). We looked at the difference between the average contribution p of each parameter of

near-native (green) and incorrect solutions (red) to estimate its distinctive power in the scoring. By

multiplying the parameters with their normed features, we accounted for the deviating occurrences

of  each  contact-type  in  general  and  between  incorrect  and  near-native  solutions.  First,  we

considered the discriminating scoring contributions for the 23 parameters of the BSA-potentials,

MC_gaa_BSA (Figure 6S1a)  and LR_gaa_BSA (Figure S1b).  We found both potentials  mainly

predict near-native structures on increased BSAs of (I) C-rings and CH2 groups from aromatic side

chains, (ii) CH3, CH2, CH, and S groups from nonpolar residues and (iii) nitrogen from positively

charged amino acids as well as on reduced BSAs of CH2 groups from negatively and positively

charged  amino  acids.  The  two  potentials  seem  to  deviate  only  slightly  in  the  strength  of

contributions  from  less  discriminating  atom-types,  for  which  the  near-native  and  incorrect

contributions are almost equal.

When  we  looked  at  the  most  negative  discriminating  parameter  contributions  of  the  10Å step

potentials,  MC_gaa_10 and LR_gaa_10 (Figure  6a,  S2a),  we detected  similarities  to  the  BSA-

potentials  as  well  as  between  the  two  potentials  themselves.  Eight  and  seven  contributions

respectively  were  between  atom-types  that  were  also  most  significant  for  the  BSA-potentials.

Seventeen and fifteen out of the 20 most favourable contributions involved at least one group from

a hydrophobic residue. The two potentials still showed major differences in the 20 most positive

parameter contributions (Figure 6b, S2b): The MC_gaa_10 potential included eleven contributions

which involved at least one CH2 group of charged amino acids, which represents a penalty for

charged  residues  at  the  interface.  The   LR_gaa_10  potential  only  includes  two  of  that  kind.

Additionally,  the  LR_gaa_10  potential  indicates  eleven  strongly  false  positive  contributions

whereas  MC_gaa_10  shows  only  four.  False  negative/positive  contributions  were  defined  as



contributions  with  a  negative/positive  parameter  value  but  their  average  number  of  contacts  is

higher in incorrect/near-native structures. However, when we changed the signs of parameters with

false-positive or false-negative contributions, the overall scoring performance to enrich a subset

with near-native structures got worse (data not shown), indicating a difference of our potentials to

statistically derived potentials. 

Comparing the average scoring contribution of each parameter between native complexes (blue),

incorrect solutions and near-native solutions, we found scoring contributions to native and near-

native  structures  to  be very similar.  Nevertheless,  the difference to  the average contribution  of

incorrect solutions is generally larger, which may be one reason for the better scoring of native

structures. One must keep in mind that we looked at average numbers of contacts in a distance of 10

Å or at BSAs.  We would expect to see even larger differences in closer ranges, which could explain

the great performances of short-range potentials for native structures.

Discussion

The performance of the generated scoring potentials for protein-protein docking showed that both

our approaches were able to rapidly create high quality scoring potentials. All our potentials worked

significantly better than a random scoring; they even outperformed or competed with two state-of-

the-art functions in all three presented assessments.

The continuous vdw-potentials performed extremely well in scoring the native structure but poorly

for enriching near-native docking solutions. Very similar results were found for the popular Tobi

score.  These  results  supported  our  idea  that  vdw-potentials  are  extremely  dependent  on  the

distances of interface atoms in their training structures and hence are biased towards certain near-

natives or natives in the decoy set. 

The scoring performances of our generated potentials for at least one near-native solution are in

general comparable to the results obtained from ZDOCK[40], ClusPro and SwarmDock [41]. For

example, our generated potential MC_gaa_10 placed a near-native structure for 13 % of the cases at

rank 1, for 31 % in the top 10 and for 61 % in the top 100 compared to 10 %, 36% and 65 % for

SwarmDock.

Furthermore,  we  showed  that  long-range  step  potentials  and  simple  potentials  based  on  the

atomistic buried surface areas were able to detect on average up to 2.5 times more near-native

structures in the top 1% than the standard ATTRACT score. Therefore, these potentials seem to be

well applicable for selecting a subset of structures for a subsequent refinement in the ATTRACT or

other docking protocols.

Interestingly, the analysis of the parameter contributions for these two types of potentials indicated

that not only specific contacts between groups from aromatic and non-polar residues were favoured



by the step potentials but also contacts between these groups with polar and charged residues or

backbone atoms. The preference of these contacts by long-range step potentials may account for the

increased presence of these groups in protein-protein interfaces in general, as also detected by the

BSA-potentials.  This seems to be helpful  to  select many near-natives,  since interfaces  of  near-

natives with lower quality may not be aligned well enough to select them exclusively on chemically

specific contacts.

