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Abstract

Electromagnetic brain source localization consists in theinversion of a forward model
based on a limited number of potential measurements. A wide range of methods has
been developed to regularize this severely ill-posed problem and to reduce the solution
space, imposing spatial smoothness, anatomical constraint or sparsity of the activated
source map. This last criteria, based on physiological assumptions stating that in some
particular events (e.g., epileptic spikes, evoked potential) few focal area of the brain
are simultaneously actives, has gained more and more interest. Bayesian approaches
have the ability to provide sparse solutions under adequateparametrization, and bring a
convenient framework for the introduction of priors in the form of probabilistic density
functions. However the quality of the forward model is rarely questioned while this
parameter has undoubtedly a great influence on the solution.Its construction suffers
from numerous approximation and uncertainties, even when using realistic numerical
models. In addition, it often encodes a coarse sampling of the continuous solution
space due to the computational burden its inversion implies. In this work we propose
an empirical Bayesian approach to take into account the uncertainties of the forward
model by allowing constrained variations around a prior physical model, in the partic-
ular context of SEEG measurements. We demonstrate on simulations that the method
enhance the accuracy of the source time-course estimation as well as the sparsity of the
resulting source map. Results on real signals prove the applicability of the method in
real contexts.
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1. Introduction

Electromagnetic brain source localization consists in reconstructing the underlying
cerebral activity from the electroencephalographic measurements. The recorded elec-
tromagnetic field is generated by synchronized activities of local and compact sets of
neuronal cells, each set being considered as an equivalent dipolar source at the macro-
scopic level. The number of such equivalent sources is far higher than the number of
recordings, making the reconstruction problem severely ill-posed. While the source
localization problem has been extensively studied from non-invasive measurements,
we have been recently working on solving this problem from intracranial measure-
ments, based on Stereo-EEG (SEEG) setup (Caune et al. (2014,2013); Le Cam et al.
(2014)). SEEG consists of several electrode shafts (containing each up to eighteen
aligned recording contacts) inserted in the brain volume within the structure of inter-
ests. These recordings are often considered as direct measurements of local field po-
tential in the direct neighborhood of the contacts. Howeverthe recorded potentials are
still produced by the mixing of several sources, including the projection of far sources
of strong amplitudes. Thus a localization procedure is still of interest, while very few
works have been developed on the subject (Chang et al. (2005); Yvert et al. (2005)).
In comparison to surface EEG, the SEEG modality offers high Signal to Noise Ra-
tio (SNR), because the sensors are closer to the generators and the signal do not have
to propagate through the skull barrier. More precise identification of deep activated
structures and reconstruction of their time-courses is expected, facilitating the sub-
sequent functional or effective connectivity analysis of the underlying brain network,
usually carried out from non-invasive EEG/MEG setup (Davidet al. (2006); Coito et al.
(2015)). In a recent study (Caune et al. (2014)), we have thoroughly questioned the fea-
sibility of a source localization from these intracranial measurements. In particular, we
emphasized some important guidelines for confident electrical source localization in
this particular context of aligned contacts on electrode shafts implanted in clusters.

While the temporal resolution of the (S)EEG modality is high,its spatial resolution
is poor, and the set of activated sources cannot be determined based on the measure-
ments alone (Nunez and Srinivasan (2006); Baillet et al. (2001)). A wide range of
(physiological) constraints/priors can be imposed to regularize the problem, resulting
in an abundant literature on this topic. Electrical Source Imaging (ESI) approaches
have met high interests (Baillet et al. (2001); Michel et al.(2004)), offering visu-
ally interpretable results and direct comparison with imaging modalities (fMRI, MRI,
PET,etc...). They are based on distributed source models, in which a high number of
dipoles are placed on a regular grid in the brain volume (possibly restricted to partic-
ular area, usually to the cortical mantle). Under the commonly accepted hypothesis
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of purely resistive propagation media, the inversion becomes a linear but severely ill-
posed problem. Most of the methods mainly differs in the spatial/temporal constraints
that are imposed on the underlying distribution of sources,imposing spatial smooth-
ness of the source map (Loreta or sLoreta (Pascual-Marqui (2007)), or enforcing focal
solutions (FOCUSS) (Gorodnitsky and Rao (1997)). In particular, the Bayesian frame-
work has been extensively studied in this context (Baillet et al. (2001); Phillips et al.
(2005); Trujillo-Barreto et al. (2008); Wipf and Nagarajan(2009); Lucka et al. (2012)),
where hyper-parameters can be introduced to control the optimization of the model pa-
rameters.

In each of the mentioned studies, the electromagnetic projections gains mapping
the sources to the electrode contacts (i.e., the lead-field matrix) are supposed to be
known. While the efforts have been focused on the localization of the sources and on
the estimation of their time-courses, the accuracy of the propagation model should be
also questioned, as it highly impacts the precision of the resulting source reconstruc-
tion. The computation of sophisticated propagation modelsbased on heavy numerical
approaches (Finite Element Models (FEM)) has been widely explored and promoted
in the last few years. In this purpose, a precise segmentation of the brain areas (scalp,
skull, white and gray matters) is required, and for each of these areas the conductivi-
ties are to be estimated (Acar et al. (2016)). We can mention also the consideration of
anisotropy, mostly within the white matter where the directions of the fibers is consid-
ered to influence the electric propagation (Wolters et al. (2006); Bangera et al. (2010)).
These models rely on a large amount of parameters and pre-processing steps, each
of them bearing their own uncertainties. The utility of suchcomplex model is cur-
rently a challenging topic as some discordant studies are appearing, stating that fitted
sphere models yield similar source localization performance than more elaborated but
still uncertain numerical models (Birot et al. (2014); Caune et al. (2014)). In addition,
the solution space is continuous while the lead-field used inthe distributed model en-
codes the projections for a finite number of dipole positions, so it cannot capture all
the possible projections for every single location in the brain volume, leading to a basis
mismatch problem. Chi et al. (2011) demonstrate that the quality of the decomposition
of a sparse physical field is considerably degraded in the presence of basis mismatch
(a high number of basis elements are recruited to reconstruct the data), even when the
assumed basis corresponds to a fine-grained sampling of the parameter space. In our
particular application, it means that keeping the lead-field fixed can results in scattered
solutions spread over a high number of dipolar elements.

Very few notable works have explored the opportunity to estimate simultaneously
the source localization and the forward model. Hansen et al.(2016) exploit a corpus
of forward models with varying conductivity parameters built from the structural scans
of 16 subjects. Low-resolution anatomic information are extracted from this corpus
through a Principal Component Analysis, and are used aspriors within a Bayesian
approach to produce estimate of the sources from the EEG measurements of a new par-
ticipant (for which no anatomical information are available). Acar et al. (2016) directly
optimize the conductivities of a numerical forward model computed on the MRI of the
patient. The set of sources, assumed to be focal, are identified as independent dipolar-
like scalp maps based on an Independent Component Analysis,and the estimation of
the sources and of the conductivity parameters are iterateduntil convergence.
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Unlike these two last studies, we do not tackle the brain tissue conductivities es-
timation, we rather propose an optimization of the lead-field coefficients themselves
within a Variational Bayes (VB) framework. The proposed method is to be directly
compared with the SOFOMORE approach (Stahlhut et al. (2011)), where the source
and the lead-field coefficients are simultaneously estimated within a hierarchical Bayesian
framework. Independent univariate Gaussian priors of equal variance are attributed to
each lead-field coefficient within a column, and conjugate prior distributions (gamma
distributions) are assigned to these priors. The designingof the prior densities is, by
their own admission, not properly carried out in their paper. In particular, no physio-
logical constraint taking account of the source to contactsdistance and of the sensors
placement are embedded, and the plausibility of the posterior estimates are not explic-
itly addressed.

