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SPACE AND TIME INVERSIONS OF STOCHASTIC PROCESSES
AND KELVIN TRANSFORM

L. ALILI, L. CHAUMONT, P. GRACZYK, AND T. ŻAK

Abstract. Let X be a standard Markov process. We prove that a space inversion
property of X implies the existence of a Kelvin transform of X-harmonic, exces-
sive and operator-harmonic functions and that the inversion property is inherited by
Doob h-transforms. We determine new classes of processes having space inversion
properties amongst transient processes satisfying the time inversion property. For
these processes, some explicit inversions, which are often not the spherical ones, and
excessive functions are given explicitly. We treat in details the examples of free scaled
power Bessel processes, non-colliding Bessel particles, Wishart processes, Gaussian
Ensemble and Dyson Brownian Motion.

1. Introduction

The following space inversion property of a Brownian Motion (Bt, t ≥ 0) in Rn is
well known ([29], [33]). Let Isph be the spherical inversion Isph(x) = x/‖x‖2 on Rn \{0}
and h(x) = ‖x‖2−n, n ≥ 1. Then

(Isph(Bγt), t ≥ 0)
(d)
= (Bh

t , t ≥ 0),

where
(d)
= stands for equality in distribution, Bh is the Doob h-transform of B with

the function h and the time change γt is the inverse of the additive functional A(t) =∫ t
0
‖Xs‖−4 ds. In case n = 1, B is a reducible process. Thus, the state space can

be reduced to either the positive or negative real line and B killed when it hits zero,
usually denoted by B0, is used instead of B.

In [9], such an inversion property was shown for isotropic (also called ”rotationally
invariant” or ”symmetric”) α-stable processes on Rn, 0 < α ≤ 2, also with Isph(x) and
with the excessive function h(x) = ‖x‖α−n. The time change γt is then the inverse

function of A(t) =
∫ t
0
‖Xs‖−2α ds. In the pointwise recurrent case α > n = 1 one must

consider the process X0
t killed at 0. In the recent papers [2, 3, 24], inversions involving

dual processes were studied for diffusions on R and for self-similar Markov processes
on Rn, n ≥ 1.

The main motivation and objective of this paper was to find new classes of Markov
processes having space inversion properties. Moreover, we show that the inversion
property of a process X implies the existence of a Kelvin transform of X-harmonic
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functions.

In this work, ((Xt, t ≥ 0); (Px)x∈E) is a standard Markov process with a state space
E, where E is the one point Alexandroff compactification of an unbounded locally
compact subset of Rn. Let I : E → E be a smooth involution and let f be X-
harmonic. One cannot expect that the function f ◦ I is again X-harmonic. However,
in the case of the Brownian Motion, it is well known, see for instance [4], that if f is
a twice differentiable function on Rn \ {0} and ∆f = 0 then ∆(‖x‖2−nf(Isph(x))) = 0.
The map

f 7→ Kf(x) = ‖x‖2−nf(Isph(x))

is the classical Kelvin transformation of a harmonic function f on Rn \ {0}; this was
obtained by W. Thomson (Lord Kelvin) in [32].

In the isotropic stable case, Riesz noticed ([30]) that if Kαf(x) = ‖x‖α−nf(Isph(x)),
and Uα(µ) is the Riesz potential of a measure µ then Kα(Uα(µ)) is α-harmonic. This
observation was extended in [7, 8, 9] by proving that Kα transforms α-harmonic func-
tions into α-harmonic functions. Analogous results were proven for Dunkl processes in
[20], see Section 2.5 for more details in the stable and Dunkl cases.

In harmonic analysis, the interest in Kelvin transform comes from the fact that it
reduces potential-theoretic problems relating to the point at infinity for unbounded
domains to those relating to the point 0 for bounded domains, see for instance the
examples in [4] where this is applied to solving the Dirichlet problem for the exterior
of the unit ball and to obtain a reflection principle for harmonic functions.

Thus, a natural question is whether for other processes X, involutions I and X-
harmonic functions f one may ”improve” the function f ◦ I by multiplying it by an
X-harmonic function k (the same for all functions f), such that the product

Kf(x) := k(x) f(I(x))

is X-harmonic. The transform Kf will be then called Kelvin transform of X-harmonic
functions.

An important result of our paper states that a Kelvin transform of X-harmonic
functions exists for any process satisfying a space inversion property. Thus a Kelvin
transform of X-harmonic functions exists for much larger classes of processes than
isotropic α-stable processes, α ∈ (0, 2] and Dunkl processes. Moreover, we prove that
the Kelvin transform also preserves excessiveness.

Throughout this paper X-harmonic functions are considered, except for Section 2.9,
where Kelvin transform’s existence is proven for operator-harmonic functions, that is
for functions harmonic with respect to the Dynkin operator of X and, in the case of
diffusions, functions harmonic with respect to the differential generator of X.

Many other important facts for processes with inversion property are proved, for
instance, that the inversion property is preserved by the Doob transform and by bi-
jections. In particular, if a process X has the inversion property, then so have the
processes Xh and I(X).

Another goal of this paper is to determine new classes of processes having space
inversion properties. We show that this is true for transient processes with absolutely
continuous semigroups that can be inverted in time. Recall that a homogeneous Markov
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process ((Xt, t ≥ 0), (Px)x∈E) is said to have the time inversion property (t.i.p. for
short) of degree α > 0, if the process ((tαX1/t, t ≥ 0), (Px)x∈E) is homogeneous Markov.
The processes with t.i.p. were intensely studied by Gallardo and Yor [21] and Lawi
[25]. For transient processes with t.i.p. we construct appropriate space inversions and
Kelvin transforms. A remarkable feature of this study is that it gives as a by-product
the construction of new excessive functions for processes with t.i.p.

Note that we do not restrict our considerations to self-similar processes, see Section
2.10. In Section 4.6, inversion properties for the Hyperbolic Bessel process and the
Hyperbolic Brownian Motion(see e.g. [11], [28], [34], and the references therein) are
discussed.

2. Inversion property and Kelvin transform of X-harmonic functions

2.1. State space for a process with inversion property. M. Yor considered in [33]
the Brownian motion on Rn ∪ {∞} where ∞ is a point at infinity and n ≥ 3. He was
motivated by the work of L. Schwartz [31] who showed that the n-dimensional Brownian
motion (Bt, t ≥ 0) on Rn ∪ {∞} is a semimartingale until time t = +∞. Furthermore,
the Brownian motion indexed by [0,∞] looks like a bridge between the initial state B0

and the ∞ state. Observe now that we can write Rn ∪ {∞} = {Rn\{0}} ∪ {0,∞}.
Then S = {Rn\{0}} ∪ {0} is a locally compact space, where 0 is an isolated cemetery
point. This makes sense from the point of view of involutions because we can extend
the spherical inversion on Rn\{0}, by setting Isph(0) = ∞ and Isph(∞) = 0, to define
an involution of Rn ∪ {∞}.

Following this basic case, we are now ready to fix the mathematical setting of this
paper. Let E be the Alexandroff one point compactification of an unbounded locally
compact space S ⊂ Rn. Without loss of generality, we assume that 0 ∈ S. E is
endowed with its topological Borel σ-field.

We assume that ((Xt, t ≥ 0); (Px)x∈E) is a standard process, we refer to Section
I.9 and Chapter V of [6] for an account on such processes. That is X is a strong
Markov process with state space E. The process X is defined on some complete filtered
probability space (Ω,F , (Ft)t≥0, (Px)x∈E), where Px(X0 = x) = 1, for all x ∈ E. The
paths of X are assumed to be right continuous on [0,∞), with left limits, and are quasi-

left continuous on [0, ζ), where ζ = inf{s > 0 : Xs /∈ S̊\{0}} is the lifetime of X, S̊
being the interior of S. Thus X is absorbed at ∂S∪{0,∞} and it is sent to 0 whenever

X leaves S̊\{0} through ∂S ∪ {0}, and to ∞ otherwise. We furthermore assume that

X is irreducible, on E, in the sense that starting from anywhere in S̊\{0} we can reach
with positive probability any nonempty open subset of E. This is a multidimensional
generalization of the situation considered in [2], where we constructed the dual of a one
dimensional regular diffusion living on a compact interval [l, r] and killed upon exiting
the interval.

