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Let X be a standard Markov process. We prove that a space inversion property of X implies the existence of a Kelvin transform of X-harmonic, excessive and operator-harmonic functions and that the inversion property is inherited by Doob h-transforms. We determine new classes of processes having space inversion properties amongst transient processes satisfying the time inversion property. For these processes, some explicit inversions, which are often not the spherical ones, and excessive functions are given explicitly. We treat in details the examples of free scaled power Bessel processes, non-colliding Bessel particles, Wishart processes, Gaussian Ensemble and Dyson Brownian Motion.

Introduction

The following space inversion property of a Brownian Motion (B t , t ≥ 0) in R n is well known ( [START_REF] Revuz | Continuous martingales and Browmian Motion[END_REF], [START_REF] Yor | A propos de l'inverse du mouvement brownien dans R n[END_REF]). Let I sph be the spherical inversion I sph (x) = x/ x 2 on R n \ {0} and h(x) = x 2-n , n ≥ 1. Then (I sph (B γt ), t ≥ 0)

(d) = (B h t , t ≥ 0), where (d) 
= stands for equality in distribution, B h is the Doob h-transform of B with the function h and the time change γ t is the inverse of the additive functional A(t) = t 0 X s -4 ds. In case n = 1, B is a reducible process. Thus, the state space can be reduced to either the positive or negative real line and B killed when it hits zero, usually denoted by B 0 , is used instead of B.

In [START_REF] Bogdan | On Kelvin Transformation[END_REF], such an inversion property was shown for isotropic (also called "rotationally invariant" or "symmetric") α-stable processes on R n , 0 < α ≤ 2, also with I sph (x) and with the excessive function h(x) = x α-n . The time change γ t is then the inverse function of A(t) = t 0 X s -2α ds. In the pointwise recurrent case α > n = 1 one must consider the process X 0 t killed at 0. In the recent papers [START_REF] Alili | On inversions and Doob h-transforms of linear diffusions[END_REF][START_REF] Alili | Inversion, duality and Doob h-transforms for self-similar Markov processes[END_REF][START_REF] Kyprianou | Deep factorisation of the stable process[END_REF], inversions involving dual processes were studied for diffusions on R and for self-similar Markov processes on R n , n ≥ 1.

The main motivation and objective of this paper was to find new classes of Markov processes having space inversion properties. Moreover, we show that the inversion property of a process X implies the existence of a Kelvin transform of X-harmonic functions.

In this work, ((X t , t ≥ 0); (P x ) x∈E ) is a standard Markov process with a state space E, where E is the one point Alexandroff compactification of an unbounded locally compact subset of R n . Let I : E → E be a smooth involution and let f be Xharmonic. One cannot expect that the function f • I is again X-harmonic. However, in the case of the Brownian Motion, it is well known, see for instance [START_REF] Axler | Harmonic Function Theory[END_REF], that if f is a twice differentiable function on R n \ {0} and ∆f = 0 then ∆( x 2-n f (I sph (x))) = 0. The map

f → Kf (x) = x 2-n f (I sph (x))
is the classical Kelvin transformation of a harmonic function f on R n \ {0}; this was obtained by W. Thomson (Lord Kelvin) in [START_REF] Thomson | Extraits de deux lettres adressées à M. Liouville[END_REF].

In the isotropic stable case, Riesz noticed ( [START_REF] Riesz | Intégrales de Riemann-Liouville et Potentiels[END_REF]) that if K α f (x) = x α-n f (I sph (x)), and U α (µ) is the Riesz potential of a measure µ then K α (U α (µ)) is α-harmonic. This observation was extended in [START_REF] Bogdan | Representation of α-harmonic functions in Lipschitz domains[END_REF][START_REF] Bogdan | Potential theory of Schrödinger operator based on fractional Laplacian[END_REF][START_REF] Bogdan | On Kelvin Transformation[END_REF] by proving that K α transforms α-harmonic functions into α-harmonic functions. Analogous results were proven for Dunkl processes in [START_REF] Kamel | Poisson Integrals and Kelvin Transform Associated to Dunkl-Laplacian Operator[END_REF], see Section 2.5 for more details in the stable and Dunkl cases.

In harmonic analysis, the interest in Kelvin transform comes from the fact that it reduces potential-theoretic problems relating to the point at infinity for unbounded domains to those relating to the point 0 for bounded domains, see for instance the examples in [START_REF] Axler | Harmonic Function Theory[END_REF] where this is applied to solving the Dirichlet problem for the exterior of the unit ball and to obtain a reflection principle for harmonic functions.

Thus, a natural question is whether for other processes X, involutions I and Xharmonic functions f one may "improve" the function f • I by multiplying it by an X-harmonic function k (the same for all functions f ), such that the product Kf (x) := k(x) f (I(x)) is X-harmonic. The transform Kf will be then called Kelvin transform of X-harmonic functions.

An important result of our paper states that a Kelvin transform of X-harmonic functions exists for any process satisfying a space inversion property. Thus a Kelvin transform of X-harmonic functions exists for much larger classes of processes than isotropic α-stable processes, α ∈ (0, 2] and Dunkl processes. Moreover, we prove that the Kelvin transform also preserves excessiveness.

Throughout this paper X-harmonic functions are considered, except for Section 2.9, where Kelvin transform's existence is proven for operator-harmonic functions, that is for functions harmonic with respect to the Dynkin operator of X and, in the case of diffusions, functions harmonic with respect to the differential generator of X.

Many other important facts for processes with inversion property are proved, for instance, that the inversion property is preserved by the Doob transform and by bijections. In particular, if a process X has the inversion property, then so have the processes X h and I(X).

Another goal of this paper is to determine new classes of processes having space inversion properties. We show that this is true for transient processes with absolutely continuous semigroups that can be inverted in time. Recall that a homogeneous Markov process ((X t , t ≥ 0), (P x ) x∈E ) is said to have the time inversion property (t.i.p. for short) of degree α > 0, if the process ((t α X 1/t , t ≥ 0), (P x ) x∈E ) is homogeneous Markov. The processes with t.i.p. were intensely studied by Gallardo and Yor [START_REF] Gallardo | Some new examples of Markov processes which enjoy the timeinversion property[END_REF] and Lawi [START_REF] Lawi | Towards a characterization of Markov processes enjoying the time-inversion property[END_REF]. For transient processes with t.i.p. we construct appropriate space inversions and Kelvin transforms. A remarkable feature of this study is that it gives as a by-product the construction of new excessive functions for processes with t.i.p.

Note that we do not restrict our considerations to self-similar processes, see Section 2.10. In Section 4.6, inversion properties for the Hyperbolic Bessel process and the Hyperbolic Brownian Motion(see e.g. [START_REF] Byczkowski | Stós: Poisson kernels of half-spaces in real hyperbolic spaces[END_REF], [START_REF] Pyć | Transition density of a hyperbolic Bessel process[END_REF], [START_REF] Yor | Exponential Functionals and Principal Values Related to Brownian Motion[END_REF], and the references therein) are discussed.

2. Inversion property and Kelvin transform of X-harmonic functions 2.1. State space for a process with inversion property. M. Yor considered in [START_REF] Yor | A propos de l'inverse du mouvement brownien dans R n[END_REF] the Brownian motion on R n ∪ {∞} where ∞ is a point at infinity and n ≥ 3. He was motivated by the work of L. Schwartz [START_REF] Schwartz | Le mouvement brownien sur R n , en tant que semi-martingale dans S n[END_REF] who showed that the n-dimensional Brownian motion (B t , t ≥ 0) on R n ∪ {∞} is a semimartingale until time t = +∞. Furthermore, the Brownian motion indexed by [0, ∞] looks like a bridge between the initial state B 0 and the ∞ state. Observe now that we can write R n ∪ {∞} = {R n \{0}} ∪ {0, ∞}. Then S = {R n \{0}} ∪ {0} is a locally compact space, where 0 is an isolated cemetery point. This makes sense from the point of view of involutions because we can extend the spherical inversion on R n \{0}, by setting I sph (0) = ∞ and I sph (∞) = 0, to define an involution of R n ∪ {∞}.

Following this basic case, we are now ready to fix the mathematical setting of this paper. Let E be the Alexandroff one point compactification of an unbounded locally compact space S ⊂ R n . Without loss of generality, we assume that 0 ∈ S. E is endowed with its topological Borel σ-field.

