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Abstract

Electromagnetic brain source localization consists intkiersion of a forward model
based on a limited number of potential measurements. A védge of methods has
been developed to regularize this severely ill-posed pratdnd to reduce the solution
space, imposing spatial smoothness, anatomical coristragparsity of the activated
source map. This last criteria, based on physiologicalrapsions stating that in some
particular eventsg.g, epileptic spikes, evoked potential) few focal area of tharb
are simultaneously actives, has gained more and more $hteBayesian approaches
have the ability to provide sparse solutions under adeqetemetrization, and bring a
convenient framework for the introduction of priors in tleerh of probabilistic density
functions. However the quality of the forward model is rgrglestioned while this
parameter has undoubtedly a great influence on the soluti®rconstruction suffers
from numerous approximation and uncertainties, even wiserguealistic numerical
models. In addition, it often encodes a coarse sampling efctntinuous solution
space due to the computational burden its inversion implieshis work we propose
an empirical Bayesian approach to take into account thertaiotes of the forward
model by allowing constrained variations around a priorgitgl model, in the partic-
ular context of SEEG measurements. We demonstrate on siomddhat the method
enhance the accuracy of the source time-course estimatiorlbas the sparsity of the
resulting source map. Results on real signals prove thécaipjity of the method in
real contexts.
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1. Introduction

Electromagnetic brain source localization consists immstructing the underlying
cerebral activity from the electroencephalographic mesamants. The recorded elec-
tromagnetic field is generated by synchronized activitide@al and compact sets of
neuronal cells, each set being considered as an equivatetidsource at the macro-
scopic level. The number of such equivalent sources is tgrerithan the number of
recordings, making the reconstruction problem severélyosed. While the source
localization problem has been extensively studied from-ineasive measurements,
we have been recently working on solving this problem fronaicranial measure-
ments, based on Stereo-EEG (SEEG) setup (Caune et al. (2013); Le Cam et al.
(2014)). SEEG consists of several electrode shafts (auntpieach up to eighteen
aligned recording contacts) inserted in the brain volumtaiwithe structure of inter-
ests. These recordings are often considered as direct reezsuts of local field po-
tential in the direct neighborhood of the contacts. Howelierrecorded potentials are
still produced by the mixing of several sources, includimg projection of far sources
of strong amplitudes. Thus a localization procedure is aftiinterest, while very few
works have been developed on the subject (Chang et al. (2908)t et al. (2005)).
In comparison to surface EEG, the SEEG modality offers higgm& to Noise Ra-
tio (SNR), because the sensors are closer to the generatbtb@signal do not have
to propagate through the skull barrier. More precise idieation of deep activated
structures and reconstruction of their time-courses ieebqul, facilitating the sub-
sequent functional or effective connectivity analysista# tinderlying brain network,
usually carried out from non-invasive EEG/MEG setup (Daatidl. (2006); Coito et al.
(2015)). In arecent study (Caune et al. (2014)), we havetigitly questioned the fea-
sibility of a source localization from these intracraniaasurements. In particular, we
emphasized some important guidelines for confident etattsource localization in
this particular context of aligned contacts on electroddtsimplanted in clusters.

While the temporal resolution of the (S)EEG modality is highspatial resolution
is poor, and the set of activated sources cannot be detatrbamed on the measure-
ments alone (Nunez and Srinivasan (2006); Baillet et al0120 A wide range of
(physiological) constraints/priors can be imposed to lagge the problem, resulting
in an abundant literature on this topic. Electrical Soumading (ESI) approaches
have met high interests (Baillet et al. (2001); Michel et(@004)), offering visu-
ally interpretable results and direct comparison with imggnodalities (fMRI, MR,
PETetc..). They are based on distributed source models, in which la imignber of
dipoles are placed on a regular grid in the brain volume (pbsgestricted to partic-
ular area, usually to the cortical mantle). Under the conlynancepted hypothesis



of purely resistive propagation media, the inversion bezomlinear but severely ill-
posed problem. Most of the methods mainly differs in theigfiegmporal constraints
that are imposed on the underlying distribution of sour@eposing spatial smooth-
ness of the source map (Loreta or sLoreta (Pascual-MarQi72, or enforcing focal

solutions (FOCUSS) (Gorodnitsky and Rao (1997)). In paldic the Bayesian frame-
work has been extensively studied in this context (Bailtedle(2001); Phillips et al.

(2005); Trujillo-Barreto et al. (2008); Wipf and Nagaraj@®09); Lucka et al. (2012)),
where hyper-parameters can be introduced to control theizgattion of the model pa-
rameters.