2.2. Excessive and invariant functions and Doob h-transform. In this paper,
an important role is played by Doob h-transform, which is defined for an excessive
function h. Recall that a Borel function h on E is called excessive if Ex h(Xt) ≤ h(x)
for all x and t and limt→0+ Ex h(Xt) = h(x) for all x. An excessive function is said to
be invariant if Ex h(Xt) = h(x) for all x and t. Let D ⊂ E be an open set. A Borel
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function h on E is called excessive (invariant) on D if it is excessive(invariant) for the
process X killed when it exits D.

Let h be an excessive function and set Eh = {x : 0 < h(x) <∞}. Following [14], we
can define the Doob h-transform (Xh

t ) of (Xt) as the Markov or sub-Markovian process
with transition semigroup prescribed by

P h
t (x, dy) =


h(y)

h(x)
Qh
t (x, dy) if x ∈ Eh;

0 if x ∈ E \ Eh,

where Qh
t (x, dy) is the semigroup of X killed upon exiting Eh. Observe that if h does

not vanish or take the value +∞ inside E then this killed process is X itself.

2.3. Definition of Inversion Property(IP). In this section, we let {(Xt)t≥0,Px},
X for short, be a standard Markov process with values in a state space E defined as
in Section 2.1. We settle the following definition of the inversion property.

Definition 1. We say that X has the Inversion Property, for short IP, if there exists
an involution I 6= Id of E and a nonnegative X-excessive function h on E, with 0 <
h < +∞ in the interior of E, such that the processes I(X) and Xh have the same law,
up to a change of time γt, i.e.

(2.1) (I(Xγt), t ≥ 0)
(d)
= (Xh

t , t ≥ 0),

where γt is the inverse of the additive functional At =
∫ t
0
v−1(Xs) ds with v being a

positive continuous function and Xh is the Doob h-transform of X (killed when it exits
the interior of E). We call (I, h, v) the characteristics of the IP.

We propose the terminology ”Inversion Property” to stress the fact that the invo-
luted (”inversed”) process I(X) is expressed by X itself, up to conditioning (Doob
h-transform) and a time change. Another important point is that the IP implies that
the dual process Xh is obtained by a path inversion transformation I(X) of X, up to
a time change.

Inversion properties of stochastic processes were studied in many papers. The IP
was studied for Brownian motions in dimension n ≥ 3 and for the spherical inversion
in [33]. The IP with the spherical inversion for isotropic stable processes in Rn was
proved in [9]. The continuous case in dimension 1 was studied in [2]. The spherical
inversions of self-similar Markov processes under a reversibility condition have been
studied in [3], and, in the particular case of 1-dimensional stable processes in [24].

As pointed out above, the involution involved in all known multidimensional inver-
sion properties (or its variants with a dual process, see [3]), is spherical. On the other
hand, in the continuous one-dimensional case, see [2], non-spherical involutions sys-
tematically appear. In Sections 3 and 4 of this paper we show that many important
multidimensional processes satisfy an IP with a non-spherical involution.

2.4. Harmonic and superharmonic functions and their relation with ex-
cessiveness. We first recall the definitions of X-harmonic, regular X-harmonic and
X-superharmonic functions on an open set D ⊂ E. For short, we will say ”(su-
per)harmonic on D” instead of ”X-(super)harmonic on D”, and ”(super)harmonic”
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instead of ”X-(super)harmonic on E”.
A function f is harmonic on D if for any open bounded set B ⊂ B̄ ⊂ D, we have

Ex(f(XτB), τB <∞) = f(x),

and is superharmonic on D if

Ex(f(XτB), τB <∞) ≤ f(x),

for all x ∈ B, where τB is the first exit time from B, i.e., τB = inf{s > 0;Xs /∈ B}.
A function f is regular harmonic on D if Ex(f(XτD), τD < ∞) = f(x). By the strong
Markov property, regular harmonicity on D implies harmonicity on D.

Let us point out the following relations between superharmonic and excessive func-
tions for a standard Markov process.

Proposition 1. Suppose that Xt is a standard Markov process with state space E and
let f : E → [0,∞] be a non-negative function. Let D ⊂ E be an open set.

(i) If f is excessive on D then f is superharmonic on D.
(ii) If f is superharmonic on D and lim inft→0+ Ex f(Xt) ≥ f(x), for all x ∈ D ,

then f is excessive on D.
(iii) Suppose that X is a stochastically continuous process or a Feller process and f

is a continuous function on E. Then f is superharmonic on D if and only if f
is excessive on D.

Proof. Without loss of generality we suppose D = E̊, otherwise we consider the process
Xt killed when exiting D.

Part (i) is from Proposition [6, II(2.8)] of the book by Blumenthal and Getoor. Part
(ii) is from Corollary [6, II(5.3)], see also Dynkin’s book [16, Theorem 12.4].
In order to prove Part (iii), suppose that f is superharmonic, fix x ∈ E and take a
continuous compactly supported function l, 0 ≤ l ≤ 1, such that l(x) = 1. Since the
function f is continuous, the function k = lf ∈ C0. Moreover f ≥ k, so Ex(f(Xt)) ≥
Ex k(Xt). We get, using the fact that Ex k(Xt) converges to Ex k(X0) when t→ 0+,

lim inf
t→0+

Ex f(Xt) ≥ lim
t→0+

Ex k(Xt) = Ex k(X0) = k(x) = f(x),

thus the condition from (ii) is fulfilled and f is excessive. �

2.5. Kelvin transform: definition and dual Kelvin transform. We shall define
the Kelvin transform for X-harmonic and X-superharmonic functions. In the Kelvin
transform, only functions on open subsets D ⊂ E are considered. For convenience, we
suppose them to be equal to 0 on ∂E (otherwise all the integrals in this section should

be written on E̊, cf. [9].)

Definition 2. Let I : E → E be an involution. We say that there exists a Kelvin
transform K on the space of X-harmonic functions if there exists a Borel function
k ≥ 0, on E, with k|∂E = 0, such that the function x 7→ Kf(x) =k(x) f(I(x)) is
X-harmonic on I(D), whenever f is X-harmonic on an open set D ⊂ E.
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A useful tool in the study of the Kelvin transform is provided by the dual Kelvin
transform K∗ acting on positive measures µ on E and defined formally by

(2.2)

∫
f d(K∗µ) =

∫
Kfdµ

for all positive Borel functions f on E, with f |∂E = 0 and Kf := k f ◦ I, cf. [30, 9].

Looking at the right-hand side of (2.2) we see that it is equal to

∫
f(I(y)) k(y)dµ(y).

Consequently, K∗µ = (kµ) ◦ I−1 = (kµ) ◦ I, i.e. K∗µ is simply the image (transport)
of the mesure k dµ by the involution I. This shows that K∗µ exists and is a positive
measure on I(F ) for any positive measure µ supported on F ⊂ E.

Former results on Kelvin transform only concern the Brownian Motion (see e.g. [4]),
the isotropic α-stable processes and the Dunkl Laplacian and they always refer to the
spherical involution Isph(x) = x/‖x‖2.

In the isotropic stable case, let Kα(f)(x) = ‖x‖α−nf(Isph(x)). Riesz noticed in 1938
(see [30, Section 14, p.13]) the following transformation formula for the Riesz potential
Uα(µ) of a measure µ, in the case α < n:

Kα(Uα(µ)) = Uα(K∗αµ),

see also [9, formula (80), p.115]. It follows that the function Kα(Uα(µ)) is α-harmonic.
The α-harmonicity of the Kelvin transform Kα(f) for all α-harmonic functions was
proven in [7, 8]. In [9] it was strengthened to regular α-harmonic functions.