The key difference with this previous work is the introduction of multivariate Gaus-
sian likelihoods over each column of the lead-field (i.e., the forward field of one dipole
on the lead-field grid), with non-diagonal precision matrixspecifically designed for
each column. These precision matrices explicitly encode the dependencies between
the projection gains of each single forward field. This is of particular interest in the
context of the SEEG recording setup, where aligned contactsare implanted in clusters,
yielding high dependencies between the projection gains ofa given source on the sen-
sors. To be more specific, a gain variation of a source on a given sensor, either due to a
variation of the source position/orientation, or to a forward model parameter error, will
induce a correlated gain variation on its neighboring sensors. We then constrain the
posterior means to remain close to a confident physical modelprior, preventing from
non-physiological posterior estimates. In contrast to Stahlhut et al. (2011), we give a
particular attention to the designing of the lead-field column precision priors. We pro-
vide a simple and fast method for their computation, considering both the uncertainties
due to the sampling of the source space and to the forward model parameter errors. Fi-
nally, a post-optimization strategy is proposed to map the obtained lead-field posterior
estimates within the source space.

The Gaussian modeling of the model errors, as imperfect as itis, reflects the nu-
merous uncertainties related to the resolution of the forward problem. Besides, such
priors introduce additional degree of freedom for the Bayesian algorithms to express
their sparse inclinations. Indeed, under adequate parametrization, Bayesian optimiza-
tion strategies are known to produce sparse solutions (e.g.Sparse Bayesian Learning
(SBL), restricted Maximum Likelihood (reML), Automatic Relevance Determination
(ARD) (Tipping (2001)). This aspect is observed in Stahlhutet al. (2011), and is con-
firmed by our experiments. While sparse priors might not be desirable for all applica-
tion, this is relevant when trying to localize a limited number of focal sources, such as
inter-ictal epileptic events or in the case of controlled experiments implying localized
evoked potentials (e.g., auditory evoked potential (Kiebel et al. (2008))), which can be
summarized to the activation of few brain structures.

In the section 2.1, we present the data model and the probabilistic Bayesian frame-
work. In section 2.2, the Variational Bayesian (VB) scheme is used for maximizing the
log-likelihood of the model, simultaneously providing estimates of the sources and of
the columns of the lead-field. In this section we also explainhow the precision matrices
over the lead-field columns can be computed, and we expose theEquivalent Current
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Dipole (ECD) fitting to the posterior lead-field columns. In the evaluation section 3,
we provide simulation results for different scenarios of underlying dipole configura-
tions and noise. In particular, a FEM is used to produce the simulated data, while the
inversion is based on a coarse One Sphere Model (OSM), simulating the uncertainties
of the lead-field matrix both in term of source space samplingand of forward model
imprecision. Finally, we demonstrate the reliability of the localization results in the
context of real SEEG recordings of intracranial stimulations and interictal spikes.

2. Methods

In this section we present the general Bayesian formulationof the source local-
ization problem, we specify the parameters of the model and we briefly remind the
classical approach for maximizing the data likelihood of the model. We then introduce
a probabilistic modeling of the lead-field columns, and we explicit their optimizations
through the VB scheme. In the paper are given the main theoretical aspects of the
method as well as the analytic expressions for the model parameter updates, more de-
tailed developments of the equations being given in the appendix.

2.1. Bayesian modeling

It is widely assumed that a patch of synchronized neuronal cells can be approxi-
mated by a single equivalent current dipole positioned within this region. The potential
recorded on a contact is then modeled as a sum of linear and instantaneous projection of
a high numberNs of dipolar activities covering the brain volume (commonly restricted
to the cortical columns). Let considerX ∈ R

Nc×T the Nc measurements of lengthT
due toNs sourcesS∈ R

Ns×T :

X = AS+ ε (1)

whereS encodes the amplitudes of the sources, the columns ofA ∈ R
Nc×Ns repre-

sent the projection coefficients from theNs fixed dipoles to theNc contacts (thus encod-
ing the dipole positions and orientations), andε is an additive noise. Within a Bayesian
framework, bothS and ε are usually considered as random variables, generally as-
sumed Gaussian. More specifically, general Gaussian scale mixtures are proposed for
S with arbitrary covariance components corresponding to given priors on the depen-
dencies between sources. In this paper we will make the assumptions that the sources
are independent, without loss of generality (Wipf and Nagarajan (2009)). Let introduce
the diagonal precision matrix (i.e., the inverse of the covariance matrix)ΓS= diag(γS),
with γS = [γs1, ...,γsNs

] and such thatp(S|ΓS) = N (0,Γ−1
S ). Let assumeε as a spatially

and temporally homogeneous white Gaussian noise. Its diagonal precision matrix is
written Γε = γεINc (IN being theN×N identity matrix), and the data likelihood then
writes:

p(X|S,θ) ∝ exp−
γε

2
(X−AS)⊤(X−AS) (2)

with ⊤ the matrix transposition. The joint distribution ofX andS with respect to
the set of parametersθ = {ΓS,γε} writes:
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p(X,S|θ) = p(X|S,θ)p(S|ΓS) (3)

Under this parametrization and considering thatΓS andγε are fixed and known, the
posterior probabilityp(S|X,θ) is also Gaussian with precision and mean given by:

Γ̂S = ΓS+ γεA⊤A (4)

Ŝ = γεΓ̂−1
S A⊤X (5)

and in this case the Maximum a Posteriori (MAP) solution is given by the source
posterior mean̂S. WhenΓS is diagonal, this solution is equivalent to theℓ2-Weighted
minimum norm solution (Dale and Sereno (1993)).

If ΓS andΓε are unknown, these parameters can be estimated through an Expectation-
Maximization (EM) procedure maximizing the marginal likelihood of the model (i.e., max-
imizing eq.(3) integrated overS, thehidden data) (Bishop et al. (2006)). This algorithm
is sometimes called Sparse Bayesian Learning (SBL) (Sato etal. (2004); Ramírez et al.
(2006); Wipf and Rao (2007)), because it naturally providessparse solutions by shrink-
ing to zero the variance of irrelevant sources (Tipping (2001); Friston et al. (2008)).
The initial set of source candidates can be allowed to be verylarge, and we can rely
on the optimization procedure to prune the superfluous elements and select the most
appropriate set of sources.

2.2. Simultaneous optimization ofA andS

On one hand, the simultaneous reconstruction of both the sources and the projection
coefficients makes the EEG source reconstruction even more ill-posed, the solution
space being broaden. On the other hand, the construction of the forward model involves
lots of hypothesis, model reductions and uncertainties. Moreover the lead-field matrix
A represents a sampling of the source space, and there is few chances that the true
source positions (in term of equivalent dipole) will exactly match those of theA grid.
By introducing precision parameters over the forward matrix A, we allow variations of
its columns, and thus let the model be data-driven,i.e., adjustA to the true underlying
propagation parameters of the medium. In the following, thecolumns ofA will then
be considered as latent variables and we will propose a Variational Bayesian (VB)
approach to optimize the evidence of the model. Benefiting from the sparse property of
the Bayesian approaches, we look for solutions that are not spread over a high number
of fixed dipoles, but rather focused on a small number of dipoles with optimized lead-
field projections.