We assume that ((X t , t ≥ 0); (P x ) x∈E ) is a standard process, we refer to Section I.9 and Chapter V of [START_REF] Blumenthal | Markov processes and potential theory[END_REF] for an account on such processes. That is X is a strong Markov process with state space E. The process X is defined on some complete filtered probability space (Ω, F, (F t ) t≥0 , (P x ) x∈E ), where P x (X 0 = x) = 1, for all x ∈ E. The paths of X are assumed to be right continuous on [0, ∞), with left limits, and are quasileft continuous on [0, ζ), where ζ = inf{s > 0 : X s / ∈ S\{0}} is the lifetime of X, S being the interior of S. Thus X is absorbed at ∂S ∪ {0, ∞} and it is sent to 0 whenever X leaves S\{0} through ∂S ∪ {0}, and to ∞ otherwise. We furthermore assume that X is irreducible, on E, in the sense that starting from anywhere in S\{0} we can reach with positive probability any nonempty open subset of E. This is a multidimensional generalization of the situation considered in [START_REF] Alili | On inversions and Doob h-transforms of linear diffusions[END_REF], where we constructed the dual of a one dimensional regular diffusion living on a compact interval [l, r] and killed upon exiting the interval.

2.2.

Excessive and invariant functions and Doob h-transform. In this paper, an important role is played by Doob h-transform, which is defined for an excessive function h. Recall that a Borel function h on E is called excessive if E x h(X t ) ≤ h(x) for all x and t and lim t→0+ E x h(X t ) = h(x) for all x. An excessive function is said to be invariant if E x h(X t ) = h(x) for all x and t. Let D ⊂ E be an open set. A Borel function h on E is called excessive (invariant) on D if it is excessive(invariant) for the process X killed when it exits D.

Let h be an excessive function and set E h = {x : 0 < h(x) < ∞}. Following [START_REF] Chung | Markov processes, Brownian motion, and time symmetry[END_REF], we can define the Doob h-transform (X h t ) of (X t ) as the Markov or sub-Markovian process with transition semigroup prescribed by

P h t (x, dy) =    h(y) h(x) Q h t (x, dy) if x ∈ E h ; 0 if x ∈ E \ E h ,
where Q h t (x, dy) is the semigroup of X killed upon exiting E h . Observe that if h does not vanish or take the value +∞ inside E then this killed process is X itself.

Definition of Inversion Property(IP).

In this section, we let {(X t ) t≥0 , P x }, X for short, be a standard Markov process with values in a state space E defined as in Section 2.1. We settle the following definition of the inversion property. Definition 1. We say that X has the Inversion Property, for short IP, if there exists an involution I = Id of E and a nonnegative X-excessive function h on E, with 0 < h < +∞ in the interior of E, such that the processes I(X) and X h have the same law, up to a change of time γ t , i.e.

(2.1) (I(X γt ), t ≥ 0)

= (X h t , t ≥ 0), where γ t is the inverse of the additive functional A t = t 0 v -1 (X s ) ds with v being a positive continuous function and X h is the Doob h-transform of X (killed when it exits the interior of E). We call (I, h, v) the characteristics of the IP.

We propose the terminology "Inversion Property" to stress the fact that the involuted ("inversed") process I(X) is expressed by X itself, up to conditioning (Doob h-transform) and a time change. Another important point is that the IP implies that the dual process X h is obtained by a path inversion transformation I(X) of X, up to a time change.

Inversion properties of stochastic processes were studied in many papers. The IP was studied for Brownian motions in dimension n ≥ 3 and for the spherical inversion in [START_REF] Yor | A propos de l'inverse du mouvement brownien dans R n[END_REF]. The IP with the spherical inversion for isotropic stable processes in R n was proved in [START_REF] Bogdan | On Kelvin Transformation[END_REF]. The continuous case in dimension 1 was studied in [START_REF] Alili | On inversions and Doob h-transforms of linear diffusions[END_REF]. The spherical inversions of self-similar Markov processes under a reversibility condition have been studied in [START_REF] Alili | Inversion, duality and Doob h-transforms for self-similar Markov processes[END_REF], and, in the particular case of 1-dimensional stable processes in [START_REF] Kyprianou | Deep factorisation of the stable process[END_REF].

As pointed out above, the involution involved in all known multidimensional inversion properties (or its variants with a dual process, see [START_REF] Alili | Inversion, duality and Doob h-transforms for self-similar Markov processes[END_REF]), is spherical. On the other hand, in the continuous one-dimensional case, see [START_REF] Alili | On inversions and Doob h-transforms of linear diffusions[END_REF], non-spherical involutions systematically appear. In Sections 3 and 4 of this paper we show that many important multidimensional processes satisfy an IP with a non-spherical involution.

2.4. Harmonic and superharmonic functions and their relation with excessiveness. We first recall the definitions of X-harmonic, regular X-harmonic and X-superharmonic functions on an open set D ⊂ E. For short, we will say "(super)harmonic on D" instead of "X-(super)harmonic on D", and "(super)harmonic" instead of "X-(super)harmonic on E". A function f is harmonic on D if for any open bounded set B ⊂ B ⊂ D, we have

E x (f (X τ B ), τ B < ∞) = f (x),
and is superharmonic on

D if E x (f (X τ B ), τ B < ∞) ≤ f (x),
for all x ∈ B, where τ B is the first exit time from B, i.e., τ B = inf{s > 0;

X s / ∈ B}. A function f is regular harmonic on D if E x (f (X τ D ), τ D < ∞) = f (x)
. By the strong Markov property, regular harmonicity on D implies harmonicity on D.

Let us point out the following relations between superharmonic and excessive functions for a standard Markov process. Proposition 1. Suppose that X t is a standard Markov process with state space E and let f : E → [0, ∞] be a non-negative function. Let D ⊂ E be an open set. [START_REF] Dynkin | Markov Processes I[END_REF]Theorem 12.4]. In order to prove Part (iii), suppose that f is superharmonic, fix x ∈ E and take a continuous compactly supported function l, 0 ≤ l ≤ 1, such that l(x) = 1. Since the function f is continuous, the function

(i) If f is excessive on D then f is superharmonic on D. (ii) If f is superharmonic on D and lim inf t→0+ E x f (X t ) ≥ f (x), for all x ∈ D , then f is excessive on D. (iii)
k = lf ∈ C 0 . Moreover f ≥ k, so E x (f (X t )) ≥ E x k(X t ). We get, using the fact that E x k(X t ) converges to E x k(X 0 ) when t → 0+, lim inf t→0+ E x f (X t ) ≥ lim t→0+ E x k(X t ) = E x k(X 0 ) = k(x) = f (x),
thus the condition from (ii) is fulfilled and f is excessive.

2.5. Kelvin transform: definition and dual Kelvin transform. We shall define the Kelvin transform for X-harmonic and X-superharmonic functions. In the Kelvin transform, only functions on open subsets D ⊂ E are considered. For convenience, we suppose them to be equal to 0 on ∂E (otherwise all the integrals in this section should be written on E, cf. [START_REF] Bogdan | On Kelvin Transformation[END_REF].) Definition 2. Let I : E → E be an involution. We say that there exists a Kelvin transform K on the space of X-harmonic functions if there exists a Borel function k ≥ 0, on E, with k| ∂E = 0, such that the function

x → Kf (x) =k(x) f (I(x)) is X-harmonic on I(D), whenever f is X-harmonic on an open set D ⊂ E.
A useful tool in the study of the Kelvin transform is provided by the dual Kelvin transform K * acting on positive measures µ on E and defined formally by

(2.2) f d(K * µ) = Kf dµ
for all positive Borel functions f on E, with f | ∂E = 0 and Kf := k f • I, cf. [START_REF] Riesz | Intégrales de Riemann-Liouville et Potentiels[END_REF][START_REF] Bogdan | On Kelvin Transformation[END_REF].

Looking at the right-hand side of (2.2) we see that it is equal to f (I(y)) k(y)dµ(y).

Consequently,

K * µ = (kµ) • I -1 = (kµ) • I, i.e. K * µ is simply the image (transport)
of the mesure k dµ by the involution I. This shows that K * µ exists and is a positive measure on I(F ) for any positive measure µ supported on F ⊂ E.