In the Dunkl process case, let ∆k be the Dunkl Laplacian on Rn (see e.g. [3, Section
4C]). Let Ku = hu ◦ Isph, where h(x) = ‖x‖2−n−2γ is the Dunkl-excessive function
from [3, Cor.4.7]. In [20, Th.3.1] it was proved that if ∆ku = 0 then ∆k(Ku) = 0. In
[13] the equivalence between operator-harmonicity ∆ku = 0 and X-harmonicity of u is
announced.

2.6. Kelvin transform for processes with IP. Now we relate the Kelvin transform
to the inversion property. In the following result we will prove that a Kelvin transform
exists for processes satisfying the IP of Definition 1. The proof is based on the ideas
of the proof of [9, Lemma 7] in the isotropic α-stable case.

Theorem 1. Let X be a standard Markov process. Suppose that X has the inversion
property (2.1) with characteristics (I, h, v). Let D ⊂ Eh be an open set. Then the
Kelvin transformation Kf(x) = h(x)f(I(x)) has the following properties:

(i) If f is regular harmonic on D ⊂ Eh and f = 0 on Dc then Kf is regular
harmonic on I(D).

(ii) If f is superharmonic on D ⊂ Eh then Kf is superharmonic on I(D).

Proof. Recall that Eh = {x ∈ E : 0 < h(x) < ∞} and consider an open set D ⊂ Eh,
and x ∈ D. Let ωxD be the harmonic measure for the process X departing from x and
leaving D, i.e. the probability law of Xx

τXD
. In the first step of the proof, we show

that the Inversion Property of the process X implies the following formula for the dual
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Kelvin transform of the harmonic measure (cf. [9, (67)])

(2.3) K∗ωxD = h(x)ω
I(x)
I(D), D ⊂ Eh, x ∈ D.

In order to show (2.3), we first notice that if Yt = I(Xγt) then

τYD = inf{t ≥ 0 : Yt 6∈ D} = inf{t ≥ 0 : Xγt 6∈ I(D)} = A(τXI(D)),

so that, for B ⊂ Eh and x ∈ D, we get

Px(YτYD ∈ B, τ
Y
D <∞) = PI(x)(Xγ(A(τX

I(D)
)) ∈ I(B), τXI(D) <∞) = ω

I(x)
I(D)(I(B)).

By the Inversion Property satisfied by X, the last probability equals

Px(YτYD ∈ B, τ
Y
D <∞) = Px((Xh)

τX
h

D
∈ B, τXh

D <∞)

=
1

h(x)
Exh(XτXD

1B(XτXD
), τXD <∞)

=
1

h(x)

∫
h(y)1B(y)ωxD(dy).

We conclude that

h(x)ω
I(x)
I(D)(I(B)) =

∫
h(y)1I(B)(I(y))ωxD(dy)

=

∫
K1I(B)(y)ωxD(dy)

=

∫
1I(B)(y)(K∗ωxD)(dy)

and (2.3) follows. Now let f ≥ 0 be a Borel function and x ∈ I(D). We have, by
definition of K∗ and by (2.3),

ExKf(XτX
I(D)

) =

∫
Kf dωxI(D) =

∫
f d(K∗ωxI(D))

= h(x)

∫
f dω

I(x)
D = h(x)EI(x)f(XτXD

).

Hence, if f is any Borel function such that Ez|f(XτXD
)| <∞ for all z ∈ D, then

(2.4) ExKf(XτX
I(D)

) = h(x)EI(x)f(XτXD
), x ∈ I(D).

Formula (2.4) implies easily the statements (i) and (ii) of the Theorem. For example,
in order to prove (ii), we consider f superharmonic on D. For any open bounded set
B ⊂ B̄ ⊂ D and x ∈ I(B), we have EI(x) f(XτXB

) ≤ f(I(x)). Then (2.4) implies that

ExKf(XτX
I(B)

) ≤ h(x)f(I(x)) = Kf(x),

so Kf is superharmonic on D. �

Now we show that the Kelvin transform also preserves excessiveness of non-negative
functions.
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Theorem 2. Let X be a standard Markov process. Suppose that X has the inversion
property (2.1) with characteristics (I, h, v). Let D ⊂ Eh be an open set. If H ≥ 0 is
an excessive function on D then the function KH is excessive on the set I(D).

Proof. Without loss of generality we suppose D = E̊, otherwise we consider the process
X killed when exiting D and replace ζ by the first exit time from D of X.

Let H be excessive for X. We can write

ϕ(λ) :=

∫ ∞
0

e−λtEx[
h(Xt)

h(x)

H ◦ I(Xt)

H ◦ I(x)
, t < ζ]dt

=

∫ ∞
0

e−λtEx[
H ◦ I(Xh

t )

H ◦ I(x)
, t < ζh]dt,

where ζ and ζh are the life times of processes X and Xh respectively. Using (2.1) and
making the change of variables γt = r, we get

ϕ(λ) =

∫ ∞
0

e−λtEI(x)[
H(Xγt)

H ◦ I(x)
, t < Aζ ]dt

= EI(x)[
∫ ζ

0

e−λAr
H(Xr)

H ◦ I(x)
dAr]

= EI(x)[
∫ ζH

0

e−λA
H
r dAHr ]

=

∫ ∞
0

e−λtEI(x)[t < AHζH ]dt.

Using Fubini theorem, we get

λϕ(λ) = 1− Exe
−λAH

ζH → 1 as λ→∞,

because Px(AHζH = 0) = Px(ζH = 0) = Px(ζ = 0) = 0. By the injectivity of Laplace
transform, we conclude that

Ex[
h(Xt)

h(x)

H ◦ I(Xt)

H ◦ I(x)
, t < ζ] = Ex[t < AHζH ] ≤ 1 for a.e. t ≥ 0.

Thus, we have the supermartingale property of h(X)H ◦ I(X). We also get that
limλ→∞ λϕ(λ) = 1. By the Tauberian theorem, we get that

lim
t→0+

Ex[
h(Xt)

h(x)

H ◦ I(Xt)

H ◦ I(x)
, t < ζ] = 1.

We have proven that hH ◦ I is excessive. �

Remark 1. Suppose that the process X is stochastically continuous or a Feller process.
Then by Proposition 1(iii) we see that Theorem 1(ii) and Theorem 2 coincide for con-
tinuous functions f and H. Without additional conditions on X, f and H, Theorem
1(ii) and Theorem 2 require independent proofs.

Corollary 1. Suppose that X has the inversion property (2.1) with characteristics
(I, h, v). Then there exists c > 0 such that the function hh ◦ I = c is constant on E.
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By considering, from now on, the dilated function h/
√
c in place of h, we have

(2.5) h ◦ I = 1/h and v ◦ I = 1/v.

Proof. Assume that X satisfies (2.1). Then, for any Borel measurable function F and
x ∈ E, we can write

ψ(λ) :=

∫ ∞
0

e−λtEx[
h(Xt)

h(x)

h ◦ I(Xt)

h ◦ I(x)
F (Xt), t < ζ]dt

=

∫ ∞
0

e−λtEx[
h ◦ I(Xh

t )

h ◦ I(x)
F (Xh

t ), t < ζh]dt.

By using (2.1) and making the change of variables γt = r, we obtain

ψ(λ) =

∫ ∞
0

e−λtEI(x)[
h(Xγt)

h ◦ I(x)
F (I(Xγt)), t < Aζ ]dt

= EI(x)[
∫ ζ

0

e−λAr
h(Xr)

h ◦ I(x)
F (I(Xr))dAr]

= EI(x)[
∫ ζH

0

e−λA
h
rF (I(Xh

r ))dAhr ].