2.2.1. Forward model likelihood
In the distributed approach, a lead-field is generated basedon a given forward

model, which can vary from simple analytical models (Infinite Homogeneous Model
(IHM) or spherical models) to complex numerical model basedon Boundary Element
Modeling (BEM) or Finite Element modeling (FEM). Each column of the lead-field
encodes the projection of a given elementary dipole within the brain volume. The
positions of these dipoles are often assumed to be restricted to the cortical mantle,
with orientations orthogonal to the cortical mantle surface. However in this work, we
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do not imposeprior anatomical constraint for the source localization.Np positions
(i.e., Ns = 3∗Np sources) are defined on a regular grid with a spatial resolution of δp

over the three spatial dimensions within the brain volume. The step of the gridδp

(usually of the order of few millimeters) then defines the number of considered dipole
positionsNp in the lead-field, usually up to several thousands. This model-based lead-
field matrix, denotedA0 in the following, will be now considered as aprior and we will
let the algorithm optimize the values ofA. We assume that the columns ofA follow
independent Gaussian distributions around the prior modelA0:

p(A|A0,ΓA) =
Ns

∏
j=1

N (a j |a0 j ,Γ−1
a j
) (6)

ΓA containsNs precision matricesΓa j of sizeNc×Nc, constraining the projection
coefficients in each of theNs columnsa j to remain close to the prior modela0 j with a
given degree of freedom encoded inΓa j . These matrices can both describe the uncer-
tainty on the position of the dipole as well as the uncertainty of the used forward model
(tissue segmentation, conductivities...).

We have tested several empirical methods to shape these precision parameters,
based on the computation of second order statistics of forward model clusters repre-
senting the variability of the projections for each dipole (e.g., by sampling the sur-
rounding source space projection of each dipole using an analytical model (IHM or
OSM), by computing the projection of each dipolar elements using several forward
models and/or by sampling the conductivity parameters in given ranges (Hansen et al.
(2016))). Such exploratory methods turned out to be computationally heavy, does not
guaranty that the source space is covered and neither prevent from high overlapping
between neighboring dipolar elements.

We propose here a fast empirical method inspired from the subspace correlation
metric used in the MUSIC-type algorithms. To take account ofthe model uncertainties,
we start by computingM forward models{Am

0 ,m∈ {1, ...,M}} (e.g., by sampling the
model parameters in physiological ranges (Hansen et al. (2016))). The columns of the
prior mean forward modelA0 are set as the mean of theseM model columns:

ai0 = 1/M ∗
M

∑
m=1

am
i0 (7)

From each forward modelAm
0 , and for each of the three orientations of a given

position, we start by computing the closest (in term of correlation) dipole projections
that can be coded within each of the surrounding three-dipole subspaces (K = 26 if we
consider all the grid points on the cube surrounding the current position). This can be
done by a normalized back-projection of a regression of the current dipole projection
am

i0 on each of theK 3-D surrounding subspacesAm
k0 ∈ R

Nc×3:

am
ik =

Am
k0(A

m+
k0 am

i0)

||Am+
k0 am

i0||
(8)

with Am+
k0 the Moore-Penrose pseudo-inverse of the matrixAm

k0. The inverse co-
variance matrix of the resultingK ×M dipole projections gives the precision matrix
Γai for each columnai of A:
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Γ−1
ai

=
1

M ∗K−1

M

∑
m=1

K

∑
k=1

(am
ik −ai0)(am

ik −ai0)
T (9)

We insist on the importance of considering non-diagonal precision matrix, the non-
null covariance imposing constraint on the re-estimation of the projection values, im-
posing them to remain close from the prior physiologically plausible projection pattern
encoded inA0. This will be further illustrated in the evaluation section3. Provided that
the source space has been adequately sampled, this empirical procedure is expected to
bring a blanket of the source space, while restricting the influence of each dipolar dic-
tionary element to their respective vicinity.

2.2.2. Variational Bayesian optimization

ΓSΓA

A0

A S

X γǫ

Figure 1: Hierarchical Model

The set of latent variables of the problem is now the couple{S,A}. The joint
distribution ofX, SandA writes:

p(X,S,A|θ) = p(X|A,S,θ)p(S|ΓS)p(A|A0,ΓA) (10)

with θ= {ΓS,γε,A0,ΓA} the set of model parameters, as illustrated fig 1. The optimiza-
tion of this set through the EM procedure becomes intractable because of couplings
betweenA andS. We then propose a VB optimization scheme by introducing a set of
candidate distributionsq(.) ∈ Ω such thatq(S,A) = q(S)q(A), with q(S) = ∏Ns

i=1q(si)

andq(A) = ∏Ns
i=1q(ai). The VB optimization procedure fitsq(A,S) to the true poste-

rior distribution p(A,S|X,θ) so that the Kullback-Leibler distance between these two
distributions vanishes. This is equivalent to finding the distributions{q(S),q(A)} max-

imizing the quantityF (q) =
∫

A,Sq(A,S) ln p(X,A,S)
q(A,S) , called the free energy, which is a

lower bound of the model evidence (Friston et al. (2008); Wipf and Nagarajan (2009)).
This results in a version of the SBL algorithm for simultaneous estimation ofA andS,
which we will denote as VBLF (Variational Bayes for Lead-Field re-estimation).

Within the VB scheme, the candidate distributions are iteratively updated by evalu-
ating the marginal expected values of the model joint probability (Bishop et al. (2006)):

lnq(si) ∝ 〈ln p(X,S,A|θ)〉q(A)∏ j 6=i q(sj ) (11)

lnq(ai) ∝ 〈ln p(X,S,A|θ)〉q(S)∏ j 6=i q(a j ) (12)
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Under the Gaussian prior parametrization adopted in this paper both forS andA,
the approximated posteriorsq(a j) of each column are Gaussians with precisions pa-
rameterŝΓa j and meanŝa j , given as (see Appendix A):

Γ̂a j = Γa j + γεÊsj INc (13)

â j = Γ̂−1
a j
(Γa j a0 j + γεΛ j) (14)

where we define:

Êsj = (ŝj ŝ⊤j +T γ̂−1
sj
) (15)

Λ j = X ŝ⊤j − Â\. j(Γ̂\ j.
S. j

+ Ŝ\ j.ŝ⊤j ) (16)

where, for any matrixM , we writeM . j the jth column ofM , M \. j the matrixM
minus its jth column andM\ j. the matrixM minus its jth line. Â = [â1, · · · , âNs] is the
VB updated version of the lead-field matrixA.

The posterior estimates ofSmust now includes the posterior covariances on the col-
umn ofA. We introduce the diagonal matrixDΓ̂−1

A
∈ R

Ns×Ns containing the traces of the

lead-field column posterior covariance matrices on its diagonal: DΓ̂−1
Aii

= trace(Γ̂−1
ai
).

The posterior mean and covariance ofSnow write:

Γ̂S = ΓS+ γε(Â⊤Â+DΓ̂−1
A
) (17)

Ŝ = γεΓ̂−1
S Â⊤X (18)

Updates of the source precisionsγsi and noise precisionγε are obtained by a deriva-
tion of the expected marginal likelihood (with respect toq(A) andq(S)) as:

γ−1
si

=
Êsi

T
(19)

γ−1
ε =

1
TNc

||X− ÂŜ||2F +
1
Nc

trace(ÂΓ̂−1
S Â⊤)+

1
TNc

Ns

∑
i=1

Êsi DΓ̂−1
Aii

(20)

The algorithm consists in iteratively computing the equations (13) to (18) (the E-
step) and (19) to (20) (the M-step) until convergence.