As a result, we suggest that it would be beneficial to use different scoring functions before and after

a  refinement.  For  initial  scoring, we suggest  that  unspecific  long-range step  or  BSA-potentials

should be applied for an enrichment of near-native structures. In contrast, short-range or atomistic-

distance  dependent  potentials,  such  as  our  vdw-potentials  and  our  multiple-step  potentials,

performed well  to identify native structures.  Therefore, the ideal protocol would consist of initial

rigid-body  sampling,  scoring  using  a  long-range  potential,  flexible  refinement  to  move  the

structures closer towards the native form, and finally scoring using a short-range potential.

Finally,  our  results  show  that  the  GRADSCOPT training  protocol  is  robust  and  offers  viable

strategies to generate problem-adapted solutions, as they are needed in practical docking problems.

Due to the usage of pre-calculated feature vectors for each potential form, the tool kit enables the

user to generate and evaluate various scoring functions rapidly to find a problem-adapted solution.

Moreover, it also allows the user to optimize the functional form of the scoring potential (e.g. with

respect  to  inter-atomic  distances),  as  we found  that  the  optimal  functional  form depends  very

strongly  on  the  scoring  problem.  Other  methods  to  create  scoring  potentials,  such  as  linear

programming [42][43], possess the advantage of numerically generating a globally optimal set of

parameters with respect to the defined target function. However, the handling of these approaches

appears to be more complex and their applicability seems to be narrower since it requires a set of

training structures that do not impose impossible conditions on its constraints [26]. Especially for

the training on near-native solutions with diverse structures and interface compositions, or larger

benchmarks with diverse types of protein-interactions, finding a set of restricting constraints can

become difficult or impossible without excluding some important decoys.

The GRADSCOPT tool kit, a detailed manual with example executive scripts, the ATTRACT rigid-

body protein-protein docking benchmark and parameter files for the created potentials can be found

at http://www.t38.ph.tum.de/-> Downloads.
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Supporting information

Figure  S1. The 23 scoring contributions of the parameter (x-axis) to the MC_gaa_BSA (A)  or

LR_gaa_BSA (B)  scoring potential, shown for the average native (blue), near-native (green) and

incorrect  (red)  solution.  The  discriminating  scoring  contribution  is  defined  as  described  in  the

methods section by the difference between the near-native and incorrect  contributions  (red and

green)

Figure S2.  20 most negative (A) and 20 most positive (B) scoring contributions of the parameter

(x-axis) for the LR_gaa_10 potential shown for the average native (blue), near-native (green) and

incorrect  (red)  solution.  The  discriminating  scoring  contribution  is  defined  as  described  in  the

methods section by the difference between the near-native and incorrect  contributions  (red and

green).

S1 Table. Protein data bank entries for training and test set of protein-protein complexes.  Protein 

databank (pdb) entries of the training set consisting of 135 protein-protein complexes used for the 

parameter generation (Table S1A)  and for test set of 29 complexes (Table S1B). 

S2 Table. List of atom-types in the grouped-all atom (GAA) representation. Assignment of the 27 

atom types of the GAA representation.

S3 Table. Parameters for scoring potential generation using Monte Carlo Simulated Annealing or 

linear regression. 

S4 Table. Performance of designed scoring potentials for identification of native docking solutions.

S5 Table. Performance of designed scoring potentials for identification of near-native docking 

solutions.

S5 Table. Ranking of near-native docking solutions by different scoring functions.
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Table  1. Overview  of  the  designed  potentials,  showing  the  decoy  set  for  training,  the
parametrization method, the potential form.

Potential Structures Method Functional form

MC_gaa_10 Trained on CAPRI (*,**,***) MC Position-quadratic 10 A step

MC_gaa_4-6_nat Trained on native complex MC Position-linear 4A+ 4-6 A step

MC_gaa_BSA Trained on CAPRI (*,**,***) MC Position-linear BSA-potential

MC_gaa_vdw Trained on CAPRI (*,**,***) MC Position-linear Vdw-potential

MC_gaa_vdw_nat Trained on native complex MC Position-linear Vdw-potential

LR_gaa_10 Trained on CAPRI (*,**,***) Ordinary least square 10 A step

LR_gaa_4-6_nat Trained on native structure Ordinary least square 4A+ 4-6 A step

LR_gaa_BSA Trained on CAPRI (*,**,***) Ordinary least square BSA-potential

LR_gaa_vdw Trained on CAPRI (*,**,***) Non-negative least square Vdw-potential

LR_gaa_vdw_nat Trained on native structure Non-negative least square Vdw-potential



Figure legends:

Figure 1. Work-flow to generate a knowledge-based scoring function by the GRADSCOP tool kit.