In each of the mentioned studies, the electromagnetic gfojes gains mapping
the sources to the electrode contaéts.(the lead-field matrix) are supposed to be
known. While the efforts have been focused on the localinaticthe sources and on
the estimation of their time-courses, the accuracy of tiepagation model should be
also questioned, as it highly impacts the precision of tiselteng source reconstruc-
tion. The computation of sophisticated propagation modated on heavy numerical
approaches (Finite Element Models (FEM)) has been wideghjoegd and promoted
in the last few years. In this purpose, a precise segmentafithe brain areas (scalp,
skull, white and gray matters) is required, and for each e$¢hareas the conductivi-
ties are to be estimated (Acar et al. (2016)). We can mentgmthe consideration of
anisotropy, mostly within the white matter where the dii@ts$ of the fibers is consid-
ered to influence the electric propagation (Wolters et 8I0&); Bangera et al. (2010)).
These models rely on a large amount of parameters and pcegsiog steps, each
of them bearing their own uncertainties. The utility of swemplex model is cur-
rently a challenging topic as some discordant studies greamg, stating that fitted
sphere models yield similar source localization perforoeatihan more elaborated but
still uncertain numerical models (Birot et al. (2014); Cauwt al. (2014)). In addition,
the solution space is continuous while the lead-field useterdistributed model en-
codes the projections for a finite number of dipole positi@tsit cannot capture all
the possible projections for every single location in thetrolume, leading to a basis
mismatch problem. Chi et al. (2011) demonstrate that thétyuédi the decomposition
of a sparse physical field is considerably degraded in theepiee of basis mismatch
(a high number of basis elements are recruited to reconshedata), even when the
assumed basis corresponds to a fine-grained sampling ohthenpter space. In our
particular application, it means that keeping the leadHieked can results in scattered
solutions spread over a high number of dipolar elements.

Very few notable works have explored the opportunity toneate simultaneously
the source localization and the forward model. Hansen €R@lL6) exploit a corpus
of forward models with varying conductivity parameterslbiuiom the structural scans
of 16 subjects. Low-resolution anatomic information ar&raoted from this corpus
through a Principal Component Analysis, and are usefdriass within a Bayesian
approach to produce estimate of the sources from the EEGumnagasnts of a new par-
ticipant (for which no anatomical information are avaikgblAcar et al. (2016) directly
optimize the conductivities of a numerical forward modeihgputed on the MRI of the
patient. The set of sources, assumed to be focal, are idehdifi independent dipolar-
like scalp maps based on an Independent Component Anadyglshe estimation of
the sources and of the conductivity parameters are itetatgidconvergence.



Unlike these two last studies, we do not tackle the brain@snductivities es-
timation, we rather propose an optimization of the leadifedefficients themselves
within a Variational Bayes (VB) framework. The proposed heet is to be directly
compared with the SOFOMORE approach (Stahlhut et al. (30%here the source
and the lead-field coefficients are simultaneously estichatthin a hierarchical Bayesian
framework. Independent univariate Gaussian priors of leearéance are attributed to
each lead-field coefficient within a column, and conjugaterpistributions (gamma
distributions) are assigned to these priors. The desigoirige prior densities is, by
their own admission, not properly carried out in their paperparticular, no physio-
logical constraint taking account of the source to contdigtance and of the sensors
placement are embedded, and the plausibility of the pastestimates are not explic-
itly addressed.

The key difference with this previous work is the introdoatof multivariate Gaus-
sian likelihoods over each column of the lead-figld.(the forward field of one dipole
on the lead-field grid), with non-diagonal precision maspecifically designed for
each column. These precision matrices explicitly encoeedigpendencies between
the projection gains of each single forward field. This is aftigular interest in the
context of the SEEG recording setup, where aligned congaietenplanted in clusters,
yielding high dependencies between the projection gaimsgifen source on the sen-
sors. To be more specific, a gain variation of a source on aggasor, either due to a
variation of the source position/orientation, or to a fordvenodel parameter error, will
induce a correlated gain variation on its neighboring senste then constrain the
posterior means to remain close to a confident physical murits, preventing from
non-physiological posterior estimates. In contrast tdBtat et al. (2011), we give a
particular attention to the designing of the lead-field cahuprecision priors. We pro-
vide a simple and fast method for their computation, consideboth the uncertainties
due to the sampling of the source space and to the forwardIrpadeEmeter errors. Fi-
nally, a post-optimization strategy is proposed to map titained lead-field posterior
estimates within the source space.