Former results on Kelvin transform only concern the Brownian Motion (see e.g. [START_REF] Axler | Harmonic Function Theory[END_REF]), the isotropic α-stable processes and the Dunkl Laplacian and they always refer to the spherical involution

I sph (x) = x/ x 2 .
In the isotropic stable case, let

K α (f )(x) = x α-n f (I sph (x)).
Riesz noticed in 1938 (see [START_REF] Riesz | Intégrales de Riemann-Liouville et Potentiels[END_REF]Section 14,p.13]) the following transformation formula for the Riesz potential U α (µ) of a measure µ, in the case α < n:

K α (U α (µ)) = U α (K * α µ), see also [9, formula (80), p.115]. It follows that the function K α (U α (µ)) is α-harmonic.
The α-harmonicity of the Kelvin transform K α (f ) for all α-harmonic functions was proven in [START_REF] Bogdan | Representation of α-harmonic functions in Lipschitz domains[END_REF][START_REF] Bogdan | Potential theory of Schrödinger operator based on fractional Laplacian[END_REF]. In [START_REF] Bogdan | On Kelvin Transformation[END_REF] it was strengthened to regular α-harmonic functions. In the Dunkl process case, let ∆ k be the Dunkl Laplacian on R n (see e.g. [3, Section 4C]). Let Ku = h u • I sph , where h(x) = x 2-n-2γ is the Dunkl-excessive function from [START_REF] Alili | Inversion, duality and Doob h-transforms for self-similar Markov processes[END_REF]Cor.4.7]. In [START_REF] Kamel | Poisson Integrals and Kelvin Transform Associated to Dunkl-Laplacian Operator[END_REF]Th.3.1] it was proved that if ∆ k u = 0 then ∆ k (Ku) = 0. In [START_REF] Chrouda | Dirichlet problem associated with Dunkl Laplacian on W-invariant open sets[END_REF] the equivalence between operator-harmonicity ∆ k u = 0 and X-harmonicity of u is announced.

2.6. Kelvin transform for processes with IP. Now we relate the Kelvin transform to the inversion property. In the following result we will prove that a Kelvin transform exists for processes satisfying the IP of Definition 1. The proof is based on the ideas of the proof of [9, Lemma 7] in the isotropic α-stable case.

Theorem 1. Let X be a standard Markov process. Suppose that X has the inversion property (2.1) with characteristics (I, h, v). Let D ⊂ E h be an open set. Then the Kelvin transformation Kf (x) = h(x)f (I(x)) has the following properties:

(i) If f is regular harmonic on D ⊂ E h and f = 0 on D c then Kf is regular harmonic on I(D). (ii) If f is superharmonic on D ⊂ E h then Kf is superharmonic on I(D).
Proof. Recall that E h = {x ∈ E : 0 < h(x) < ∞} and consider an open set D ⊂ E h , and x ∈ D. Let ω x D be the harmonic measure for the process X departing from x and leaving D, i.e. the probability law of X x τ X D . In the first step of the proof, we show that the Inversion Property of the process X implies the following formula for the dual Kelvin transform of the harmonic measure (cf. [9, (67)

]) (2.3) K * ω x D = h(x) ω I(x) I(D) , D ⊂ E h , x ∈ D.
In order to show (2.3), we first notice that if Y t = I(X γt ) then

τ Y D = inf{t ≥ 0 : Y t ∈ D} = inf{t ≥ 0 : X γt ∈ I(D)} = A(τ X I(D)
), so that, for B ⊂ E h and x ∈ D, we get

P x (Y τ Y D ∈ B, τ Y D < ∞) = P I(x) (X γ(A(τ X I(D) )) ∈ I(B), τ X I(D) < ∞) = ω I(x) I(D) (I(B))
. By the Inversion Property satisfied by X, the last probability equals

P x (Y τ Y D ∈ B, τ Y D < ∞) = P x ((X h ) τ X h D ∈ B, τ X h D < ∞) = 1 h(x) E x h(X τ X D 1 B (X τ X D ), τ X D < ∞) = 1 h(x) h(y)1 B (y)ω x D (dy).
We conclude that h(x)ω

I(x) I(D) (I(B)) = h(y)1 I(B) (I(y))ω x D (dy) = K1 I(B) (y)ω x D (dy) = 1 I(B) (y)(K * ω x D )(dy)
and (2.3) follows. Now let f ≥ 0 be a Borel function and x ∈ I(D). We have, by definition of K * and by (2.3),

E x Kf (X τ X I(D) ) = Kf dω x I(D) = f d(K * ω x I(D) ) = h(x) f dω I(x) D = h(x)E I(x) f (X τ X D ). Hence, if f is any Borel function such that E z |f (X τ X D )| < ∞ for all z ∈ D, then (2.4) E x Kf (X τ X I(D) ) = h(x)E I(x) f (X τ X D ), x ∈ I(D)
. Formula (2.4) implies easily the statements (i) and (ii) of the Theorem. For example, in order to prove (ii), we consider f superharmonic on D. For any open bounded set B ⊂ B ⊂ D and x ∈ I(B), we have

E I(x) f (X τ X B ) ≤ f (I(x)). Then (2.4) implies that E x Kf (X τ X I(B) ) ≤ h(x)f (I(x)) = Kf (x), so Kf is superharmonic on D.
Now we show that the Kelvin transform also preserves excessiveness of non-negative functions.

Theorem 2. Let X be a standard Markov process. Suppose that X has the inversion property (2.1) with characteristics (I, h, v). Let D ⊂ E h be an open set. If H ≥ 0 is an excessive function on D then the function KH is excessive on the set I(D).

Proof. Without loss of generality we suppose D = E, otherwise we consider the process X killed when exiting D and replace ζ by the first exit time from D of X.

Let H be excessive for X. We can write

ϕ(λ) := ∞ 0 e -λt E x [ h(X t ) h(x) H • I(X t ) H • I(x) , t < ζ]dt = ∞ 0 e -λt E x [ H • I(X h t ) H • I(x) , t < ζ h ]dt,
where ζ and ζ h are the life times of processes X and X h respectively. Using (2.1) and making the change of variables γ t = r, we get

ϕ(λ) = ∞ 0 e -λt E I(x) [ H(X γt ) H • I(x) , t < A ζ ]dt = E I(x) [ ζ 0 e -λAr H(X r ) H • I(x) dA r ] = E I(x) [ ζ H 0 e -λA H r dA H r ] = ∞ 0 e -λt E I(x) [t < A H ζ H ]dt.
Using Fubini theorem, we get

λϕ(λ) = 1 -E x e -λA H ζ H → 1 as λ → ∞, because P x (A H ζ H = 0) = P x (ζ H = 0) = P x (ζ = 0) = 0.
By the injectivity of Laplace transform, we conclude that

E x [ h(X t ) h(x) H • I(X t ) H • I(x) , t < ζ] = E x [t < A H ζ H ] ≤ 1 for a.e. t ≥ 0.
Thus, we have the supermartingale property of h(X)H • I(X). We also get that lim λ→∞ λϕ(λ) = 1. By the Tauberian theorem, we get that lim

t→0 + E x [ h(X t ) h(x) H • I(X t ) H • I(x) , t < ζ] = 1.
We have proven that h H • I is excessive.

Remark 1. Suppose that the process X is stochastically continuous or a Feller process.

Then by Proposition 1(iii) we see that Theorem 1(ii) and Theorem 2 coincide for continuous functions f and H. Without additional conditions on X, f and H, Theorem 1(ii) and Theorem 2 require independent proofs.