An important aspect of the variational approach is that it brings a quantitative way
to carry out model selection through the free energy quantity F . ConsideringA as a
latent variable, the free energy formulation becomes (see Appendix B):

F (q) = 〈ln p(X,S,A|θ)〉q(S),q(A)−〈lnq(S)〉q(S)−〈lnq(A)〉q(A) (21)

with

〈ln p(X,S,A|θ)〉q(S),q(A) = 〈ln p(X|S,A,γε)〉q(S),q(A)+ 〈ln p(S|ΓS)〉q(S)

+〈ln p(A|A0,ΓA)〉q(A) (22)

< . >q denoting the expectation with respect to the distributionq.
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2.2.3. Posterior forward field mapping
The Bayesian algorithm described above provides us with forward fields âi of

dipolesd̂i with time-courseŝsi . However the positions and orientations of these Equiv-
alent Current Dipoles (ECD)̂di remain unknown. Indeed our method does not restrict
these sources to the prior lead-field grid, and a post-optimization procedure is needed
to fulfill our objective of mapping them in the brain volume. In addition, the dipole
d̂i is not necessarily unitary sinceA andS are simultaneously optimized and no such
constrain is imposed in the model. Hence it is important to note thatÂ cannot be con-
sidered as a proper lead-field matrix in its most general acceptation1; the same applies
for the time-coursêsi which indeed represent the actual current density of the dipo-
lar sourced̂i up to a scalar factor. The identification of these parameters(position,
orientation and scalar factor) can be solved by an Equivalent Current Dipole proce-
dure by fittingâi to a confident propagation model (Scherg et al. (1999); Cauneet al.
(2014)). The localization accuracy will still be subject tothe inherent uncertainties of
the used model, however this ECD fitting step maps the sourcesin the continuous so-
lution space and the solutions are not constrained to the lead-field grid. The constant
factor scaling the chosen post-fitting propagation model tothe posterior lead-field̂ai

solves the scalar ambiguity between the true source amplitude and the corresponding
unitary-dipole projection column.

In practice for each posterior forward fieldâi , the optimization algorithm (Sequen-
tial Quadratic Programming) is initialized with the parameters of the prior ECD associ-
ated toa0i , the new ECD being constrained to remain close to its prior version through
the model-driven prior precision matrixΓai . The outcomes of this procedure are the
parameters of the fitted dipolêdi (position, orientation and scaling factor). Theoret-
ically, this ECD assignment step has to be carried out for each of theNs columns of
A. However such procedure would be neither computationally tractable neither rele-
vant for silent or low amplitude sources (for which the posterior forward field might
be unreliable due to the relative low SNR ). Thus it will be applied only to the poste-
rior columns{âi} associated to the set of active sources,i.e., those associated to the
most powerful time-courses{ŝi} (as defined in the evaluation section 3), resulting in a
limited set of identified dipoleŝd. An illustration of the global localization procedure
including this post-optimization step is given fig.2.

3. Evaluation

We first validate the method on simulations and we compare theperformance of our
algorithm with several algorithms of the literature (SBL, SOFOMORE, Champagne
and RAP-MUSIC). We then evaluate the methods when facing real data, first in the
context of intracranial stimulation (ICS) and finally for the localization of interictal
spikes event.

1i.e., representing the projection of unitary dipoles on the electrodes
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Figure 2: a) Work-flow of the method including the ECD identification step, withd̂ the set of identified
dipoles. b) Example of a posterior lead-field column meanâ (red) superimposed with its OSM fitting (dashed
green) and its prior versiona0 (blue). c) Prior dipole (blue) and fitted dipole (red), 3.1mmdistant one from
the other in this case (with a prior lead-field resolution of 1cm).

3.1. Simulations

We use the adult MNI-ICBM152 averaged model (Fonov et al. (2011)) which is
freely available for download on the web2. The forward model is computed using a five
compartment Finite Element Model (FEM) for 509 source positions regularly sampling
the gray matter volume. For more details on how the FEM has been computed, please
refer to Caune et al. (2014).

To simulate the uncertainties of the forward model, we use One Sphere Models
(OSM (Yao (2000))) to solve the inverse problem and build thelead-field priorA0

(with conductivities of 0.33 S/m).M = 17 different OSM are computed using locally
fitted spheres at 17 points3 of the upper skull mesh, for which closed-form are avail-
able (Zhang (1995)). For each of these 17 models, the lead-field is computed for a
regular grid of freely oriented dipoles with 1cm resolution, situated within a 2cm en-
velope of the gray matter mesh and with no overlap with the 509previously sampled
positions used form the forward FEM computation (in all,Np = 2214 possible dipole
positions). The prior matrixA0 and the associated precision matrices{Γai} are then

2http://www.ucl.ac.uk/medphys/research/borl/intro/headmodels/adult
3One on top of the head, 8 around the horizontal plane passing through the nasion, and one at mid-distance

of each surface line linking these 8 previous points to the top one
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computed using the procedure described section 2.2.1.
We have simulated a realistic SEEG implantation with the help of the neuro-physiologists

of the Nancy CHU. The number of electrode shafts equals 12, onwhich 186 con-
tacts are spread (about 14 to 18 per electrodes). Our prior OSM lead-field A0 en-
codes the projections in the three directions for each source point, and is then of size
Nc×3∗Np = 186×6642.

Either three or five equivalent dipoles with random positions and orientations are
selected among the set of 509 dipoles. We affect real time-courses to these seeded
dipoles, taken from the SEEG recordings of an epileptic patient on bipolar montage
(difference of two consecutive contacts of a same electrodeshaft, assumed to catch
the activity of a local source). A set of 200 windows with time-length 256ms (128
samples) have been selected, corresponding to background activities, inter-epileptic
events, as well as various representative periods of the ictal events (from spike burst-
ing to paroxystic rhythmic activities). Additive spatially independent white noise is
simulated on the contacts, with standard deviations taken as:

σε =
||XS||F

T ∗Nc∗ns∗10LSNR/20
(23)

with XS the potential due to thens simulated sources, andLSNRthe desired SNR in
dB which varies in the set{10,5,0,−5} in our simulations. The division byns ensure
that the SNR for each dipole respectively is comparable on average from a simulation
to another across the two source configurationsns = {3,5}.

We evaluate the benefit of re-estimating the lead-fieldA by comparing the localiza-
tion results based on the proposed VBLF approach (section 2.2.2) with a SBL approach
(section 2.1). We also compare the performances with SOFOMORE 4. While gaussian
priors of equal variance are attributed to each projection gain of a given lead-field
column in its original version (Stahlhut et al. (2011)), we set the variance values as
estimated by our method (i.e., the diagonal values of the covariance matrices as com-
puted in equation (9)). SOFOMORE is then a particular case ofour approach with
diagonal lead-field column precisions. This comparison is carried out to assess the im-
portance of explicitly encoding physical model-driven constraints within the lead-field
priors. We also compare the results using RAP-MUSIC (Mosherand Leahy (1998))
informed with the true number of sources, and another empirical Bayesian approach
called Champagne (Wipf et al. (2010)) for which the true standard-deviation of the
noise has been informed. For SBL, RAP-MUSIC, and Champagne,a local OSM lead-
field is built: for each position of the lead-field grid, the three cartesian projections are
given by the OSM model (among theM = 17 previously computed) whose fitting point
on the skull mesh is the closest to the considered grid point.