The Gaussian modeling of the model errors, as imperfectiasrigflects the nu-
merous uncertainties related to the resolution of the fadvgaioblem. Besides, such
priors introduce additional degree of freedom for the Barealgorithms to express
their sparse inclinations. Indeed, under adequate paraatéin, Bayesian optimiza-
tion strategies are known to produce sparse solutions 8pgrse Bayesian Learning
(SBL), restricted Maximum Likelihood (reML), Automatic Reance Determination
(ARD) (Tipping (2001)). This aspect is observed in Stahktal. (2011), and is con-
firmed by our experiments. While sparse priors might not bé&aele for all applica-
tion, this is relevant when trying to localize a limited nuenlof focal sources, such as
inter-ictal epileptic events or in the case of controllegerxments implying localized
evoked potentialss(g, auditory evoked potential (Kiebel et al. (2008))), whiande
summarized to the activation of few brain structures.

In the section 2.1, we present the data model and the pradiabBayesian frame-
work. In section 2.2, the Variational Bayesian (VB) schesaded for maximizing the
log-likelihood of the model, simultaneously providingiesdtes of the sources and of
the columns of the lead-field. In this section we also exgiaiw the precision matrices
over the lead-field columns can be computed, and we expodeghigalent Current



Dipole (ECD) fitting to the posterior lead-field columns. hetevaluation section 3,
we provide simulation results for different scenarios oflemying dipole configura-
tions and noise. In particular, a FEM is used to produce tmeilsited data, while the
inversion is based on a coarse One Sphere Model (OSM), dimythe uncertainties
of the lead-field matrix both in term of source space sampding of forward model
imprecision. Finally, we demonstrate the reliability oétlocalization results in the
context of real SEEG recordings of intracranial stimullasiand interictal spikes.

2. Methods

In this section we present the general Bayesian formulaifothe source local-
ization problem, we specify the parameters of the model aadrefly remind the
classical approach for maximizing the data likelihood @f thodel. We then introduce
a probabilistic modeling of the lead-field columns, and wpgliek their optimizations
through the VB scheme. In the paper are given the main theatetspects of the
method as well as the analytic expressions for the modehpetea updates, more de-
tailed developments of the equations being given in the rglige

2.1. Bayesian modeling

It is widely assumed that a patch of synchronized neurorfd can be approxi-
mated by a single equivalent current dipole positionediwithis region. The potential
recorded on a contact is then modeled as a sum of linear atachiiaseous projection of
a high numbeN; of dipolar activities covering the brain volume (commorggtricted
to the cortical columns). Let consid¥rc RNexT the N. measurements of length
due toNs sourcesS € RNsxT:

X =AS+e 1)

whereS encodes the amplitudes of the sources, the columAs@®R Ne<Ns repre-
sent the projection coefficients from tNefixed dipoles to thé\; contacts (thus encod-
ing the dipole positions and orientations), &nid an additive noise. Within a Bayesian
framework, bothS and ¢ are usually considered as random variables, generally as-
sumed Gaussian. More specifically, general Gaussian scgleres are proposed for
S with arbitrary covariance components corresponding tergpriors on the depen-
dencies between sources. In this paper we will make the gggma that the sources
are independent, without loss of generality (Wipf and Nagar (2009)). Letintroduce
the diagonal precision matrix €., the inverse of the covariance matrix3 = diag(ys),
with ys = [Ys;, ..., Yy ] @nd such thap(S|I's) = AL(O, rs'). Let assume as a spatially
and temporally homogeneous white Gaussian noise. Its d@égwecision matrix is
written e = Yeln, (In being theN x N identity matrix), and the data likelihood then
writes:

P(X|S,8) 0 exp— % (X —AS)T(X —AS) 2)

with T the matrix transposition. The joint distribution ¥fandS with respect to
the set of parametefs= {I's, Y } writes:



P(X,S8) = p(X|S,8)p(STs) 3)
Under this parametrization and considering thaandy; are fixed and known, the
posterior probabilityp(S|X, 0) is also Gaussian with precision and mean given by:
s = Ms+YyA'A (4)
= vl g*ATX (5)

v wn

and in this case the Maximum a Posteriori (MAP) solution igiby the source
posterior mears. Whenl s is diagonal, this solution is equivalent to thH&Weighted
minimum norm solution (Dale and Sereno (1993)).

If 'sandrl ¢ are unknown, these parameters can be estimated througtpant&sion-
Maximization (EM) procedure maximizing the marginal likelod of the modeli(e., max-
imizing eq.(3) integrated ové;, thehidden datd (Bishop et al. (2006)). This algorithm
is sometimes called Sparse Bayesian Learning (SBL) (Sailo @004); Ramirez et al.
(2006); Wipf and Rao (2007)), because it naturally provifeerse solutions by shrink-
ing to zero the variance of irrelevant sources (Tipping @0Eriston et al. (2008)).
The initial set of source candidates can be allowed to be h&ge, and we can rely
on the optimization procedure to prune the superfluous eiesrand select the most
appropriate set of sources.