Corollary 1. Suppose that X has the inversion property (2.1) with characteristics (I, h, v). Then there exists c > 0 such that the function

h h • I = c is constant on E.
By considering, from now on, the dilated function h/ √ c in place of h, we have

(2.5) h • I = 1/h and v • I = 1/v.
Proof. Assume that X satisfies (2.1). Then, for any Borel measurable function F and

x ∈ E, we can write

ψ(λ) := ∞ 0 e -λt E x [ h(X t ) h(x) h • I(X t ) h • I(x) F (X t ), t < ζ]dt = ∞ 0 e -λt E x [ h • I(X h t ) h • I(x) F (X h t ), t < ζ h ]dt.
By using (2.1) and making the change of variables γ t = r, we obtain

ψ(λ) = ∞ 0 e -λt E I(x) [ h(X γt ) h • I(x) F (I(X γt )), t < A ζ ]dt = E I(x) [ ζ 0 e -λAr h(X r ) h • I(x) F (I(X r ))dA r ] = E I(x) [ ζ H 0 e -λA h r F (I(X h r ))dA h r ]. Let M r = r 0 (v • I(X γr )) -1
dr and let m r be the inverse of M r . Using again (2.1) and substituting M r = v, we get

ψ(λ) = E x [ A ζ 0 e -λMr F (X γr )dM r ] = E x [ ζ 0 e -λv F (X γm v )dv]
By the injectivity of Laplace transform, we obtain

E x [ h(X t ) h(x) h • I(X t ) h • I(x) F (X t ), t < ζ] = E x [F (X γm t ); t < ζ]
for almost every t > 0. By Theorem 2, the function h h • I is excessive. The last equality implies that X has the same distribution as the Doob transform X h h•I time changed. This is possible only if h h • I is constant and γ mt = t, for t > 0. We easily check that the inverse of

γ mt is M At = t 0 (v(X s )v • I(X s )) -1 ds. So M At = t, t ≥ 0, holds if and only if v • I = 1/v.
Hence, equations (2.5) are proved.

We point out now the following bijective property of the Kelvin transform. Proposition 2. Suppose that X has the inversion property (2.1) with characteristics (I, h, v). Let K be the Kelvin transform. Then (i) K is an involution operator on the space of X-harmonic (X-superharmonic) functions i.e. K • K = Id. (ii) Let D ⊂ E be an open set. K is a one-to-one correspondence between the set of X-harmonic functions on D and the set of X-harmonic functions on I(D).

Proof. The first formula of (2.5) implies by a direct computation that K(Kf ) = f . Then (ii) is obvious.

2.7.

Invariance of IP by a bijection and by a Doob transform. We shall now give some general properties of spatial inversions. We start with the following proposition which is useful when proving that a process has IP. Its proof is simple and hence is omitted.

Proposition 3. Suppose that X has the inversion property (2.1) with characteristics (I, h, v). Assume that Φ : E → F is a bijection. Then the mapping J = Φ • I • Φ -1 is an involution on F . Furthermore, the process Y = Φ(X) has IP with characteristics

(J, h • Φ -1 , v • Φ -1 ).
In the following result we prove that we can extend the inversion property of a process on a state space E to an inversion property for the processes conditioned not to exit a subset F of E. Proposition 4. Suppose that X has the inversion property (2.1) with characteristics (I, h, v).

Let F ⊆ E be such that I(F ) = F and suppose that there exists an excessive function H : F → R + for X killed when it exits F . Consider Y = X H , the Doob H-transform of X. Then the process Y has the IP with characteristics (I, h, v), with h = KH/H, where KH = h H • I is the Kelvin transform of H.

Proof. To simplify notation, set Z = X h and denote by γ H t the inverse of the additive functional A H t (t) = t 0 ds v(X H s ) . Below, using the properties of a time-changed Doob transform in the first equality and the IP for X in the second equality, we can write for all test functions g

E x [g(I(X H γ H t )), t < A H ∞ ] = E x [g(I(X γt )) H • I(I(X γt )) H • I(I(x)) , t < A ∞ ] = E I(x) [g(Z t ) H • I(Z t ) H • I(I(x)) , t < A ∞ ] = E I(x) [g(X t ) H • I(X t )h(X t ) H • I(I(x))h((I(x))) , t < A ∞ ] = E I(x) [g(X t ) KH(X t ) KH(I(x)) , t < A ∞ ].
By Theorem 2, the function KH is X-excessive, so the Doob transform X KH is well defined. Thus the processes (I(X H γ H t ))) and (X KH t ) are equal in law. We have

X = Y 1/H , so X KH t = Y KH/H t
, and the IP for the process Y follows.

The aim of the following result is to show that processes X h and I(X) inherit IP from the process X and to determine the characteristics of the corresponding inversions.

Proposition 5. Suppose that X has the inversion property (2.1) with characteristics (I, h, v). Then the following inversion properties hold:

(i) The process X h has IP with characteristics (I, h -1 , v).

(ii) The process I(X) has IP with characteristics (I, h -1 , v -1 ).

Proof. (i) Proposition 1 implies that Kh/h = 1/h. The assertion follows from an application of Proposition 4.

(ii) Proposition 3 implies that I(X) has IP with characteristics (I, h • I, v • I). We conclude using formulas (2.5).

Dual inversion property and Kelvin transform.

There are other types of inversions which involve weak duality (see the books [START_REF] Blumenthal | Markov processes and potential theory[END_REF] or [START_REF] Chung | Markov processes, Brownian motion, and time symmetry[END_REF] for a survey on duality). Two E-valued Markov processes {(X t ) t≥0 , P x } and {( Xt ) t≥0 , Px }, with semigroups (P t ) t≥0 and ( Pt ) t≥0 respectively, are in weak duality with respect to some σ-finite measure m(dx) if for all positive measurable functions f and g, we have

(2.6)

E g(x)P t f (x)m(dx) = E f (x) Pt g(x)m(dx).
The following definition is analogous to Definition 1, but in place of X on the right-hand side we put a dual process X.

Definition 3. Let {(X t ) t≥0 , P x } be a standard Markov process on E. We say that X has the Dual Inversion Property, for short DIP, if there exists an involution I = Id of E and a nonnegative X-harmonic function ĥ on E, with 0 < ĥ < +∞ in the interior of E, such that the processes I(X) and Xĥ have the same law, up to a change of time γ t , i.e.

(2.7) (I(X γt ), t ≥ 0)

(d)
= ( Xĥ t , t ≥ 0), where γ t is the inverse of the additive functional A t = t 0 v -1 (X s ) ds with v being a positive continuous function, X is in weak duality with X with respect to the measure m(dx), where m(dx) is a reference measure on E, and Xĥ is the Doob ĥ-transform of X (killed when it exits E). We call (I, ĥ, v, m) the characteristics of the DIP.

Remark 2. We notice that if X is self-dual then IP and DIP are equivalent. Remark 3. Self-similar Markov processes having the DIP with spherical inversions were studied in [START_REF] Alili | Inversion, duality and Doob h-transforms for self-similar Markov processes[END_REF]. Non-symmetric 1-dimensional stable processes were also investigated in [START_REF] Kyprianou | Deep factorisation of the stable process[END_REF] and they provide examples of processes that have the DIP, while no IP is known for them. Theorem 3. Let X have DIP property (2.7). There exists the following Kelvin transform: Let f be a regular harmonic (resp. superharmonic, excessive) function for the process X. Then Kf (x) := ĥ(x)f (I(x)) is regular harmonic (resp. superharmonic, excessive) for the process X.

Proof. The proof is similar to the proofs of Theorem 1 and of Theorem 2.

Example 1. Let X be a stable process with α ≥ 1 which is not spectrally one-sided. Let ρ -= P (X 1 < 0), ρ + = P (X 1 > 0). Let x + = max(0, x). The function H(x) = x αρ - + is X-invariant (see [START_REF] Caballero | Conditioned stable Lévy processes and the Lamperti representation[END_REF]), so also superharmonic on (0, ∞). Moreover H(0) = 0. Theorem 1 applied to Corollary 2 of [START_REF] Alili | Inversion, duality and Doob h-transforms for self-similar Markov processes[END_REF] implies the existence of the Kelvin transform for regular α-harmonic functions on R + , vanishing at 0. Thus KH(x) = π(-1)

|x| αρ + -1 1 R -(x)
is regular α-harmonic on R -. We conclude, by considering -X in place of X, that the function G(x) = x αρ --1 + is superharmonic on R + . It is known (see [START_REF] Caballero | Conditioned stable Lévy processes and the Lamperti representation[END_REF]) that G(x) is excessive on (0, ∞). It is interesting to see that the functions H and G are related by the Kelvin transform.