3.1.1. Evaluation criteria
The performances of the different algorithms are evaluatedbased on two comple-

mentary metrics. The first one is the Distance of Localization Error (DLE) (Yao and
Dewald (2005); Becker et al. (2014)), which measure the localization accuracy of the

4used in its non-informative form (gamma hyper-parameters set to0)
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true sources while penalizing the presence of spurious sources (false positives). The
DLE is given by:

DLE =
1

2ns
∑
i∈S

minj∈Ŝ||xi − x̂ j ||+
1

2n̂s
∑
j∈Ŝ

mini∈S||xi − x̂ j || (24)

with S andŜ the set of simulated sources and of estimated sources respectively, xi

the position of theith simulated source and ˆx j the position of thej th estimated source,
andns is the number of simulated sources while ˆns is the number of estimated sources.
In this paper, a dipole is included in the solutionŜ if the standard-deviation of its
estimated time-course is above a threshold given as the tenth of the largest standard-
deviation in the current solution.

The second metric is theA
′

metric (Snodgrass and Corwin (1988); Wipf et al.
(2010)) which take into account both the ratio of successfulsource localization (hits)
and the ratio of false positives. A simulated source is considered as recovered (true
positive) if at least one dipole in the solutionŜ is less than 1cm far from this dipole.
The hits rate is the number of true positives divided by the total number of simulated
sourcesns. Any dipoles in the solution̂S farther than 1cm from all the true dipoles
are considered as false positive. To define a false positive rate, a maximum number of
possible false positives has to be defined. This maximum number has been arbitrarily
set to 100 in Wipf et al. (2010). In this paper we decide to set it to 48, which is the
highest number of false positives obtained in our simulations (Champagne algorithm
with 5 dipoles in the−5dB case). Given these hit rates (Hr) and false positives rates
(FPr), theA

′
metric is computed as (Snodgrass and Corwin (1988)):

A
′
=

{

0.5+(Hr −FPr)(1+Hr −FPr)/(4Hr(1−FPr)), if Hr ≥ FPr

0.5+(FPr−Hr)(1+FPr−Hr)/(4FPr(1−Hr)), if FPr > Hr
(25)

In addition, we assess the ability of the methods in estimating the dipoles time-
courses and projections on the contacts using the correlation coefficients between the
estimations and the ground-truth. Finally, we also evaluate the sparsity of the methods
by providing the number of dipoles ˆns selected in the final solution̂S.

3.1.2. Results
We iterate 400 simulations for each configuration (number ofsources and noise

level). For all the algorithm, the variance of the noise is initialized using a minimum
description length (MDL) approach (except for RAP-MUSIC where the exact number
of sources is given and Champagne to which the true noise variance is given). For all
empirical Bayes algorithm, the prior source precisionΓS is set as the identity matrix.

The performances in term of time-course and lead-field reconstructions (fig 3, rows
1 & 2) demonstrate the good performance of our approach. VBLFis indeed consis-
tently the most accurate in median over all configurations, with significantly higher
time-course correlation rates (ρt) compared to the other methods. The method is par-
ticularly accurate in estimating the forward field coefficients, reaching correlation rates
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Figure 3: Performance evaluation for 3 (first column) and 5 (second column) simultaneous dipoles. Medians
of the correlation coefficients of the estimated time-course and lead-field projections with the ground-truth
are given on resp. first (ρt ) and second (ρLF ) rows. The median number of significant dipoles in the solution
(n̂s) for each method are given on the third row. Error bars corresponding to first and third quartiles are also
given.

ρLF over 0.99 for 3 and 5 dipoles form 10 to 0dB SNR. If SOFOMORE manages to
compete with both RAP-MUSIC and Champagne in the 3 dipoles case, it is less accu-
rate than these two fixed lead-field methods in reconstructing the lead-field columns in
the 5 dipoles case. This proves that it might be inappropriate to give degrees of freedom
to the lead-field coefficients if the optimization procedureis not carefully constrained.
On fig.4 are given an example of lead-field coefficients re-estimates (i.e., including the
post-ECD scaling procedure) for both VBLF and SOFOMORE, forthe 5 dipoles/10dB
simulation case. Starting with an OSM prior, VBLF proves to be able to produce rel-
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evant forward field posterior mean close to the true (simulated) one, here given by a
FEM. The unconstrained version (i.e., SOFOMORE, diagonal precision matrix over
the columns ofA) brings less accurate estimates (see fig.4, 2nd row 3rd column in par-
ticular, errors are visible between the blue and dashed green lines). Such bad estimates
interfere with the estimates of the other simultaneous dipoles, impacting significantly
the localization results.

One can notice the good performance of the Champagne algorithm in this recon-
struction task, this method being originally dedicated to robust estimation of the source
time-courses (Wipf et al. (2010)). RAP-MUSIC also manage toproduce reliable esti-
mates of the lead-field and time-courses, the method is successful in identifying the 3D
subspaces best fitting the projections of each simulated dipole.

The performances of both SOFOMORE and VBLF in estimating thetrue number of
sources are consistently very near the RAP-MUSIC reference(true number of sources
informed), with a small but significant advantage for our VBLF approach considering
the tight quartile values (see the ˆns metric, third row of fig 3). These methods are able
to retrieve the true number of sources even in case of strong interferences (up to 5
simultaneous dipoles) and noise level (-5dB on average for each dipole), while Cham-
pagne and SBL provides large over-estimations of the numberof underlying sources.
This can be explained by the basis mismatch issue as discussed in (Chi et al. (2011)),
the true forward field of the sources being not perfectly aligned with any columns of
the lead-field matrix, a high number of lead-field elements are necessary for the algo-
rithm to reconstruct the observations. The re-estimation of these lead-field columns in
SOFOMORE or VBLF brings a data-driven fitting of the lead-field to the true source
projection, avoiding such scattering effects.

The performances in term of localization precision (DLE) and A’ metric are given
fig 5. The informed version of RAP-MUSIC is expected to provide accurate results in
this context of additive white Gaussian noise. The Champagne approach also provides
very accurate localization results, with DLE below or very near to 1cmwithin eachns

and SNR configurations. However as shown by the rather high number of significantly
powerful sources in the solution (see fig 5), the number of false positives can be high
as shown by theA

′
metric, especially in thens = 5 dipoles case.

After applying the ECD fitting step (as described section 2.2.3), VBLF brings the
best DLE performance, in concordance with the high accuracyof the source lead-field
estimates. The DLE is decreased of about 2mmin median with respect to SOFOMORE
over all configurations, which can be considered as a significant gain in accuracy con-
sidering that the DLE are consistently below 1cm (representing roughly a gain in per-
formance of about 20%). The true number of sources being accurately estimated by
VBLF, very few false positives are produced, explaining thehigh A’ values. This is
not observed for SOFOMORE, for which the rather low number offalse positives are
compensate by higher localization errors due to inaccuracies in the source lead-field
estimates. The superiority of our method with respect to theSOFOMORE approach
demonstrates the importance of constraining the dipole projections through the intro-
duction of non-null off-diagonal values in eachΓai .