2.2. Simultaneous optimization Afand S

On one hand, the simultaneous reconstruction of both theesand the projection
coefficients makes the EEG source reconstruction even rigresed, the solution
space being broaden. On the other hand, the constructibe &tward model involves
lots of hypothesis, model reductions and uncertaintiesteldeer the lead-field matrix
A represents a sampling of the source space, and there is faveeh that the true
source positions (in term of equivalent dipole) will exgathiatch those of thé grid.
By introducing precision parameters over the forward mairiwe allow variations of
its columns, and thus let the model be data-driven,adjustA to the true underlying
propagation parameters of the medium. In the following,dblemns ofA will then
be considered as latent variables and we will propose a tiGara Bayesian (VB)
approach to optimize the evidence of the model. Benefitiogfihe sparse property of
the Bayesian approaches, we look for solutions that aregneaid over a high number
of fixed dipoles, but rather focused on a small number of dip@lith optimized lead-
field projections.

2.2.1. Forward model likelihood

In the distributed approach, a lead-field is generated based given forward
model, which can vary from simple analytical models (InBrfitomogeneous Model
(IHM) or spherical models) to complex numerical model baged@oundary Element
Modeling (BEM) or Finite Element modeling (FEM). Each colarof the lead-field
encodes the projection of a given elementary dipole withim lbrain volume. The
positions of these dipoles are often assumed to be restriot¢he cortical mantle,
with orientations orthogonal to the cortical mantle suefaclowever in this work, we



do not imposeprior anatomical constraint for the source localizatidd, positions
(i.e, Ns = 3% Np sources) are defined on a regular grid with a spatial resolwif 5,
over the three spatial dimensions within the brain volumée $tep of the gridp
(usually of the order of few millimeters) then defines the emof considered dipole
positionsN, in the lead-field, usually up to several thousands. This rhbdsed lead-
field matrix, denoted\q in the following, will be now considered aguaior and we will
let the algorithm optimize the values 8f We assume that the columns Affollow
independent Gaussian distributions around the prior maglel

Ns
P(A[A0,Ta) = [ Al(ajlao;, 51 (6)
0,1 A JI:L ] j i

Ia containsNs precision matrice$ 5, of sizeNc x N, constraining the projection
coefficients in each of thids columnsa; to remain close to the prior modag; with a
given degree of freedom encodedrig. These matrices can both describe the uncer-
tainty on the position of the dipole as well as the uncenanfithe used forward model
(tissue segmentation, conductivities...).

We have tested several empirical methods to shape thesksipneparameters,
based on the computation of second order statistics of forweodel clusters repre-
senting the variability of the projections for each dipodeg( by sampling the sur-
rounding source space projection of each dipole using alytaoed model (IHM or
OSM), by computing the projection of each dipolar elemersingi several forward
models and/or by sampling the conductivity parametersvargranges (Hansen et al.
(2016))). Such exploratory methods turned out to be contipuialy heavy, does not
guaranty that the source space is covered and neither priggen high overlapping
between neighboring dipolar elements.

We propose here a fast empirical method inspired from theade correlation
metric used in the MUSIC-type algorithms. To take accouthefmodel uncertainties,
we start by computing/! forward models{AJ',me {1,...,M}} (e.g, by sampling the
model parameters in physiological ranges (Hansen et al6(20 The columns of the
prior mean forward modéelg are set as the mean of thedemodel columns:

M
do=1/Mx 3 a (7)
m=1

From each forward mode\]', and for each of the three orientations of a given
position, we start by computing the closest (in term of datien) dipole projections
that can be coded within each of the surrounding three-dipobspace(= 26 if we
consider all the grid points on the cube surrounding theecuipposition). This can be
done by a normalized back-projection of a regression of theeat dipole projection
all on each of th& 3-D surrounding subspacagy € RNex3:

m_ Ad(Ag ap)
1AL afoll
with Al" the Moore-Penrose pseudo-inverse of the maif. The inverse co-
variance matrix of the resulting x M dipole projections gives the precision matrix
I5 for each columrg; of A:

(8)



-1 1 &< m m T
Mo = Mrk—1 m;k;(aik — aj0) (& — ao) 9)

We insist on the importance of considering non-diagonatipien matrix, the non-
null covariance imposing constraint on the re-estimatibthe projection values, im-
posing them to remain close from the prior physiologicalpusible projection pattern
encoded iAg. This will be further illustrated in the evaluation sect®nProvided that
the source space has been adequately sampled, this efdnmicicadure is expected to
bring a blanket of the source space, while restricting tflaémce of each dipolar dic-
tionary element to their respective vicinity.