2.9. IP for X and Kelvin transform for operator-harmonic functions. In analytical potential theory, the term "harmonic function" usually means Lf = 0, for some second order differential operator L. Note that for a Feller process X with generator L X and state space E, if E is unbounded then there are no non-zero L X -harmonic functions which are in the domain D(L X ) of L X , i.e. if f ∈ D(L X ) ⊂ C 0 and L X f = 0 then f =0. However, this is no longer true if, for a standard Markov process X, instead of its generator, we consider its Dynkin characteristic operator A X (2.8)

A X f (x) = lim U {x} E x f (X τ U ) -f (x) E x τ U ,
with U any sequence of decreasing bounded open sets such that ∩U = {x} (see [START_REF] Dynkin | Markov Processes I[END_REF], where A X is denoted by U.) We stress that the Dynkin characteristic operator exists and characterizes all standard Markov processes. For diffusions, we may consider the differential generator L of X, defined (see [START_REF] Dynkin | Markov Processes I[END_REF], 5.19), as the restriction of A X to C 2 . L is the second order elliptic differential operator coinciding with the generator L X of X on its domain

D(L X ) ⊂ C 0 ∩ C 2 .
Definition 4. Define the following: (a) For any standard Markov process X, a function f on

D ⊂ E is called Dynkin- harmonic on D if A X f = 0 on D. (b) For a diffusion X on R n , a function f on D ⊂ E is called differential gen- erator harmonic on D if Lf = 0 on D.
In both cases (a) and (b), harmonicity is defined by means of operators which is the reason why such functions are called operator-harmonic functions. The main aim of this section is to prove that the Kelvin transform preserves, under some natural conditions, the operator-harmonic property. We will need the following proposition. We provide a proof because we have not found a reference where both assertions (i) and (ii) are proved. Proposition 6. Let X be a standard Markov process with X 0 = x.

(i) If ϕ is a homeomorphism from E onto E then the Dynkin operator of the process ϕ(X) is expressed in terms of the Dynkin operator of the process X in the following way

A ϕ(X) f (x) = A X (f • ϕ)(ϕ -1 (x)).
for functions from the domain of A X and A ϕ(X) . (ii) Let h ≥ 0 be P X t -excessive. The Dynkin operator A h of the Doob h-transform X h of X is given by the formula:

A h (f ) = h -1 A X (hf )
Proof. (i) This assertion is straightforward by making use of the definition of Dynkin's operator.

(ii) Let λ > 0. The λ-potential of the h-process X h equals

U h λ (x, dy) = h(y) h(x) U X λ (x, dy)
where U X λ is the λ-potential of X. Let B be the Dynkin operator of the process X h . Define

K λ f = h -1 A X (hf ) -λf
To prove (ii) it is enough to show that B -λId = K λ . This in turn will be proved if we show that

K λ U h λ = -Id (since (B -λId)U h λ = -Id, the λ-potential operator U h
λ is a bijection from C 0 into the domain of B and B -λId is the unique inverse operator). We compute, for a test function f ,

K λ U h λ f = 1 h(x) A X [h(x) h(y) h(x) U X λ (x, y)f (y)dy] -λ h(y) h(x) U X λ (x, y)f (y)dy = 1 h(x) (A X -λId)U λ X (hf ) = 1 h(x) (-h(x)f (x)) = -f (x),
hence K λ U h λ = -Id. Theorem 4. Suppose that the process X satisfies IP for an involution I and a positive excessive function h. Then the Kelvin transform preserves A X -harmonicity, i.e., for any open set

D ⊂ E, if H is an A X -harmonic function on D then the function x → KH(x) = h(x) H(I(x)) is A X -harmonic on I(D).
Proof. Let H be A X -harmonic. Denote H = H • I. Let A I denote the Dynkin operator of the process I(X). By Proposition 6(i) we have

A I ( H) = A X ( H • I) • I -1 = (A X H) • I = 0.
Thus H is A I -harmonic on I(D). By IP, this is equivalent to be A h -harmonic (the Dynkin operators of I(X) and X h differ by a positive factor corresponding to the time change, see [START_REF] Dynkin | Markov Processes I[END_REF], Th. 10.12). Consequently A h ( H) = 0. We now use Proposition 6(ii) in order to conclude that A X (h H) = 0. Thus h H = hH • I is A X -harmonic on I(D) whenever H is A X -harmonic on D.

Corollary 2. Let X be a diffusion on R n having IP with characteristics (I, h, v)where I and h are continuous. If f is twice continuously differentiable on D and Lf = 0 then L(Kf ) = 0.

Proof. By Theorem 4, we have A X (Kf ) = 0. By the continuity of f, I and h, the function Kf is continuous. Theorem 5.9 of [START_REF] Dynkin | Markov Processes I[END_REF] then implies that Kf is twice continuously differentiable and that L(Kf ) = 0.

We end this section by pointing out relations between X-harmonic functions on a subset D of E and Dynkin A X -harmonic functions on D. Proposition 7. Let X be a standard Markov process, D ⊂ E and f : D → R. The following assertions hold true.

(i) If f is X-harmonic then A X f = 0, on D. (ii) If X is a diffusion and f is continuous then f is X-harmonic if and only if it
is A X -harmonic, on D. Moreover, this happens if and only if f is L-harmonic on D.

Proof. Part (i) is evident by definition (2.8) of A X . It gives the "only if" part of the first part of (ii). If f is continuous and A X -harmonic on D then, by Theorem 5.9 of [START_REF] Dynkin | Markov Processes I[END_REF], f is twice continuously differentiable and Lf = 0 on D. A strengthened version of Dynkin's formula [16, (13.95)] implies that if Lf = 0 on D then f is X-harmonic on D. This completes the proof of (ii).

Remark 4. Theorem 6 and Proposition 7(ii) give another "operator-like" proof of Theorem 1 when X is a one dimensional diffusion and for continuous X-harmonic functions, see Remark 7 in [START_REF] Alili | On inversions and Doob h-transforms of linear diffusions[END_REF].

2.10. Inversion property and self-similarity. We end this Section by a discussion on the relations between the IP and self-similarity. In [START_REF] Alili | On inversions and Doob h-transforms of linear diffusions[END_REF] the IP of non necessarily self-similar one-dimensional diffusions is proven and corresponding non-spherical involutions are given. There are h-transforms of Brownian motion on intervals which are not self-similar Markov processes. On the other hand IP is preserved by conditioning, see Proposition 4, but self-similarity is not. This shows that self-similar Feller processes are not the only ones having the inversion property with the spherical inversion and a harmonic function being a power of the modulus.

Inversion of processes having the time inversion property

3.1. Characterization and regularity of processes with t.i.p. Now let us introduce a class of processes that can be inverted in time. Let S be a non trivial cone of R n , for some n ≥ 1, i.e. S = ∅, S = {0} and x ∈ S implies λx ∈ S for all λ ≥ 0. We take E to be the Alexandroff one point compactification S ∪ {∞} of S. Let ((X t , t ≥ 0); (P x ) x∈E ) be a homogeneous Markov process on E absorbed at ∂S ∪ {∞}. X is said to have the time inversion property (t.i.p. for short) of degree α > 0, if the process ((t α X 1/t , t ≥ 0), (P x ) x∈E ) is a homogeneous Markov process. Assume that the semigroup of X is absolutely continuous with respect to the Lebesgue measure, and write (3.9) p t (x, dy) = p t (x, y)dy, x, y ∈ S.

The process (t α X1 t , t > 0) is usually an inhomogenous Markov process with transition probability densities q (x) s,t (z, y), for s < t and x, y ∈ S, satisfying

E x [f (t α X 1 t )|s α X 1 s = z] = f (y)q x s,t (z, y) dy where (3.10) q (x 
)

s,t (a, b) = t -nα p 1 t (x, b t α )p1 s -1 t ( b t α , a s α ) p1 s (x, a s α )
.

We shall now extend the setting and conditions considered by Gallardo and Yor in [START_REF] Gallardo | Some new examples of Markov processes which enjoy the timeinversion property[END_REF]. Suppose that

(3.11) p t (x, y) = t -nα/2 φ( x t α/2 , y t α/2 )θ( y t α/2 ) exp{- ρ(x) + ρ(y) 2t },
where the functions φ : S × S → R + and θ, ρ : S → R + satisfy the following properties: for λ > 0 and x, y ∈ S

   φ(λx, y) = φ(x, λy), ρ(λx) = λ 2/α ρ(x), θ(λx) = λ β θ(x). (3.12) 
Under conditions (3.11) and (3.12), using (3.10) we immediately conclude that X has the time inversion property. We need also the following technical condition

(ρ 1/2 (X t ), t ≥ 0) is a Bessel process of dimension (β + n)α (3.13)
or is a Doob transform of it, up to time scaling t → ct, c > 0.