A last metric is given by the final values of the free energy function (equation (21))
which describe the relevance of the model to the data (Friston et al. (2008)). This lower
bound of the model evidence can be evaluated for SBL, SOFOMORE and VBLF. While
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Figure 4: An illustration of the lead-field coefficients estimates when using VBLF (top/dashed red) or SO-
FOMORE (bottom/dashed green), in the 5 dipoles case - 10dB (one figure per dipole). The estimates are
super-imposed with the true FEM lead-field (blue) and the prior column (black).

the actual values of this function has no meaning in itself, its comparison from a model
to another can be used to determined which model is the most appropriate to explain the
data (fixed lead-field (SBL), diagonal lead-field column covariance matrices (SOFO-
MORE), and non-diagonal lead-field column covariance matrices (VBLF)). Using the
values of the SBL free energy estimates as a reference (setting it to 0), VBLF provides

16



3 dipoles 5 dipoles
D

LE
(m

m
)

10 5 0 −5

4

6

8

10

12

14

16

18

20

SNR

 

 
RAP−MUSIC
SBL
Champagne
SOFOMORE
VBLF

10 5 0 −5

4

6

8

10

12

14

16

18

20

SNR

 

 
A

′

10 5 0 −5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR
10 5 0 −5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR

F
re

e
E

ne
rg

y

10 5 0 −5
0

500

1000

1500

SNR
10 5 0 −5

0

500

1000

1500

2000

SNR

Figure 5: Performance evaluation for 3 (first column) and 5 (second column) simultaneous dipoles. Median
of the DLE andA

′
metrics are given resp. on the first and second rows. On the third row is given the relative

median values of the Free Energy for VBLF and SOFOMORE with respect to the SBL reference values.
Error bars of first and third quartiles are superimposed.

the highest free energy values over all the configuration andconfirms its relevance for
this simulated source localization task (bottom figures of fig 3).

3.2. Intracranial Stimulations

The localization method is tested on Intracranial Stimulation (ICS) data, where two
consecutive electrode contacts are used to inject a currentin the brain volume. We will
consider a data set from a 40-year-old man with presumed bitemporal lobe epilepsy. He
was implanted with ten depth electrodes in the right temporal lobe and insular cortex
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Figure 6: One second of SEEG signals recorded during an ICS session on TB’8-9. These 20 channels are
used for the localization of the stimulation.

and four in the left temporal lobe. The reference was FPz surface electrode from the
classical 10-20 system. The depth contacts coordinates were automatically determined
using the procedure described in Hofmanis et al. (2011). We consider stimulations
injected in the left (less implanted) hemisphere, using thecontacts of the electrodes
TB’.

Three ICS data-set are used, and correspond to a profound (TB’2-3), intermediate
(TB’4-5) and superficial (TB’8-9) stimulation site. The stimulation is applied for about
4s for each site, and consists it in a train of 55 biphasic pulses/s. We have extracted 3s
of signal centered within the stimulation window, and we cutit in 12 sub-windows of
250mseach (thus 13 to 14 pulses per window). The localization is applied separately
on each sub-windows. While it is true that the ICS source is stronger than physiolog-
ical sources, it may not be the dominant activity recorded byfar electrodes on which
local physiological activities are super-imposed. On figure 6, the time-courses of the
potentials generated by the ICS dipoles for the stimulationsite TB’8-9 are given. On
the contact T’1, distant of 36mm from the stimulation site, the potentials due to the ICS
source are visible but is clearly weaker than the surrounding physiological activity.

The lead-field matrix is built based on 17 locally fitted OSM using a 1cm resolu-
tion grid (like in the simulations), the spheres being fittedon 17 well distributed points
on the upper part of the inner skull. The contacts of the electrode TB’ used for the
stimulation are not considered. We aim at localizing the stimulation based only on a
limited set of distant contacts. We restrict the used measurements to those of the hemi-
sphere of the stimulation, thus 20 channels spread on 3 electrode shafts (A’,B’,T’, see
fig 6). Using electrode shafts can pose a conditioning problem, as tackled in previous
works (Caune et al. (2014)). We arrived to the conclusion that at least a dozen contacts
from 3 different electrode shafts are needed to successfully carry out a brain source
localization, such conditions being met in the particular case of this data set.

The position errorsεp are given in table 1, averaged over the 12 sub-windows local-
ization results. After convergence, each algorithm generates solutions whose powers
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TB’2-TB’3 TB’4-TB’5 TB’8-TB’9
εp ρt ρLF εp ρt ρLF εp ρt ρLF

SBL 3.0±0.2 0.98±0.01 0.93±0.01 5.0±0.6 0.96±0.01 0.97±0.01 4.8±0.3 0.95±0.02 0.93±0.02
VBLF 1.8±0.9 0.97±0.01 0.97±0.01 3.0±0.5 0.95±0.04 0.99±0.01 3.1±0.7 0.96±0.03 0.99±0.02
SOFOMORE 1.3±0.7 0.95±0.02 0.97±0.01 3.1±0.7 0.97±0.03 0.99±0.01 2.3±0.8 0.95±0.02 0.99±0.02
Champagne 4.8±0.08 0.93±0.04 0.92±0.02 4.6±1.2 0.97±0.01 0.95±0.03 5.4±0.9 0.95±0.03 0.90±0.04
RAP-MUSIC 7.6±1.9 0.97±0.01 0.97±0.00 5.9±0.0 0.99±0.00 0.97±0.00 8.8±0.27 0.98±0.01 0.98±0.00

Table 1: Performance values for the localization of three ICSdipoles (averaged over 12 windows of 250ms
each) for five different algorithms: SBL, VBLF, SOFOMORE, Champagne and RAP-MUSIC. Position er-
rors εp are given in mm. Correlation coefficientsρt between the mean of the closest (<1cm) significant
source time-courses and the potential recorded on the electrode of stimulation next to the stimulated con-
tacts. Correlation coefficientsρLF between the mean lead-field projections of the closest significant sources
(re-estimated in the case of VBLF and SOFOMORE) and an estimation of the true projection of the dipole
of stimulation based on the One Sphere Model.

are concentrated around the position of the stimulation dipole. We retain the time-
course and lead-field projection of the equivalent dipole ofmaximum power as this
representing the stimulation dipole. In the table 1 are thengiven two additional perfor-
mance values (averaged over the 12 sub-windows):ρt is the correlation coefficient
between the estimated equivalent dipole time course and thepotential recorded on
a non-saturated (manually chosen) contact belonging to theelectrode of stimulation.
ρLF is the correlation coefficient between the estimated equivalent dipole lead-field
projection with an OSM estimated projection of the dipole ofstimulation using its true
position and orientation.

The performances of all five algorithms (SBL, VBLF, SOFOMORE, Champagne as
well as RAP-MUSIC) are evaluated (considering the post-optimization of section 2.2.3
for both SOFOMORE and VBLF). The number of sources in RAP-MUSIC has been
informed through an MDL approach (1 to 3 sources are estimated depending on the
analyzed window). All algorithms are successful in localizing the stimulation dipole
(under 1cmon average with small standard-deviation), with consistent advantages for
SBL and SOFOMORE for which the regressed dipole is about 2 to 3mm from the
stimulation site (taken as the middle of the two stimulated contacts). These results
are competing with the localization using an ECD approach applied on the averaged
stimulation peaks within a window of 2.5s (see Caune et al. (2014)). This can be taken
as proofs that (i) the lead-field projection is indeed well recovered (further confirmed by
theρLF correlation values) and (ii) the OSM indeed provides a reliable approximation
of the head propagation medium when a precision of the order of few millimeters
is needed. Relying on recent studies on the topic (Birot et al. (2014); Caune et al.
(2014)), OSM is reported to provide a reliable approximation of the real propagation
medium and is accurate enough to reach precise localizationerrors of the order of few
millimeters, especially in this context of intracranial SEEG recordings where we are
far less impacted by errors in the skull:brain ratio estimate than in the case of scalp
recordings (Acar and Makeig (2013); Acar et al. (2016)).