Let Mr =
∫ r
0

(v ◦ I(Xγr))
−1dr and let mr be the inverse of Mr. Using again (2.1) and

substituting Mr = v, we get

ψ(λ) = Ex[
∫ Aζ

0

e−λMrF (Xγr)dMr]

= Ex[
∫ ζ

0

e−λvF (Xγmv )dv]

By the injectivity of Laplace transform, we obtain

Ex[
h(Xt)

h(x)

h ◦ I(Xt)

h ◦ I(x)
F (Xt), t < ζ] = Ex[F (Xγmt

); t < ζ]

for almost every t > 0.
By Theorem 2, the function hh ◦ I is excessive. The last equality implies that X

has the same distribution as the Doob transform Xhh◦I time changed. This is possible
only if hh◦I is constant and γmt = t, for t > 0. We easily check that the inverse of γmt
is MAt =

∫ t
0
(v(Xs)v ◦ I(Xs))

−1ds. So MAt = t, t ≥ 0, holds if and only if v ◦ I = 1/v.
Hence, equations (2.5) are proved. �

We point out now the following bijective property of the Kelvin transform.

Proposition 2. Suppose that X has the inversion property (2.1) with characteristics
(I, h, v). Let K be the Kelvin transform. Then

(i) K is an involution operator on the space of X-harmonic (X-superharmonic)
functions i.e. K ◦ K = Id.

(ii) Let D ⊂ E be an open set. K is a one-to-one correspondence between the set of
X-harmonic functions on D and the set of X-harmonic functions on I(D).
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Proof. The first formula of (2.5) implies by a direct computation that K(Kf) = f .
Then (ii) is obvious. �

2.7. Invariance of IP by a bijection and by a Doob transform. We shall now
give some general properties of spatial inversions. We start with the following proposi-
tion which is useful when proving that a process has IP. Its proof is simple and hence
is omitted.

Proposition 3. Suppose that X has the inversion property (2.1) with characteristics
(I, h, v). Assume that Φ : E 7→ F is a bijection. Then the mapping J = Φ ◦ I ◦ Φ−1 is
an involution on F . Furthermore, the process Y = Φ(X) has IP with characteristics
(J, h ◦ Φ−1, v ◦ Φ−1).

In the following result we prove that we can extend the inversion property of a
process on a state space E to an inversion property for the processes conditioned not
to exit a subset F of E.

Proposition 4. Suppose that X has the inversion property (2.1) with characteristics
(I, h, v).

Let F ⊆ E be such that I(F ) = F and suppose that there exists an excessive function
H : F → R+ for X killed when it exits F . Consider Y = XH , the Doob H-transform
of X. Then the process Y has the IP with characteristics (I, h̃, v), with h̃ = KH/H,
where KH = hH ◦ I is the Kelvin transform of H.

Proof. To simplify notation, set Z = Xh and denote by γHt the inverse of the additive

functional AHt (t) =
∫ t
0

ds
v(XH

s )
. Below, using the properties of a time-changed Doob

transform in the first equality and the IP for X in the second equality, we can write
for all test functions g

Ex[g(I(XH
γHt

)), t < AH∞] = Ex[g(I(Xγt))
H ◦ I(I(Xγt))

H ◦ I(I(x))
, t < A∞]

= EI(x)[g(Zt)
H ◦ I(Zt)

H ◦ I(I(x))
, t < A∞]

= EI(x)[g(Xt)
H ◦ I(Xt)h(Xt)

H ◦ I(I(x))h((I(x)))
, t < A∞]

= EI(x)[g(Xt)
KH(Xt)

KH(I(x))
, t < A∞].

By Theorem 2, the function KH is X-excessive, so the Doob transform XKH is well
defined. Thus the processes (I(XH

γHt
))) and (XKHt ) are equal in law. We haveX = Y 1/H ,

so XKHt = Y
KH/H
t , and the IP for the process Y follows. �

The aim of the following result is to show that processes Xh and I(X) inherit IP from
the process X and to determine the characteristics of the corresponding inversions.

Proposition 5. Suppose that X has the inversion property (2.1) with characteristics
(I, h, v). Then the following inversion properties hold:

(i) The process Xh has IP with characteristics (I, h−1, v).
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(ii) The process I(X) has IP with characteristics (I, h−1, v−1).

Proof. (i) Proposition 1 implies that Kh/h = 1/h. The assertion follows from an
application of Proposition 4.
(ii) Proposition 3 implies that I(X) has IP with characteristics (I, h ◦ I, v ◦ I). We
conclude using formulas (2.5). �

2.8. Dual inversion property and Kelvin transform. There are other types of
inversions which involve weak duality (see the books [6] or [14] for a survey on dual-

ity). Two E-valued Markov processes {(Xt)t≥0,Px} and {(X̂t)t≥0, P̂x}, with semigroups

(Pt)t≥0 and (P̂t)t≥0 respectively, are in weak duality with respect to some σ-finite mea-
sure m(dx) if for all positive measurable functions f and g, we have

(2.6)

∫
E

g(x)Ptf(x)m(dx) =

∫
E

f(x)P̂tg(x)m(dx).

The following definition is analogous to Definition 1, but in place of X on the right-hand
side we put a dual process X̂.

Definition 3. Let {(Xt)t≥0,Px} be a standard Markov process on E. We say that X
has the Dual Inversion Property, for short DIP, if there exists an involution I 6= Id of
E and a nonnegative X̂-harmonic function ĥ on E, with 0 < ĥ < +∞ in the interior

of E, such that the processes I(X) and X̂ ĥ have the same law, up to a change of time
γt, i.e.

(2.7) (I(Xγt), t ≥ 0)
(d)
= (X̂ ĥ

t , t ≥ 0),

where γt is the inverse of the additive functional At =
∫ t
0
v−1(Xs) ds with v being a

positive continuous function, X̂ is in weak duality with X with respect to the measure

m(dx), where m(dx) is a reference measure on E, and X̂ ĥ is the Doob ĥ-transform of

X̂ (killed when it exits E). We call (I, ĥ, v,m) the characteristics of the DIP.

Remark 2. We notice that if X is self-dual then IP and DIP are equivalent.

Remark 3. Self-similar Markov processes having the DIP with spherical inversions
were studied in [3]. Non-symmetric 1-dimensional stable processes were also investi-
gated in [24] and they provide examples of processes that have the DIP, while no IP is
known for them.

Theorem 3. Let X have DIP property (2.7). There exists the following Kelvin trans-
form:
Let f be a regular harmonic (resp. superharmonic, excessive) function for the process

X. Then K̂f(x) := ĥ(x)f(I(x)) is regular harmonic (resp. superharmonic, excessive)

for the process X̂.

Proof. The proof is similar to the proofs of Theorem 1 and of Theorem 2. �
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Example 1. Let X be a stable process with α ≥ 1 which is not spectrally one-sided. Let

ρ− = P (X1 < 0), ρ+ = P (X1 > 0). Let x+ = max(0, x). The function H(x) = xαρ
−

+ is
X-invariant (see [12]), so also superharmonic on (0,∞). Moreover H(0) = 0. Theorem
1 applied to Corollary 2 of [3] implies the existence of the Kelvin transform for regular
α-harmonic functions on R+, vanishing at 0. Thus

K̂H(x) = π(−1)|x|αρ+−11R−(x)

is regular α-harmonic on R−. We conclude, by considering −X in place of X, that the

function G(x) = xαρ
−−1

+ is superharmonic on R+. It is known (see [12]) that G(x) is
excessive on (0,∞). It is interesting to see that the functions H and G are related by
the Kelvin transform.

2.9. IP for X and Kelvin transform for operator-harmonic functions. In ana-
lytical potential theory, the term ”harmonic function” usually means Lf = 0, for some
second order differential operator L. Note that for a Feller process X with generator
LX and state space E, if E is unbounded then there are no non-zero LX-harmonic
functions which are in the domain D(LX) of LX , i.e. if f ∈ D(LX) ⊂ C0 and LXf = 0
then f=0. However, this is no longer true if, for a standard Markov process X, instead
of its generator, we consider its Dynkin characteristic operator AX

(2.8) AXf(x) = lim
U↘{x}

Exf(XτU )− f(x)

ExτU
,

with U any sequence of decreasing bounded open sets such that ∩U = {x} (see [16],
where AX is denoted by U .) We stress that the Dynkin characteristic operator exists
and characterizes all standard Markov processes. For diffusions, we may consider the
differential generator L of X, defined (see [16], 5.19), as the restriction of AX to C2. L
is the second order elliptic differential operator coinciding with the generator LX of X
on its domain D(LX) ⊂ C0 ∩ C2.