To simplify notations let us settle the following definition of a regular process with t.i.p.

Definition 5. A regular process with t.i.p. is a Markov process on S ∪ {∞} where S is a cone in R n for some n ≥ 1, with an absolutely continuous semigroup with densities satisfying conditions (3.11)-(3.13) and ρ(x) = 0 if and only if x = 0.

The requirement of regularity for a process with t.i.p. is not very restrictive; all the known examples of processes with t.i.p. satisfy it. In case when S = R n , the authors of [START_REF] Gallardo | Some new examples of Markov processes which enjoy the timeinversion property[END_REF] and [START_REF] Lawi | Towards a characterization of Markov processes enjoying the time-inversion property[END_REF] showed that if the above densities are twice differentiable in the space and time then X has time inversion property if and only if it has a semigroup with densities of the form (3.11), or if X is a Doob h-transform of a process with a semigroup with densities of the form (3.11). It is proved in [START_REF] Alili | A characterisation of linear self-similar Markov processes having the time inversion property[END_REF] that when S = R or (-∞, 0) or (0, +∞) and the semigroup is conservative, i.e. p t (x, dy) = 1, and absolutely continuous with densities which are twice differentiable in time and space, then (3.13) is necessary for the t.i.p. to hold. A similar statement is proved in [START_REF] Aylwin | Self-similar Markov processes, scale functions and the time inversion property[END_REF] in higher dimensions under the additional condition that ρ is continuous on S = R n and ρ(x) = 0 if and only if x = 0. Remark 5. Under the conservativeness condition, it is an interesting problem to find a way to read the dimension of the Bessel process ρ 1/2 (X), in (3.13), from (3.11). If we could do that then we would be able to replace condition (3.13) with the weaker condition that ρ(X) is a strong Markov process. Indeed, it was proved in [START_REF] Alili | A characterisation of linear self-similar Markov processes having the time inversion property[END_REF] that the only processes having the t.i.p. living on (0, +∞) are α powers of Bessel processes and their h-transforms. ρ(X) has the time inversion property and so, if it is Markov then it is the power of a Bessel process or a process in h-transform with it.

3.2.

A natural involution and IP for processes with t.i.p. Proposition 8. The map I defined for x ∈ S\{0} by I(x) = xρ -α (x), and by

I(0) = ∞, is an involution of E. Moreover, the function x → xρ -ν (x) is an involution on S\{0} if and only if ν = α.
Proof. It is readily checked that I • I = I by using the homogeneity property of ρ from (3.12).

We know by [START_REF] Gallardo | Some new examples of Markov processes which enjoy the timeinversion property[END_REF][START_REF] Lawi | Towards a characterization of Markov processes enjoying the time-inversion property[END_REF] that a regular process with t.i.p. X is a self-similar Markov process, thus so is I(X). That's why I(x) = xρ -α (x) is a natural involution for such an X.

We now compute the potential of the involuted process I(X).

Proposition 9. Assuming that X is transient for compact sets, the potential of I(X) is given by

U I(X) (x, dy) = V (y) h(y) h(x) U X (x, dy), (3.14) 
where h(x) = ρ(x) 1-(β+n)α/2 , V (y) = Jac(I)(y)ρ(y) nα-2 and Jac(I) is the modulus of the Jacobi determinant of I.

Proof. Recall that X is transient for compact sets if and only if its potential U X (x, y) is finite. The potential kernel of I(X) is given by

U I (x, y) = ∞ 0 p t (I(x), I(y))Jac(I(y))dt.
First we compute p I(X) t (x, y) = p t (I(x), I(y))Jac(I(y)). According to formula (3.11) we find

p I(X) t (x, y) = t -(n+β)α/2 φ(x, y (tρ(x)ρ(y)) α ) ρ -αβ (y)θ(y) exp[- ρ(x) + ρ(y) tρ(x)ρ(y)
]Jac(I(y)).

Making the substitution t ρ(x) ρ(y) = s we obtain easily formula (3.14).

We are now ready to prove the main result of this section.

Theorem 5. Suppose that X is a transient regular process with t.i.p. Then X has the IP with characteristics (I, h, v) with I(x) = xρ -α (x), h(x) = ρ(x) 1-(β+n)α/2 and v(x) = (Jac(I)(x)) -1 ρ(x) 2-nα where Jac(I) is the modulus of the Jacobi determinant of I.

Moreover, if X is the Doob h-transform of a regular process Z having IP with characteristics (I, h, v), then X has the IP with characteristics I and v, and excessive function K Z (H)/H.

Proof. First suppose that the process X is regular, so its semigroup has the form (3.11). We use the fact that if two transient Markov processes have equal potentials U X = U Y < ∞ then the processes X and Y have the same law (compare with [START_REF] Hunt | Markoff Processes and Potentials II[END_REF], page 356 or [START_REF] Meyer | Probability and Potentials[END_REF], Theorem T8, page 205).

Remind that the function h(x) = x 2-δ is BES(δ)-excessive, see e.g. [START_REF] Alili | Inversion, duality and Doob h-transforms for self-similar Markov processes[END_REF]Cor.4.4]. This can also be explained by the fact that if (R t , t ≥ 0) is a Bessel process of dimension δ then (R 2-δ t , t ≥ 0) is a local martingale (it is a strict local martingale when δ > 2), cf. [START_REF] Elworthy | The importance of strict local martingales; applications to radial Ornstein-Uhlenbeck processes[END_REF].

Using condition (3.13), we see that the function h(x) = ρ(x) 1-(β+n)α/2 appearing in (3.14) is X-excessive. Thus the process I(X) is a Doob h-transform of the process X when time-changed appropriately.

In the case when X = Z H is a Doob H-transform of Z whose semigroup has the form (3.11), we use Proposition 4. Remark 6. A remarkable consequence of Theorem 5 is that it gives as a by-product the construction of new excessive functions which are functions of ρ(X) and not of θ(X). For example, for Wishart processes, the known harmonic functions are in terms of det(X) and not of T r(X), see [START_REF] Donati-Martin | Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws[END_REF] and Subsection 4.3 below.

In view of applications of Theorem 5, the aim of the next result is to give a sufficient condition for X to be transient for compact sets.

Proposition 10. Assume that φ satisfies (a) φ(x, y/t) ≈ c 1 (x, y)t γ 1 (x,y) e -c 2 (x,y) t as t → 0; (b) φ(x, y/t) ≈ c 3 (x, y)t γ 2 (x,y) as t → ∞; where c 1 , c 2 , c 3 and γ 1 , γ 2 are functions of x and y. If

(1) ρ ≥ 0;

(2) ρ(x) + ρ(y) -2c 2 (x, y) > 0 for all x, y ∈ E;

(3) γ 1 (x, y) > -1 + (n+β)α 2 > γ 2 (x, y); then X is transient for compact sets.

Proof. We easily check that the integral for U X (x, y) converges if the hypotheses of the proposition are satisfied.

3.3. Self-duality for processes with t.i.p. Proposition 11. Suppose that φ(x, y) = φ(y, x) for x, y ∈ E. Then the process X is self-dual with respect to the measure m(dx) = θ(x)dx.

Proof. Formula (3.11) implies that the kernel pt (x, y) := p t (x, y)θ(x) is symmetric, i.e. pt (x, y) = pt (y, x). It follows that for all t ≥ 0 and bounded measurable functions f , g : E → R + , we have

f (x)E x (g(X t ))m(dx) = E x (f (X t ))g(x)m(dx).
By Proposition 11, all classical processes with t.i.p. considered in [START_REF] Gallardo | Some new examples of Markov processes which enjoy the timeinversion property[END_REF] and [START_REF] Lawi | Towards a characterization of Markov processes enjoying the time-inversion property[END_REF] are self-dual: Bessel processes and their powers, Dunkl processes, Wishart processes, noncolliding particle systems (Dyson Brownian motion, non-colliding BESQ particles).

Remark 7. Let n ≥ 2 and let X be a transient regular process with t.i.p., with nonsymmetric function φ. By Theorem 5, X has an IP, whereas a DIP for X is unknown. This observation, together with Remark 3 shows that in the theory of space inversions of stochastic processes, both IP and DIP must be considered.