Various scoring potentials can be generated and evaluated in parallel or sequentially by changing

the decoy set, the protein representation, the potential form or the training method..

Figure 2. (A) Comparison of the native complex pdb1KTZ (smaller ligand partner protein as green

cartoon;  receptor  protein  as  beige  vdW surface)  and  examples  of  acceptable  (*)(red  cartoon),

medium (**) (purple) and high quality (***) (blue) docking solutions (using the CAPRI criteria, see

Methods). (B) Clashes (orange)  with the unbound chymotrypsin (pdb1ACB, beige vdW-surface)

after superposition of the unbound chymotrypsin inhibtor structure (blue ) onto the bound form

(light green ).

Figure  3. Fraction  of  test  cases  (y-axis)  for  which  the  native  bound  complex  structure  was

identified among the decoy complexes in the top 1 (red), top 10 (orange), top 100 (green), top 500

(light  blue)  and  top  1000  (dark  blue)  using  the  scoring  function  indicated  at  the  x-axis.  The

performances were sorted after the best performing scoring function in the top 10 from left to right.

Figure 4. Fraction of test complexes for which at least one near-native (*,**,*** CAPRI-stars)

structure was found in the test set in the top 1 (red), top 10 (yellow), top 100 (light blue), top 1000

(dark blue). The performances were sorted after the best performing scoring function in the top 10

from left to right. 

Figure 5. Average fraction of near-native structures (*,**,*** CAPRI-stars) in the decoy set which

were identified in the best 0.1 (red), 1 (yellow), 2 (light blue) and 5 (dark blue) % of all decoys in

the test set using the scoring functions indicated at the x-axis. The scoring performances were sorted

after the fraction of near-native solutions in the top 5 % from left to right. 

Figure 6. 20 most negative (A) and 20 most positive (B) scoring contributions of the parameter (x-

axis)  for the MC_gaa_10 potential shown for the average native (blue), near-native (green) and

incorrect  (red)  solution.  The  discriminating  scoring  contribution  is  defined  as  described  in  the

methods section by the difference between the near-native and incorrect  contributions  (red and

green).





Figure 1. Work-flow to generate a knowledge-based scoring function by the GRADSCOP tool kit.
Various scoring potentials can be generated and evaluated in parallel or sequentially by changing
the decoy set, the protein representation, the potential form or the training method.



(A)

(B)

Figure 2. (A) Comparison of the native complex pdb1KTZ (smaller ligand partner protein as green
cartoon;  receptor  protein  as  beige  vdW surface)  and  examples  of  acceptable  (*)(red  cartoon),
medium (**) (purple) and high quality (***) (blue) docking solutions (using the CAPRI criteria, see
Methods).  (B)  Clashes  (orange)  between  the  unbound  chymotrypsin  (pdb1ACB,  beige  vdW-
surface) after superposition of the unbound chymotrypsin inhibtor structure (blue sticks) onto the
bound form (light green sticks).



Figure  3. Fraction  of  test  cases  (y-axis)  for  which  the  native  bound  complex  structure  was
identified among the decoy complexes in the top 1 (red), top 10 (orange), top 100 (green), top 500
(light  blue)  and  top  1000  (dark  blue)  using  the  scoring  function  indicated  at  the  x-axis.  The
performances were sorted after the best performing scoring function in the top 10 from left to right.



Figure  4. Fraction of test complexes for which at least one near-native (*,**,*** CAPRI-stars)
structure was found in the test set under the top 1 (red), top 10 (yellow), top 100 light blue, top 1000
(dark blue). The performances were sorted after the best performing scoring function in the top 10
from left to right. 



Figure 5. Average fraction of near-native structures (*,**,*** CAPRI-stars) in the decoy set which
were identified in the best 0.1 (red), 1 (yellow), 2 (light blue) and 5 (dark blue) % of all decoys in
the test set using the scoring functions indicated at the x-axis. The scoring performances were sorted
after the fraction of near-native solutions in the top 5 % from left to right. 
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Figure 6. (A) 20 most negative scoring contributions of the parameter (x-axis) and (B) 20 most
positive scoring contributions for the MC_gaa_10 potential shown for the average native (blue),
near-native (green) and incorrect (red) solution. The discriminating scoring contribution is defined



as  described  in  the  methods  section  by  the  difference  between  the  near-native  and  incorrect
contributions (red and green).