Definition 4. Define the following:

(a) For any standard Markov process X, a function f on D ⊂ E is called Dynkin-
harmonic on D if AXf = 0 on D.

(b) For a diffusion X on Rn, a function f on D ⊂ E is called differential gen-
erator harmonic on D if Lf = 0 on D.

In both cases (a) and (b), harmonicity is defined by means of operators which is
the reason why such functions are called operator-harmonic functions. The main aim
of this section is to prove that the Kelvin transform preserves, under some natural
conditions, the operator-harmonic property. We will need the following proposition.
We provide a proof because we have not found a reference where both assertions (i)
and (ii) are proved.

Proposition 6. Let X be a standard Markov process with X0 = x.

(i) If ϕ is a homeomorphism from E onto E then the Dynkin operator of the process
ϕ(X) is expressed in terms of the Dynkin operator of the process X in the
following way

Aϕ(X)f(x) = AX(f ◦ ϕ)(ϕ−1(x)).
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for functions from the domain of AX and Aϕ(X).
(ii) Let h ≥ 0 be PX

t -excessive. The Dynkin operator Ah of the Doob h-transform
Xh of X is given by the formula:

Ah(f) = h−1AX(hf)

Proof. (i) This assertion is straightforward by making use of the definition of Dynkin’s
operator.

(ii) Let λ > 0. The λ-potential of the h-process Xh equals

Uh
λ (x, dy) =

h(y)

h(x)
UX
λ (x, dy)

where UX
λ is the λ-potential of X.

Let B be the Dynkin operator of the process Xh. Define

Kλf = h−1AX(hf)− λf

To prove (ii) it is enough to show that B − λId = Kλ. This in turn will be proved if
we show that

KλU
h
λ = −Id

(since (B − λId)Uh
λ = −Id, the λ-potential operator Uh

λ is a bijection from C0 into the
domain of B and B − λId is the unique inverse operator). We compute, for a test
function f ,

KλU
h
λf =

1

h(x)
AX [h(x)

∫
h(y)

h(x)
UX
λ (x, y)f(y)dy]− λ

∫
h(y)

h(x)
UX
λ (x, y)f(y)dy

=
1

h(x)
(AX − λId)Uλ

X(hf)

=
1

h(x)
(−h(x)f(x)) = −f(x),

hence KλU
h
λ = −Id. �

Theorem 4. Suppose that the process X satisfies IP for an involution I and a positive
excessive function h. Then the Kelvin transform preserves AX-harmonicity, i.e., for
any open set D ⊂ E, if H is an AX-harmonic function on D then the function x 7→
KH(x) = h(x)H(I(x)) is AX-harmonic on I(D).

Proof. Let H be AX-harmonic. Denote H̃ = H ◦I. Let AI denote the Dynkin operator
of the process I(X). By Proposition 6(i) we have

AI(H̃) = AX(H̃ ◦ I) ◦ I−1 = (AXH) ◦ I = 0.

Thus H̃ is AI-harmonic on I(D). By IP, this is equivalent to be Ah-harmonic (the
Dynkin operators of I(X) and Xh differ by a positive factor corresponding to the time
change, see [16], Th. 10.12). Consequently Ah(H̃) = 0. We now use Proposition 6(ii)
in order to conclude that AX(hH̃) = 0. Thus hH̃ = hH ◦ I is AX-harmonic on I(D)
whenever H is AX-harmonic on D. �
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Corollary 2. Let X be a diffusion on Rn having IP with characteristics (I, h, v)where
I and h are continuous. If f is twice continuously differentiable on D and Lf = 0 then
L(Kf) = 0.

Proof. By Theorem 4, we have AX(Kf) = 0. By the continuity of f, I and h, the func-
tion Kf is continuous. Theorem 5.9 of [16] then implies that Kf is twice continuously
differentiable and that L(Kf) = 0. �

We end this section by pointing out relations between X-harmonic functions on a
subset D of E and Dynkin AX-harmonic functions on D.

Proposition 7. Let X be a standard Markov process, D ⊂ E and f : D → R. The
following assertions hold true.

(i) If f is X-harmonic then AXf = 0, on D.
(ii) If X is a diffusion and f is continuous then f is X-harmonic if and only if it

is AX-harmonic, on D. Moreover, this happens if and only if f is L-harmonic
on D.

Proof. Part (i) is evident by definition (2.8) of AX . It gives the ”only if” part of the
first part of (ii). If f is continuous and AX-harmonic on D then, by Theorem 5.9 of
[16], f is twice continuously differentiable and Lf = 0 on D. A strengthened version
of Dynkin’s formula [16, (13.95)] implies that if Lf = 0 on D then f is X-harmonic on
D. This completes the proof of (ii). �

Remark 4. Theorem 6 and Proposition 7(ii) give another ”operator-like” proof of
Theorem 1 when X is a one dimensional diffusion and for continuous X-harmonic
functions, see Remark 7 in [2].

2.10. Inversion property and self-similarity. We end this Section by a discussion
on the relations between the IP and self-similarity. In [2] the IP of non necessarily
self-similar one-dimensional diffusions is proven and corresponding non-spherical invo-
lutions are given. There are h-transforms of Brownian motion on intervals which are
not self-similar Markov processes. On the other hand IP is preserved by conditioning,
see Proposition 4, but self-similarity is not.

This shows that self-similar Feller processes are not the only ones having the inversion
property with the spherical inversion and a harmonic function being a power of the
modulus.

3. Inversion of processes having the time inversion property

3.1. Characterization and regularity of processes with t.i.p. Now let us intro-
duce a class of processes that can be inverted in time. Let S be a non trivial cone
of Rn, for some n ≥ 1, i.e. S 6= ∅, S 6= {0} and x ∈ S implies λx ∈ S for all
λ ≥ 0. We take E to be the Alexandroff one point compactification S ∪{∞} of S. Let
((Xt, t ≥ 0); (Px)x∈E) be a homogeneous Markov process on E absorbed at ∂S ∪ {∞}.
X is said to have the time inversion property (t.i.p. for short) of degree α > 0, if the
process ((tαX1/t, t ≥ 0), (Px)x∈E) is a homogeneous Markov process. Assume that the
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semigroup of X is absolutely continuous with respect to the Lebesgue measure, and
write

(3.9) pt(x, dy) = pt(x, y)dy, x, y ∈ S̊.
The process (tαX 1

t
, t > 0) is usually an inhomogenous Markov process with transition

probability densities q
(x)
s,t (z, y), for s < t and x, y ∈ S, satisfying

Ex[f(tαX 1
t
)|sαX 1

s
= z] =

∫
f(y)qxs,t(z, y) dy

where

(3.10) q
(x)
s,t (a, b) = t−nα

p 1
t
(x, b

tα
)p 1

s
− 1
t
( b
tα
, a
sα

)

p 1
s
(x, a

sα
)

.

We shall now extend the setting and conditions considered by Gallardo and Yor in
[21]. Suppose that

(3.11) pt(x, y) = t−nα/2φ(
x

tα/2
,
y

tα/2
)θ(

y

tα/2
) exp{−ρ(x) + ρ(y)

2t
},

where the functions φ : S̊× S̊ → R+ and θ, ρ : S̊ → R+ satisfy the following properties:
for λ > 0 and x, y ∈ S̊  φ(λx, y) = φ(x, λy),

ρ(λx) = λ2/αρ(x),
θ(λx) = λβθ(x).