Applications

4.1. Free scaled power Bessel processes. Let R (ν) be a Bessel process with index ν > -1 and dimension δ = 2(ν + 1). A time scaled power Bessel process is realized as ((R (ν) σ 2 t ) α , t ≥ 0), where σ > 0 and α = 0 are real numbers. Let ν and σ be vectors of real numbers such that σ i > 0 and ν i > -1 for all i = 1, 2, • • • , n, and let R (ν 1 ) , R (ν 2 ) , • • • , R (νn) be independent Bessel processes of index ν 1 , ν 2 , • • • , ν n , respectively. We call the process X defined, for a fixed t ≥ 0, by

X t := (R (ν 1 ) σ 2 1 t ) α , (R (ν 2 ) σ 2 2 t ) α , • • • (R (νn) σ 2
n t ) α a free scaled power Bessel process with indexes ν, scaling parameters σ and power α, for short FSPBES(ν, σ, α). If we denote by q ν t (x, y) the density of the semi-group of a BES(ν) with respect to the Lebesgue measure, found in [START_REF] Revuz | Continuous martingales and Browmian Motion[END_REF], then the densities of a FSPBES(ν, σ, α) are given by 

p t (x, y) = n i=1 (1/α)y 1 α -1 i q ν i σ 2 i t (x 1/α i , y 1/α i ) (4.15) = n i=1 (1/α)y 1 α -1 i x 1/α i σ 2 i t y i x i (ν i +1)/α I ν i (x i y i ) 1/α σ 2 i t e - x 2 
          φ(x, y) = n i=1 Iν i ( (x i y i ) 1/α σ 2 i ) ((x i y i ) 1/α /σ 2 i ) ν i , ρ(x) = n i=1 x 2/α i /σ 2 i , θ(y) = 1 α n ( n i=1 σ i ) α n i=1 y i |σ i | α 2(1+ν i )/α-1 . (4.16)
It follows that the degree of homogeneity of θ is β = 2(n + n i=1 ν i )/α -n. If X is a FSPBES(ν, σ, α) then clearly ρ 1/2 (X) is a Bessel process of dimension nδ = 2n(ν + 1), where δ = ( n 1 δ i )/n and ν = ( n 1 ν i )/n. Note that with this notation ν = α 2n (β+n)-1 and δ = α n (β+n) . We deduce that ρ(X) is point-recurrent if and only if 0 < 2n(ν+1) < 2, i.e., 0 < nδ < 2.

Interestingly, the distribution of X t , for a fixed t > 0, depends on the vector ν only through the mean ν. Furthermore, we can recover the case σ 1 = 1 from the case σ 1 = 1 by using the scaling property of Bessel processes. In other words, for a fixed time t > 0, the class of all free power scaled Bessel processes yields an n + 1-parameter family of distributions.

Corollary 3. Let X be a FSPBES(ν, σ, α). If nδ = 2n(ν + 1) > 2 then X is transient and has the Inversion Property with characteristics

I(x) = x ρ α (x) , h(x) = ρ 1-nδ 2 (x), v(x) = ρ(x) 2 ,
where ρ(x) is given by (4.16).

Proof. We quote from ( [START_REF] Lebedev | Special Functions and Their Applications[END_REF], p.136) that the modified Bessel function of the first kind I ν has the asymptotics for ν ≥ 0

I ν (x) ∼ x ν 2 ν Γ(1 + ν) , as x → 0 and I ν (x) ∼ e x √ 2πx , as x → ∞.
From the above and (4.15) it follows that p t (x, y) ∼ c(x, y) t n(1+ν) , as t → ∞ and p t (x, y) ∼ c(x, y)e -ρ(x)+ρ(y) 2t t n/2 , as t → 0, hence if nδ = 2n(ν + 1) > 2, then ∞ 0 p t (x, y) dt < ∞ and the process is transient. The process ρ 1/2 (X) is a Bessel process of dimension 2n(ν + 1) = (β + n)α, so the condition (3.13) is satisfied and we can apply Theorem 5.

We compute the Jacobian Jac(I)(x) = -ρ(x) -nα similarly as the Jacobian of the spherical inversion x → x/ x 2 and we get v Let M ∈ Sym(m, R). We denote by x ∈ R m the diagonal elements of M and by y ∈ R m(m-1)/2 the terms (M ij ) 1≤i<j≤m above the diagonal of M . We denote by M (x, y) such a matrix M .

(x) = |(Jac(I)(x)) -1 |ρ(x) 2-nα = ρ(x)
We have (x, y) ∈ R m(m+1)/2 and the map (x, y) → M (x, y) is an isomorphism between R m(m+1)/2 and Sym(m, R).

Let Φ(x, y) = (x, y/ √ 2). The map Φ is a bijection of R m(m+1)/2 and Sym(m, R), such that the image of the Brownian Motion B t on R m(m+1)/2 is equal to Y t . Proposition 3 implies the Inversion Property of the process Y . More precisely, we obtain the following Corollary 4. The Stochastic Gaussian Orthogonal Ensemble GOE(m) has IP with characteristics:

I(M ) = M M 2 , h(M ) = M 2-n , v(M ) = M 4 ,
where M = 1≤i,j≤m M 2 ij is the trace norm of M .

On the other hand, the time inversion property of Y follows from the expression of the transition semigroup of Y which is straightforward. Theorem 5 provides another proof of Corollary 4.

Analogously, IP and t.i.p. hold true for Unitary and Symplectic Gaussian Ensembles. 4.3. Wishart Processes. Now we look at matrix squared Bessel processes which are also known as Wishart processes. Let S + m be the set of m × m real non-negative definite matrices. X is said to be a Wishart process with shape parameter δ, if it satisfies the stochastic differential equation

dX t = X t dB t + dB * t X t + δI m dt, X 0 = x, δ ∈ {1, 2, . . . , m -2} ∪ [m -1, ∞),
where B is an m × m Brownian matrix whose entries are independent linear Brownian motions, and I m is the m × m identity matrix. Notice that when δ is a positive integer, the Wishart process is the process N * N where N is a δ × m Brownian matrix process and N * is the transpose of N . We refer to [START_REF] Donati-Martin | Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws[END_REF] for Wishart processes.

In [START_REF] Gallardo | Some new examples of Markov processes which enjoy the timeinversion property[END_REF] and [START_REF] Lawi | Towards a characterization of Markov processes enjoying the time-inversion property[END_REF] it was shown that these processes have the t.i.p. The semi-group of X is absolutely continuous with respect to the Lebesgue measure, i.e. dy = i≤j dy ij , with transition probability densities q δ (t, x, y) = 1 (2t) δm/2 1 Γ m (δ/2) e -1 2t T r(x+y) (det(y)) (δ-m-1)/2 0 F 1 (

δ 2 , xy 4t 2 ) 
, for x, y ∈ S + m , where Γ m is the multivariate gamma function and 0 F 1 (•, •) is the matrix hypergeometric function. In particular, we have ρ(x) = Tr(x), α = 2 (X is self-similar with index 1) and β = 1 2 m(δ -m -1). Observe that, by Proposition 11, the Wishart process is self-dual with respect to the measure θ(y)dy = (det(y)) (δ-m-1)/2 dy, y ∈ S + m , known as a Riesz measure, generating the Wishart family of laws of X t as a natural exponential family. Next, X is transient for m ≥ 3 and for m = 2 and δ ≥ 2. For a proof of this fact, we use the s.d.e. of the trace of X given by d(Tr(X t )) = 2 Tr(X t )dW t + mδdt.

Another proof consists in observing that H is harmonic for the n-dimensional Brownian Motion B t killed when exiting the set R n < and is used in conditioning of B t to get the Dyson Brownian Motion. An application of Proposition 4 yields the Corollary. 4.5. Non-colliding Squared Bessel Particles. Let X 1 ≤ X 2 < • • • ≤ X n be the ordered sequence of the eigenvalues of a complex Wishart process, called a Laguerre process. König and O'Connell showed in [START_REF] König | Eigenvalues of the Laguerre Process as Non-Colliding Squared Bessel Processes[END_REF] that the process (X 1 , . . . , X n ) has the same distribution as n independent BESQ(δ) processes on R + conditioned never to collide, δ > 0. Hence its semigroup densities p t (x, y) can be described as follows. Let q t be the probability transition function of a BESQ(δ) process. We have (4.18) p t (x, y) = H(y) H(x) det[q t (x i , y j )], x, y ∈ R + n < where H is, as above, the Vandermonde function and [START_REF] Lawi | Towards a characterization of Markov processes enjoying the time-inversion property[END_REF] observed that X has the time inversion property.