3.3. Epileptic interictal spikes

We now evaluate the methods on a data set of interictal spikesrecorded from a 28
year-old woman with drug-resistant insulo-opercular epilepsy (already included in a
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Figure 7: a) SEEG signals of interictal spikes in common reference montage (FPz scalp electrode). Epileptic
spikes are maximally visible on the contacts 5 and 6 of the depthelectrode R’ (left central operculum).
b) Mesh of the head and SEEG configurations. The labels are near the most profound contact of their
corresponding electrode shaft,i.e., the contact 1.

previous paper (Caune et al. (2014))). She gave her informedconsent prior to partici-
pation. The intracranial EEG (SEEG) recording setup consists in ten electrode shafts
implanted in the insulo-opercular regions (internal and lateral contacts, see fig.7(b)):
P’, cingulum/parietal operculum ; T’, infero-anterior insula/ superior temporal gyrus ;
B’, anterior insula/pre-motor cortex; X’, posterior insula/post-central gyrus; F’, and L’,
anterior and posterior part of the inferior frontal sulcus/middle frontal gyrus; R’, middle
insula/central operculum; C’, cingulum/middle frontal gyrus; S’, superior frontal sul-
cus; M’, supplementary motor area/superior frontal gyrus.The inspection of the SEEG
data on bipolar montage reveals the presence of interictal epileptic spikes near the R’
depth electrode, especially on the contacts R’5 and R’6, which also impact neighboring
electrodes (especially T’ and X’), though with rather low signal to noise ratios. Within
the time windows of spikes occurrence (about 100ms length),few other activities of
lower amplitudes are impacting the electrodes. We then expect to localize the main
generator(s) within a focal area surrounding the electrodeshaft R’. Three seconds of
interictal recordings on the 100 available contacts are given fig. 7(a).

Several OSM are computed to build the lead-field matrix used for the inversion.
17 local spheres are fitted on the inner skull of the patient following the procedure
described above, and we use a regular 3D grid with 7mm resolution restricted to the
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implanted hemisphere for the forward model computation, yielding 2322 source po-
sitions (i.e., 6966 columns in the forward matrixA). The coordinates of the depth
contacts were obtained as for the ICS localization described above. All the contacts, at
the exception of those of the electrode R’, are used to perform the localization,i.e., 90
recording channels.

The bipolar analysis of the R’ shaft reveals a polarity inversion between R’6 and
R’7, indicating a dipolar source situated in a plane betweenthe two contacts and having
a strong component oriented orthogonal to this plane. From the potential time course
recorded on the contact R’6, 20 interictal spikes have been identified through a simple
thresholding process and validated by the expert. The localization is carried out after
averaging the 20 time windows of 64 samples (125ms), thus enhancing the signal to
noise ratio of the inter-ictal activity of interest.

The same five algorithms were tested on this data set. Again, MDL is used for the
initialization of RAP-MUSIC (resulting in 7 estimated sources). Figure 8 illustrates
the localization map for each tested algorithm. The localization of the most intense
equivalent dipole is concordant for all the methods, distant from 6.2mmto 9.8mmfrom
the R’6 contact, and with a maximum distance of 6mmbetween the two most distant
solutions (SBL with RAP-MUSIC). It is also consistent with the localization results
obtained using an ECD approach in a recent paper (Caune et al.(2014)), and validated
by the expert.

In particular, the localization map is very sparse for the VBLF approach, five co-
ativated dipoles (i.e., with a standard deviation over the tenth of the most intensedipole)
are found within the cloud of the electrodes, explaining co-occuring activities of low
amplitudes. These dipoles are localized within the boundaries of the brain (gray matter)
mesh. Champagne also provide a similarly sparse localization map, although yielding
nine co-occuring equivalent dipoles. SOFOMORE as well as SBL are providing less
sparse maps. Both approaches are estimating dipoles of relative high intensity and
distant from the cloud of electrodes (out of the brain mesh insome case), while such
results seem to be irrelevant for this given data for which the main activities are clin-
ically presumed to take place near the electrode R’. Finally, VBLF and Champagne
are producing very similar time courses for the main equivalent dipole, having their
maximum peak at the same instant, while the activities estimated by the three other
algorithms are delayed of a few samples (fig. 9 left).

When comparing the estimated lead-field projection given by the VBLF and the
SOFOMORE approach (fig. 9 right), one can see the somewhat unplausible estimate
of the lead-field projection produced by SOFOMORE, while theestimate of the VBLF
approach is more relevant. This is confirmed when applying the fitting of both esti-
mated columns using the OSM. The resulting mean squared error of the OSM fitting is
of 0.01 for the VBLF estimate while it reaches 0.08 in the case of SOFOMORE.

4. Discussion

In this study we propose a distributed approach for simultaneous estimation of the
brain source activities under controlled re-adjustment oftheir lead-field projectionsA,
based on a Variational Bayesian (VB) scheme. The re-estimation of the columns are
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Figure 8: Localization maps of averaged inter-ictal spikes (20 events) over a window length of 125ms(64
samples), centered on the maximum values of each spike (as recorded on the electrode R’6). The potential
values (µV) on the electrodes are given as colors (dark blue for negative values to dark red for positive values,
see colorbar), and the contacts used for the localization are black circled (all electrodes except R’ on which
the interictal spikes has been identified by the expert). Twoviews (lateral right and frontal) are given. The
dipoles in red represent the equivalent dipoles identified as the estimated generators of the interictal spikes,
while the dipoles in black represent the simultaneous activities estimated by each algorithm.
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Figure 9: Left: estimated time courses for the equivalent dipoles of maximum power for each algorithm.
Right: original projection coefficients on the 90 contacts for the elementary dipole chosen by both VBLF and
SOFOMORE, along with the lead-field optimization given by each algorithm, on which are super-imposed
their OSM regressions (dashed lines).

controlled through covariance matrices, constraining theprojections to remain physi-
ologically plausible,i.e., preventing to deviate implausibly from prior projection pat-
ternsA0 computed using a physical propagation model. We provide comparisons with
several algorithms from the literature (SBL, SOFOMORE, Champagne, RAP-MUSIC)
with several noise level configurations, giving quantitative facts on the benefits of tak-
ing account of the forward model uncertainties.

The simultaneous optimization of the source time-courses and of the lead-field pro-
jections implies that the estimated lead-field columnsÂ do not corresponds anymore
with the projection of unitary dipolar elements as initially encoded inA0, in term of
positions, orientations and (unitary) amplitudes. The ambiguity in the estimated source
parameters can be disentangled by a fitting of the posterior columns based on an ana-
lytical model, such as the One Sphere model used in this study. In this perspective, the
VBLF approach can be seen as a decomposition on a continuous dictionary where the
dictionary atoms are iteratively learned from the observations (Yang et al. (2013)). The
method separates the different sources contributing to thedata, and optimizes their pro-
jection gains on the contacts through a constrained data-driven procedure. The modi-
fied projection gains are then mapped and scaled to their corresponding unitary dipolar
components in the source space through a classical Scherg’ssingle-dipole inversion,
providing the final source parameter estimates.