(3.12)

Under conditions (3.11) and (3.12), using (3.10) we immediately conclude that X has
the time inversion property. We need also the following technical condition

(ρ1/2(Xt), t ≥ 0) is a Bessel process of dimension (β + n)α(3.13)

or is a Doob transform of it, up to time scaling t→ ct, c > 0.

To simplify notations let us settle the following definition of a regular process with
t.i.p.

Definition 5. A regular process with t.i.p. is a Markov process on S ∪ {∞}
where S is a cone in Rn for some n ≥ 1, with an absolutely continuous semigroup with
densities satisfying conditions (3.11)–(3.13) and ρ(x) = 0 if and only if x = 0.

The requirement of regularity for a process with t.i.p. is not very restrictive; all the
known examples of processes with t.i.p. satisfy it. In case when S = Rn, the authors of
[21] and [25] showed that if the above densities are twice differentiable in the space and
time then X has time inversion property if and only if it has a semigroup with densities
of the form (3.11), or if X is a Doob h-transform of a process with a semigroup with

densities of the form (3.11). It is proved in [1] that when S̊ = R or (−∞, 0) or (0,+∞)
and the semigroup is conservative, i.e.

∫
pt(x, dy) = 1, and absolutely continuous with

densities which are twice differentiable in time and space, then (3.13) is necessary for
the t.i.p. to hold. A similar statement is proved in [5] in higher dimensions under the
additional condition that ρ is continuous on S = Rn and ρ(x) = 0 if and only if x = 0.
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Remark 5. Under the conservativeness condition, it is an interesting problem to find
a way to read the dimension of the Bessel process ρ1/2(X), in (3.13), from (3.11). If
we could do that then we would be able to replace condition (3.13) with the weaker
condition that ρ(X) is a strong Markov process. Indeed, it was proved in [1] that the
only processes having the t.i.p. living on (0,+∞) are α powers of Bessel processes and
their h-transforms. ρ(X) has the time inversion property and so, if it is Markov then
it is the power of a Bessel process or a process in h-transform with it.

3.2. A natural involution and IP for processes with t.i.p.

Proposition 8. The map I defined for x ∈ S\{0} by I(x) = xρ−α(x), and by I(0) =
∞, is an involution of E. Moreover, the function x → xρ−ν(x) is an involution on
S\{0} if and only if ν = α.

Proof. It is readily checked that I ◦I = I by using the homogeneity property of ρ from
(3.12). �

We know by [21, 25] that a regular process with t.i.p. X is a self-similar Markov
process, thus so is I(X). That’s why I(x) = xρ−α(x) is a natural involution for such
an X.

We now compute the potential of the involuted process I(X).

Proposition 9. Assuming that X is transient for compact sets, the potential of I(X)
is given by

U I(X)(x, dy) = V (y)
h(y)

h(x)
UX(x, dy),(3.14)

where h(x) = ρ(x)1−(β+n)α/2, V (y) = Jac(I)(y)ρ(y)nα−2 and Jac(I) is the modulus of
the Jacobi determinant of I.

Proof. Recall that X is transient for compact sets if and only if its potential UX(x, y)
is finite. The potential kernel of I(X) is given by

U I(x, y) =

∫ ∞
0

pt(I(x), I(y))Jac(I(y))dt.

First we compute p
I(X)
t (x, y) = pt(I(x), I(y))Jac(I(y)). According to formula (3.11)

we find

p
I(X)
t (x, y) = t−(n+β)α/2φ(x,

y

(tρ(x)ρ(y))α
) ρ−αβ(y)θ(y) exp[−ρ(x) + ρ(y)

tρ(x)ρ(y)
]Jac(I(y)).

Making the substitution t ρ(x) ρ(y) = s we obtain easily formula (3.14). �

We are now ready to prove the main result of this section.

Theorem 5. Suppose that X is a transient regular process with t.i.p. Then X has
the IP with characteristics (I, h, v) with I(x) = xρ−α(x), h(x) = ρ(x)1−(β+n)α/2 and
v(x) = (Jac(I)(x))−1ρ(x)2−nα where Jac(I) is the modulus of the Jacobi determinant
of I.
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Moreover, if X is the Doob h-transform of a regular process Z having IP with charac-
teristics (I, h, v), then X has the IP with characteristics I and v, and excessive function
KZ(H)/H.

Proof. First suppose that the process X is regular, so its semigroup has the form
(3.11). We use the fact that if two transient Markov processes have equal potentials
UX = UY < ∞ then the processes X and Y have the same law (compare with [19],
page 356 or [27], Theorem T8, page 205).

Remind that the function h(x) = x2−δ is BES(δ)-excessive, see e.g. [3, Cor.4.4]. This
can also be explained by the fact that if (Rt, t ≥ 0) is a Bessel process of dimension δ
then (R2−δ

t , t ≥ 0) is a local martingale (it is a strict local martingale when δ > 2), cf.
[18].

Using condition (3.13), we see that the function h(x) = ρ(x)1−(β+n)α/2 appearing in
(3.14) is X-excessive. Thus the process I(X) is a Doob h-transform of the process X
when time-changed appropriately.

In the case when X = ZH is a Doob H-transform of Z whose semigroup has the
form (3.11), we use Proposition 4. �

Remark 6. A remarkable consequence of Theorem 5 is that it gives as a by-product
the construction of new excessive functions which are functions of ρ(X) and not of
θ(X). For example, for Wishart processes, the known harmonic functions are in terms
of det(X) and not of Tr(X), see [15] and Subsection 4.3 below.

In view of applications of Theorem 5, the aim of the next result is to give a sufficient
condition for X to be transient for compact sets.

Proposition 10. Assume that φ satisfies

(a) φ(x, y/t) ≈ c1(x, y)tγ1(x,y)e−
c2(x,y)

t as t→ 0;
(b) φ(x, y/t) ≈ c3(x, y)tγ2(x,y) as t→∞;

where c1, c2, c3 and γ1, γ2 are functions of x and y. If

(1) ρ ≥ 0;
(2) ρ(x) + ρ(y)− 2c2(x, y) > 0 for all x, y ∈ E;

(3) γ1(x, y) > −1 + (n+β)α
2

> γ2(x, y);

then X is transient for compact sets.

Proof. We easily check that the integral for UX(x, y) converges if the hypotheses of the
proposition are satisfied. �

3.3. Self-duality for processes with t.i.p.

Proposition 11. Suppose that φ(x, y) = φ(y, x) for x, y ∈ E. Then the process X is
self-dual with respect to the measure

m(dx) = θ(x)dx.

Proof. Formula (3.11) implies that the kernel

p̃t(x, y) := pt(x, y)θ(x)
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is symmetric, i.e. p̃t(x, y) = p̃t(y, x). It follows that for all t ≥ 0 and bounded
measurable functions f , g : E → R+, we have∫

f(x)Ex(g(Xt))m(dx) =

∫
Ex(f(Xt))g(x)m(dx).

�

By Proposition 11, all classical processes with t.i.p. considered in [21] and [25] are
self-dual: Bessel processes and their powers, Dunkl processes, Wishart processes, non-
colliding particle systems (Dyson Brownian motion, non-colliding BESQ particles).

Remark 7. Let n ≥ 2 and let X be a transient regular process with t.i.p., with non-
symmetric function φ. By Theorem 5, X has an IP, whereas a DIP for X is unknown.
This observation, together with Remark 3 shows that in the theory of space inversions
of stochastic processes, both IP and DIP must be considered.