E = R + n < = {x ∈ R + n : x 1 < x 2 < • • • < x n }. Lawi
The same two reasonings presented for the Dyson Brownian Motion can be applied, in order to prove that X has IP. However, the first reasoning, using Theorem 5 and formula (4.18), applies only in the transient case δ > 2.

Let us present the second reasoning where we use the results of the Section 2.7. First, we prove the following corollary.

Corollary 7. The n-dimensional free Squared Bessel process Y = (Y (1) , . . . , Y (n) ) where the processes Y (i) are independent Squared Bessel processes of dimension δ, has IP with characteristics I(x) = x/(x 1 + . . . x n ) 2 , h(x) = ( n i=1 x i ) 1-nδ/2 and v(x) = ( n i=1 x i ) 2 . Proof. It is an application of (IP) for free Bessel processes, proved in [3, Corollary 4] and the Proposition 3. We use the bijection Φ(x 1 , . . . , x d ) = (x 2 1 , . . . , x 2 d ). Next, we apply Proposition 4, with H as above, in order to get the following result. Corollary 8. Let (X 1 , . . . , X n ) be n independent BESQ(δ) processes on R + conditioned never to collide, δ > 0. The process X 1 ≤ X 2 < • • • ≤ X n has IP with characteristics:

I(x) = x/(x 1 + . . . + x n ) 2 , h(x) = ( n i=1
x i ) 1-nδ/2-n(n-1) , v(x) = ( n i=1

x i ) 2 . 4.6. Hyperbolic Brownian Motion. Let us recall some basic information about the ball realization of real hyperbolic spaces (cf. [22, Ch.I.4A p.152], [START_REF] Pyć | Transition density of a hyperbolic Bessel process[END_REF]). Let D n be the n-dimensional hyperbolic ball, i.e. D n = {x ∈ R n : x < 1} and D n is equipped with the metrics ds 2 = 4 dx 2 /(1 -x 2 ) 2 . D n is a Riemannian manifold. This is the ball model of the real hyperbolic space of dimension n. The spherical coordinates on D n are defined by x = σ tanh r 2 where r > 0 and σ ∈ S n-1 ⊂ R n are unique. Then the Laplace-Beltrami operator on D n is given by Lf (x) = ∂ 2 f ∂r 2 (x) + (n -1) coth r ∂f ∂r (x) + 1 sinh 2 r ∆ S n-1 f (x),

where ∆ S n-1 is the spherical Laplacian on the sphere S n-1 ⊂ R n . Let X be the n-dimensional Hyperbolic Brownian Motion on D n , defined as a diffusion

  Suppose that X is a stochastically continuous process or a Feller process and f is a continuous function on E. Then f is superharmonic on D if and only if f is excessive on D.

	Proof. Without loss of generality we suppose D = E, otherwise we consider the process
	X t killed when exiting D.
	Part (i) is from Proposition [6, II(2.8)] of the book by Blumenthal and Getoor. Part
	(ii) is from Corollary [6, II(5.3)], see also Dynkin's book

  2 . 4.2. Gaussian Ensembles. Stochastic Gaussian Orthogonal Ensemble GOE(m) is an important class of processes with values in the space of real symmetric matrices Sym(m, R) which have t.i.p. and IP. Recall that Brownian m×m matrix. Thus the upper triangular processes (Y ij (t)) 1≤i≤j≤m of Y are independent, Y ii are Brownian motions and Y ij , i < j, are Brownian motions dilated by1 

	Y t =	N t + N T t 2
	where N t is a √ 2 .	

Thus, Tr(X) is a 1-dimensional squared Bessel process of dimension mδ. Since δ ∈ {1, . . . , m -2} ∪ [m -1, ∞), we have δ ≥ 1, so mδ ≥ 3 unless, possibly the case m = 2 and δ = 1. Thus, for m ≥ 3 and for m = 2 and δ ≥ 2, we have X t 1 = i,j |(X t ) ij | ≥ Tr(X t ) → ∞ as t → ∞ and the process X is transient.

Corollary 5. Let X be a Wishart process on S + m , with shape parameter δ. The process X has the IP property with characteristics

The function

Proof. In the transient case we apply Theorem 5. Condition (3.13) is fulfilled as ρ(X) = Tr(X) is a 1-dimensional squared Bessel process of dimension mδ= (n + β)α, where n = m(m + 1)/2. For the time change function, the computation of the Jacobian of

In the case m = 2 and δ = 1 it is easy to see that the process X is not transient, e.g. by checking that the integral ∞ 0 q(t, 0, y)dt = ∞. Nevertheless, the IP holds with the same characteristics as above. In order to prove this we can use the following description of the generator of X found in in [START_REF] Bru | Wishart processes[END_REF]. If f and F are C 2 functions on, respectively, S + 2 and on M(1, 2), the space of 1 × 2 real matrices, such that for all y ∈ M(1, 2) we have F (y) = f (y * y), then Lf = 1 2 ∆f . Thus, the proof of the IP works like the one for the 2-dimensional Brownian motion, see [START_REF] Yor | A propos de l'inverse du mouvement brownien dans R n[END_REF].

be the ordered sequence of the eigenvalues of a Hermitian Brownian motion. Dyson showed in [START_REF] Dyson | A Brownian Motion Model for the Eigenvalues of a Random Matrix[END_REF] that the process (X 1 , . . . , X n ) has the same distribution as n independent real-valued Brownian motions conditioned never to collide. Hence its semigroup densities p t (x, y) can be described as follows. Let q t be the probability transition function of a real-valued Brownian motion. We have (4.17)

where

Following Lawi [START_REF] Lawi | Towards a characterization of Markov processes enjoying the time-inversion property[END_REF], X has the time inversion property. This follows from the fact that (4.17) can be written in the form (3.11) with

H(x)H(y) .

Corollary 6. The n-dimensional Dyson Brownian Motion has IP with characteristics: I is the spherical inversion on R n < , h(x) = x 2-n 2 and v(x) = x 4 . Proof. We compute (n + β)α = n 2 . Applying Theorem 5 to the Dyson Brownian Motion will be justified if we prove that X 2 is BESQ(n 2 ). This can be shown by writing the SDE for X 2 , using the SDEs for X i 's and the Itô formula. generated by 1 2 L (cf. [START_REF] Pyć | Transition density of a hyperbolic Bessel process[END_REF] and the references therein). Define a new process Y by setting Y t := δ(X t ), t ≥ 0, where δ(x) is the hyperbolic distance between x ∈ D n and the ball center 0. The process Y is the n-dimensional Hyperbolic Bessel process on (0, ∞). According to [START_REF] Alili | On inversions and Doob h-transforms of linear diffusions[END_REF], the process Y has the Inversion Property, with characteristics (I 0 , h 0 , v 0 ) that can be determined by [START_REF] Alili | On inversions and Doob h-transforms of linear diffusions[END_REF]Theorem 1]. It is natural to conjecture that the Hyperbolic Brownian Motion X has IP with characteristics (I, h, v 0 ), where

When n = 3, by [2, Section 5.2], we have I 0 (r) = 1 2 ln coth r, h 0 (t) = coth r -1 and v 0 (r) = 2 cosh r sinh r. If the Hyperbolic Brownian Motion X t had IP with the involution I and the excessive function h, then, by Theorem 1 and Proposition 7, if Lf = 0 then L(hf • I) = 0. By a direct but tedious calculation of L(hf • I) in spherical coordinates, we see that there exist continuous functions f such that Lf = 0 but L(hf • I) = 0, so X does not have IP with characteristics I and h.

To our knowledge, no inversion property is known for the Hyperbolic Brownian Motion.We believe that this question was first raised by T. Byczkowski about ten years ago, while he was working on potential theory of the Hyperbolic Brownian Motion ( [START_REF] Byczkowski | Stós: Poisson kernels of half-spaces in real hyperbolic spaces[END_REF]).