While this is a distributed approach in its formulation, our methods might be seen
as an ECD approach where thousands of dipole candidates are simultaneously opti-
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mized in their amplitudes, positions and orientations. This preclude the initialization
issues (multi-start strategies, initial guess of the number of dipoles) encountered when
dealing with the ECD approaches (Scherg et al. (1999); Kiebel et al. (2008); Caune
et al. (2014)).

The gain in sparsity is significant when the lead-field is reconsidered (both for
SOFOMORE and our method), and the size of the estimated source space is con-
sistently very close to the true one in the simulated case. Byoffering such flexible
framework, both the estimation of the equivalent dipoles projections and time-courses
are enhanced, on condition that the correction of the projection coefficients is care-
fully controlled. Indeed the unconstrained re-evaluationscheme (i.e., SOFOMORE)
leads globally to less accurate estimation results than ourconstrained version (VBLF),
especially for low SNR levels.

Our approach provides consistent results when applied on real data. First, its appli-
cation to an Intracranial Stimulation (ICS) data set demonstrates its ability to provide
accurate localization, time course estimation and lead-field projection estimates in a
real context. Secondly, the method proves to produce plausible localization map in a
case of inter-epileptic spikes localization. The result isconcordant with the expertise
of the neurologists. In this last case, the importance of using non-diagonal covari-
ance matrix for modeling the lead-field column distributionis further illustrated, as the
lead-field estimate produce by SOFOMORE is not physiologically relevant.

It is worth noticing that the localization accuracy could obviously be enhanced by
introducing a finer grid of elementary dipole positions. However it would still remains
a discrete sampling of the source space with uncertain modelprojections, thus prone
to mismatch basis issues (Chi et al. (2011)). Also, it would result to a higher compu-
tational burden. To give a quantitative comparison, in the simulated case our VBLF
scheme takes about 2 minutes for 1000 iterations with the considered lead-field grid of
1cm resolution (6642 columns), while the SBL approach takes about 1 minute for the
same number of iterations. Besides, the variational Bayesian optimization scheme is
reported to be slow. As a faster alternative, modified versions of the gradient descent al-
gorithms inspired from MacKay (1992); Miele and Cantrell (1969); Zheng et al. (2015)
could be adopted, through a direct gradient optimization ofthe free-energy function.

The analysis of the confidence we can place in a localization result must be deep-
ened, in particular in this difficult context of SEEG recordings where the conditioning
of the electrode shafts and their positions with regard to the structures of interest are
sensitive questions. Such issues have been tackled in a previous study (Caune et al.
(2014)) in the case where a single dominant dipole is to be identified, based on a
dipole fitting (ECD) procedure. The case of multiple simultaneous sources can now
be studied through the use of the proposed distributed source models, with the aim
to provide a clinical added value on how the electrode shaftshas to be implanted for
reaching confident localization results covering the wholebrain volume, or at least for
the brain structures suspected to contain the sources of interest. In this perspective,
extended validation campaign on real recordings of interictal spikes, or more likely
on evoked potential activities (for which the source positions, time courses and instant
of apparition are perfectly controlled), must be carried out in close collaboration with
neurophysiologists.
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Appendix A. VB simultaneous optimization of S and A

In this appendix we develop the expressions of the updates for the distributions
q(S) andq(A):

Update ofq(S):

lnq(S) ∝ 〈ln p(X,S,A|ΓS,γε,A0,ΓA)〉q(A) (A.1)

∝ 〈ln p(X|S,A,γε)〉q(A)+ ln p(S|ΓS) (A.2)

where we have suppressed all the additive factors independent of S. The expression
for the updates of the Gaussian distributionq(S) then writes:

Γ̂S = ΓS+ γε(Â⊤Â+DΓ̂−1
A
) (A.3)

Ŝ = γεΓ̂−1
S Â⊤X (A.4)

with DΓ̂−1
A

is a Ns×Ns diagonal matrix composed of the trace of the updated co-

variance matrix of theNs columns ofA, andÂ is the updated version ofA.

Update ofq(A):
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We write q(A) as the product of its marginalsq(A) = ∏Ns
j=1q(a j). The marginal

likelihoods{q(a j)} j=1..Ns are updated as:

lnq(a j) ∝ 〈ln p(X,S,A|ΓS,γε,ΓA ,A0)〉q(S),q(A\. j ) (A.5)

∝ 〈ln p(X|S,A,γε)〉q(S),q(A\. j )+ ln p(a j |a0 j ,Γa j )) (A.6)

with A\. j the matrixA minus the columnj. q(a j) is a gaussian distribution with
the updated mean and precision parameters(â j , Γ̂a j ):

Γ̂a j = Γa j + γεÊsj INc (A.7)

â j = Γ̂−1
a j
(Γa j a0 j + γεΛ j) (A.8)

where we define:

Êsj = ŝj ŝ⊤j +T γ̂−1
sj

(A.9)

Λ j = X ŝ⊤j − Â\. j(Γ̂\ j.
S. j

+ Ŝ\ j.ŝ⊤j ) (A.10)

With Γ̂\ j.
S. j

the j th column ofΓ̂S minus its j th element,̂S\ j. the estimated source ma-

trix Ŝ minus its j th line. Â, the updated version ofA, is composed of theNs columns
{â j}.

Updates ofΓS and γε:

We derive the expected model likelihood〈ln p(X,S,A|ΓS,γε,A0,ΣA)〉q(S),q(A) with
respect toΓS andγε to get the expression of their updates:

γ−1
si

=
Êsi

T
(A.11)

γ−1
ε =

1
TNc

||X− ÂŜ||2F +
1
Nc

trace(ÂΓ̂−1
S Â⊤)+

1
TNc

Ns

∑
i=1

Êsi trace(Γ̂−1
ai
)(A.12)

Appendix B. Free Energy

The Bayesian scheme is closely related to the optimization of the free-energy,
whose expression is given as:

F (q) = 〈ln p(X,S,A|θ)〉q(S,A)−〈lnq(S,A)〉q(S,A) (B.1)

= 〈ln p(X,S,A|θ)〉q(S,A)−〈lnq(S)〉q(S)−〈lnq(A)〉q(A) (B.2)

with

〈ln p(X,S,A|θ)〉q(S,A) = 〈ln p(X|S,γε)〉q(S)+ 〈ln p(S|ΓS)〉q(S)+ 〈ln p(A|A0,ΓA)〉q(A)

(B.3)
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It brings a way to quantify how a model fits the data, and can then be used to
compare model and select the best one in Bayesian sense. We develop the computation
of each term as follows:

〈ln p(X|S,γε)〉q(S) = −
TNc

2
ln2π (B.4)

〈ln p(S|ΓS)〉q(S) = −
TNs

2
ln2π−

1
2

T

∑
t=1

stΓSs⊤t +Ttrace(ΓSΓ̂−1
S ) (B.5)

〈ln p(A|A0,ΓA)〉q(A) = −
NsNc

2
(ln2π)−

1
2

Ns

∑
j=1

[− ln |Γa j |

+trace(Γ̂−1
a j

Γa j )+(â j −a0 j)
⊤Γa j (â j −a0 j)] (B.6)

〈lnq(S)〉q(S) = −
TNs

2
(ln2π+1)+

T
2

ln |Γ̂S| (B.7)

〈lnq(A)〉q(A) = −
NsNc

2
(ln2π+1)+

1
2

Ns

∑
j=1

ln |Γ̂a j | (B.8)
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