4. Applications

4.1. Free scaled power Bessel processes. Let R(ν) be a Bessel process with index
ν > −1 and dimension δ = 2(ν + 1). A time scaled power Bessel process is realized as

((R
(ν)

σ2t)
α, t ≥ 0), where σ > 0 and α 6= 0 are real numbers. Let ν and σ be vectors of

real numbers such that σi > 0 and νi > −1 for all i = 1, 2, · · · , n, and let R(ν1), R(ν2),
· · · , R(νn) be independent Bessel processes of index ν1, ν2, · · · , νn, respectively. We call
the process X defined, for a fixed t ≥ 0, by

Xt :=
(

(R
(ν1)

σ2
1t

)α, (R
(ν2)

σ2
2t

)α, · · · (R(νn)

σ2
nt

)α
)

a free scaled power Bessel process with indexes ν, scaling parameters σ and power α,
for short FSPBES(ν, σ, α). If we denote by qνt (x, y) the density of the semi-group of
a BES(ν) with respect to the Lebesgue measure, found in [29], then the densities of a
FSPBES(ν, σ, α) are given by

pt(x, y) =
n∏
i=1

(1/α)y
1
α
−1

i qνi
σ2
i t

(x
1/α
i , y

1/α
i )(4.15)

=
n∏
i=1

(1/α)y
1
α
−1

i

x
1/α
i

σ2
i t

(
yi
xi

)(νi+1)/α

Iνi

(
(xiyi)

1/α

σ2
i t

)
e
−
x
2/α
i

+y
2/α
i

2σ2
i
t .

From (4.15) we read that pt(x, y) takes the form (3.11) with
φ(x, y) =

∏n
i=1

Iνi (
(xiyi)

1/α

σ2
i

)

((xiyi)1/α/σ2
i )
νi
,

ρ(x) =
∑n

i=1 x
2/α
i /σ2

i ,

θ(y) = 1
αn(

∏n
i=1 σi)

α

∏n
i=1

(
yi
|σi|α

)2(1+νi)/α−1
.

(4.16)

It follows that the degree of homogeneity of θ is β = 2(n +
∑n

i=1 νi)/α − n. If X is a

FSPBES(ν, σ, α) then clearly ρ1/2(X) is a Bessel process of dimension nδ = 2n(ν + 1),
where δ = (

∑n
1 δi)/n and ν = (

∑n
1 νi)/n. Note that with this notation ν = α

2n
(β+n)−1
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and δ = α
n
(β+n) . We deduce that ρ(X) is point-recurrent if and only if 0 < 2n(ν+1) <

2, i.e., 0 < nδ < 2.
Interestingly, the distribution of Xt, for a fixed t > 0, depends on the vector ν only

through the mean ν. Furthermore, we can recover the case σ1 6= 1 from the case σ1 = 1
by using the scaling property of Bessel processes. In other words, for a fixed time t > 0,
the class of all free power scaled Bessel processes yields an n + 1-parameter family of
distributions.

Corollary 3. Let X be a FSPBES(ν, σ, α). If nδ = 2n(ν + 1) > 2 then X is transient
and has the Inversion Property with characteristics

I(x) =
x

ρα(x)
, h(x) = ρ1−

nδ
2 (x), v(x) = ρ(x)2,

where ρ(x) is given by (4.16).

Proof. We quote from ([26], p.136) that the modified Bessel function of the first kind
Iν has the asymptotics for ν ≥ 0

Iν(x) ∼ xν

2νΓ(1 + ν)
, as x→ 0

and

Iν(x) ∼ ex√
2πx

, as x→∞.

From the above and (4.15) it follows that

pt(x, y) ∼ c(x, y)

tn(1+ν)
, as t→∞

and

pt(x, y) ∼ c(x, y)e−
ρ(x)+ρ(y)

2t

tn/2
, as t→ 0,

hence if nδ = 2n(ν+ 1) > 2, then
∫∞
0
pt(x, y) dt <∞ and the process is transient. The

process ρ1/2(X) is a Bessel process of dimension 2n(ν+ 1) = (β+n)α, so the condition
(3.13) is satisfied and we can apply Theorem 5.

We compute the Jacobian Jac(I)(x) = −ρ(x)−nα similarly as the Jacobian of the
spherical inversion x 7→ x/‖x‖2 and we get v(x) = |(Jac(I)(x))−1|ρ(x)2−nα = ρ(x)2. �

4.2. Gaussian Ensembles. Stochastic Gaussian Orthogonal Ensemble GOE(m) is
an important class of processes with values in the space of real symmetric matrices
Sym(m,R) which have t.i.p. and IP. Recall that

Yt =
Nt +NT

t

2

whereNt is a Brownianm×mmatrix. Thus the upper triangular processes (Yij(t))1≤i≤j≤m
of Y are independent, Yii are Brownian motions and Yij, i < j, are Brownian motions
dilated by 1√

2
.

Let M ∈ Sym(m,R). We denote by x ∈ Rm the diagonal elements of M and by
y ∈ Rm(m−1)/2 the terms (Mij)1≤i<j≤m above the diagonal of M . We denote by M(x,y)
such a matrix M .
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We have (x,y) ∈ Rm(m+1)/2 and the map (x,y) 7→ M(x,y) is an isomorphism
between Rm(m+1)/2 and Sym(m,R).

Let Φ(x,y) = (x,y/
√

2). The map Φ is a bijection of Rm(m+1)/2 and Sym(m,R), such
that the image of the Brownian Motion Bt on Rm(m+1)/2 is equal to Yt. Proposition 3
implies the Inversion Property of the process Y . More precisely, we obtain the following

Corollary 4. The Stochastic Gaussian Orthogonal Ensemble GOE(m) has IP with
characteristics:

I(M) =
M

‖M‖2
, h(M) = ‖M‖2−n, v(M) = ‖M‖4,

where ‖M‖ =
√∑

1≤i,j≤mM
2
ij is the trace norm of M .

On the other hand, the time inversion property of Y follows from the expression of
the transition semigroup of Y which is straightforward. Theorem 5 provides another
proof of Corollary 4.

Analogously, IP and t.i.p. hold true for Unitary and Symplectic Gaussian Ensembles.

4.3. Wishart Processes. Now we look at matrix squared Bessel processes which are
also known as Wishart processes. Let S+

m be the set of m×m real non-negative definite
matrices. X is said to be a Wishart process with shape parameter δ, if it satisfies the
stochastic differential equation

dXt =
√
XtdBt + dB∗t

√
Xt + δImdt, X0 = x, δ ∈ {1, 2, . . . ,m− 2} ∪ [m− 1,∞),

where B is an m×m Brownian matrix whose entries are independent linear Brownian
motions, and Im is the m×m identity matrix. Notice that when δ is a positive integer,
the Wishart process is the process N∗N where N is a δ ×m Brownian matrix process
and N∗ is the transpose of N . We refer to [15] for Wishart processes.

In [21] and [25] it was shown that these processes have the t.i.p. The semi-group of
X is absolutely continuous with respect to the Lebesgue measure, i.e. dy =

∏
i≤j dyij,

with transition probability densities

qδ(t, x, y) =
1

(2t)δm/2
1

Γm(δ/2)
e−

1
2t
Tr(x+y) (det(y))(δ−m−1)/2 0F1(

δ

2
,
xy

4t2
),

for x, y ∈ S+
m, where Γm is the multivariate gamma function and 0F1(·, ·) is the matrix

hypergeometric function. In particular, we have ρ(x) = Tr(x), α = 2 (X is self-similar
with index 1) and β = 1

2
m(δ −m− 1). Observe that, by Proposition 11, the Wishart

process is self-dual with respect to the measure

θ(y)dy = (det(y))(δ−m−1)/2 dy, y ∈ S+
m,

known as a Riesz measure, generating the Wishart family of laws of Xt as a natural
exponential family. Next, X is transient for m ≥ 3 and for m = 2 and δ ≥ 2. For a
proof of this fact, we use the s.d.e. of the trace of X given by

d(Tr(Xt)) = 2
√

Tr(Xt)dWt +mδdt.
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Thus, Tr(X) is a 1-dimensional squared Bessel process of dimension mδ. Since δ ∈
{1, . . . ,m− 2} ∪ [m− 1,∞), we have δ ≥ 1, so mδ ≥ 3 unless, possibly the case m = 2
and δ = 1. Thus, for m ≥ 3 and for m = 2 and δ ≥ 2, we have ‖Xt‖1 =

∑
i,j |(Xt)ij| ≥

Tr(Xt)→∞ as t→∞ and the process X is transient.

Corollary 5. Let X be a Wishart process on S+
m, with shape parameter δ. The process

X has the IP property with characteristics

I(x) =
x

(Tr(x))2
, h(x) = (Tr(x))1−

δm
2 , v(x) =

1

m− 1
(Tr(x))2.

The function h(x) = (Tr(x))1−
δm
2 is X-excessive.

Proof. In the transient case we apply Theorem 5. Condition (3.13) is fulfilled as ρ(X) =
Tr(X) is a 1-dimensional squared Bessel process of dimension mδ= (n+ β)α, where
n = m(m + 1)/2. For the time change function, the computation of the Jacobian of
I(X) is crucial. It is equal to (m− 1)(Tr(X))−m(m+1).

In the case m = 2 and δ = 1 it is easy to see that the process X is not transient,
e.g. by checking that the integral

∫∞
0
q(t, 0, y)dt = ∞. Nevertheless, the IP holds

with the same characteristics as above. In order to prove this we can use the following
description of the generator of X found in in [10]. If f and F are C2 functions on,
respectively, S+

2 and on M(1, 2), the space of 1 × 2 real matrices, such that for all
y ∈M(1, 2) we have F (y) = f(y∗y), then Lf = 1

2
∆f . Thus, the proof of the IP works

like the one for the 2-dimensional Brownian motion, see [33]. �

4.4. Dyson Brownian Motion. Let X1 ≤ X2 < · · · ≤ Xn be the ordered sequence of
the eigenvalues of a Hermitian Brownian motion. Dyson showed in [17] that the process
(X1, . . . , Xn) has the same distribution as n independent real-valued Brownian motions
conditioned never to collide. Hence its semigroup densities pt(x, y) can be described as
follows. Let qt be the probability transition function of a real-valued Brownian motion.
We have

(4.17) pt(x, y) =
H(y)

H(x)
det[qt(xi, yj)], x, y ∈ Rn

<,

where

H(x) =
n∏
i<j

(xj − xi) and Rn
< = {x ∈ Rn;x1 < x2 < · · · < xn}.

Following Lawi [25], X has the time inversion property. This follows from the fact that
(4.17) can be written in the form (3.11) with

θ = (2π)n/2H(y)2, ρ(x) = ‖x‖2, φ(x, y) =
det[exiyj ]ni,j=1

H(x)H(y)
.

Corollary 6. The n-dimensional Dyson Brownian Motion has IP with characteristics:
I is the spherical inversion on Rn

<, h(x) = ‖x‖2−n2
and v(x) = ‖x‖4.

Proof. We compute (n + β)α = n2. Applying Theorem 5 to the Dyson Brownian
Motion will be justified if we prove that ‖X‖2 is BESQ(n2). This can be shown by
writing the SDE for ‖X‖2, using the SDEs for Xi’s and the Itô formula.
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Another proof consists in observing that H is harmonic for the n-dimensional Brownian
Motion Bt killed when exiting the set Rn

< and is used in conditioning of Bt to get the
Dyson Brownian Motion. An application of Proposition 4 yields the Corollary. �

4.5. Non-colliding Squared Bessel Particles. Let X1 ≤ X2 < · · · ≤ Xn be the
ordered sequence of the eigenvalues of a complex Wishart process, called a Laguerre
process. König and O’Connell showed in [23] that the process (X1, . . . , Xn) has the
same distribution as n independent BESQ(δ) processes on R+ conditioned never to
collide, δ > 0. Hence its semigroup densities pt(x, y) can be described as follows. Let
qt be the probability transition function of a BESQ(δ) process. We have

(4.18) pt(x, y) =
H(y)

H(x)
det[qt(xi, yj)], x, y ∈ R+n

<

where H is, as above, the Vandermonde function and E = R+n
< = {x ∈ R+n : x1 <

x2 < · · · < xn}. Lawi [25] observed that X has the time inversion property.
The same two reasonings presented for the Dyson Brownian Motion can be applied,

in order to prove that X has IP. However, the first reasoning, using Theorem 5 and
formula (4.18), applies only in the transient case δ > 2.

Let us present the second reasoning where we use the results of the Section 2.7.
First, we prove the following corollary.

Corollary 7. The n-dimensional free Squared Bessel process Y = (Y (1), . . . , Y (n))
where the processes Y (i) are independent Squared Bessel processes of dimension δ, has
IP with characteristics I(x) = x/(x1 + . . . xn)2, h(x) = (

∑n
i=1 xi)

1−nδ/2 and v(x) =
(
∑n

i=1 xi)
2.

Proof. It is an application of (IP) for free Bessel processes, proved in [3, Corollary 4]
and the Proposition 3. We use the bijection Φ(x1, . . . , xd) = (x21, . . . , x

2
d). �

Next, we apply Proposition 4, with H as above, in order to get the following result.

Corollary 8. Let (X1, . . . , Xn) be n independent BESQ(δ) processes on R+ conditioned
never to collide, δ > 0. The process X1 ≤ X2 < · · · ≤ Xn has IP with characteristics:

I(x) = x/(x1 + . . .+ xn)2, h̃(x) = (
n∑
i=1

xi)
1−nδ/2−n(n−1), v(x) = (

n∑
i=1

xi)
2.

4.6. Hyperbolic Brownian Motion. Let us recall some basic information about the
ball realization of real hyperbolic spaces (cf. [22, Ch.I.4A p.152], [28]). Let Dn be the
n-dimensional hyperbolic ball, i.e. Dn = {x ∈ Rn : ‖x‖ < 1} and Dn is equipped with
the metrics ds2 = 4‖dx‖2/(1− ‖x‖2)2. Dn is a Riemannian manifold. This is the ball
model of the real hyperbolic space of dimension n. The spherical coordinates on Dn

are defined by x = σ tanh r
2

where r > 0 and σ ∈ Sn−1 ⊂ Rn are unique. Then the
Laplace-Beltrami operator on Dn is given by

Lf(x) =
∂2f

∂r2
(x) + (n− 1) coth r

∂f

∂r
(x) +

1

sinh2 r
∆Sn−1f(x),

where ∆Sn−1 is the spherical Laplacian on the sphere Sn−1 ⊂ Rn.
Let X be the n-dimensional Hyperbolic Brownian Motion on Dn, defined as a diffusion
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generated by 1
2
L (cf. [28] and the references therein). Define a new process Y by

setting Yt := δ(Xt), t ≥ 0, where δ(x) is the hyperbolic distance between x ∈ Dn and
the ball center 0. The process Y is the n-dimensional Hyperbolic Bessel process on
(0,∞). According to [2], the process Y has the Inversion Property, with characteristics
(I0, h0, v0) that can be determined by [2, Theorem 1]. It is natural to conjecture that
the Hyperbolic Brownian Motion X has IP with characteristics (I, h, v0), where

I(x) = σ tanh
I0(r)

2
and h(x) = h0(r).

When n = 3, by [2, Section 5.2], we have I0(r) = 1
2

ln coth r, h0(t) = coth r − 1
and v0(r) = 2 cosh r sinh r. If the Hyperbolic Brownian Motion Xt had IP with the
involution I and the excessive function h, then, by Theorem 1 and Proposition 7, if
Lf = 0 then L(hf ◦ I) = 0. By a direct but tedious calculation of L(hf ◦ I) in
spherical coordinates, we see that there exist continuous functions f such that Lf = 0
but L(hf ◦ I) 6= 0, so X does not have IP with characteristics I and h.

To our knowledge, no inversion property is known for the Hyperbolic Brownian
Motion.We believe that this question was first raised by T. Byczkowski about ten
years ago, while he was working on potential theory of the Hyperbolic Brownian Motion
([11]).
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Lecture Notes in Math, 2137, Séminaire de Probabilités. In Memoriam Marc Yor, 2015.

[3] L. Alili, L. Chaumont, P. Graczyk and T. Żak: Inversion, duality and Doob h-transforms
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