2.2.2. Variational Bayesian optimization

ONO.
OEEROL0)

Figure 1: Hierarchical Model

The set of latent variables of the problem is now the coy8gA}. The joint
distribution ofX, SandA writes:

P(X,S,A18) = p(X|A,S,0)p(SIIs) p(A[Ao,TA) (10)

with 8= {Ts, Ve, Ao, A } the set of model parameters, as illustrated fig 1. The opéimiz
tion of this set through the EM procedure becomes intraetabkcause of couplings
betweenA andS. We then propose a VB optimization scheme by introducing afse
candidate distributiong(.) € Q such thag(S,A) = q(S)q(A), with q(S) = |‘|i'\‘:’51q(3)
andq(A) = i’\'jlq(ai). The VB optimization procedure fit§ A, S) to the true poste-
rior distributionp(A, S|X,8) so that the Kullback-Leibler distance between these two
distributions vanishes. This is equivalent to finding tretritutions{q(S),q(A) } max-
imizing the quantity# (q) = [, sa(A,S)In pé@és’?, called the free energy, which is a
lower bound of the model evidence (Friston et al. (2008);\&id Nagarajan (2009)).
This results in a version of the SBL algorithm for simultangestimation oA andS,
which we will denote as VBLF (Variational Bayes for LeaddEies-estimation).

Within the VB scheme, the candidate distributions are itezly updated by evalu-
ating the marginal expected values of the model joint pradityatBishop et al. (2006)):

Ina(s) O (Inp(X,S,Al8))qa)n.als) (11)
Ing(a) O (Inp(X,S A[8))qs);.ia()) (12)



Under the Gaussian prior parametrization adopted in thiephoth forS andA,
the approximated posteriotga;) of each column are Gaussians with precisions pa-
rameterd 5; and meang,;, given as (see Appendix A):

Fay = Ta +VeEsIng (13)
& = [3M(Maa0+VeN)) (14)
where we define:
By, = (88 +T%Y (15)
A= X§ —AVI(FY8Ig) (16)

where, for any matriM, we writeM ; the jth column ofM, M\l the matrixM
minus itsjth column andvi \I- the matrixM minus itsjth line. A= [&1,---,an isthe
VB updated version of the lead-field matix

The posterior estimates 8fmust now includes the posterior covariances on the col-
umn ofA. We introduce the diagonal matﬂD&l € RNsxNs containing the traces of the

lead-field column posterior covariance matrices on its i@l De—1 = trace(fa‘il).
A

The posterior mean and covarianceSafow write: '

Fs = Tst+v(ATA+D:a) (17)

S = Vig'A™X (18)

Updates of the source precisiopsand noise precisiog are obtained by a deriva-
tion of the expected marginal likelihood (with respectié) andq(S)) as:

. E
wo= T (19)
1= iux—AéHZ+itrace(AﬁflAT)+iNsé D; (20)
TN P N s e 2 80

The algorithm consists in iteratively computing the equadi (13) to (18) (the E-
step) and (19) to (20) (the M-step) until convergence.

An important aspect of the variational approach is thatiitds a quantitative way
to carry out model selection through the free energy quariiit ConsideringA as a
latent variable, the free energy formulation becomes (ygzeAdix B):

F(@ = (Inp(X,SA[6))qs) qa)— (INA(S))qs) — (INA(A))qa) (21)
with
(Inp(X,S,A[0))qs)qa) = (INPXIS,A,Ye))g(s).qa) + (INP(SITs))g(s)
+(Inp(AlAg,TA))qA) (22)

<. >q denoting the expectation with respect to the distribution



2.2.3. Posterior forward field mapping

The Bayesian algorithm described above provides us withvefad fieldsg; of
dipolesd; with time-course&;. However the positions and orientations of these Equiv-
alent Current Dipoles (ECDOJ; remain unknown. Indeed our method does not restrict
these sources to the prior lead-field grid, and a post-opétian procedure is needed
to fulfill our objective of mapping them in the brain volumen &ddition, the dipole
di is not necessarily unitary sinée andS are simultaneously optimized and no such
constrain is imposed in the model. Hence it is important tie loatA cannot be con-
sidered as a proper lead-field matrix in its most generalatiort; the same applies
for the time-coursé& which indeed represent the actual current density of the-dip
lar sourced; up to a scalar factor. The identification of these paramdfmrsition,
orientation and scalar factor) can be solved by an Equivalemrent Dipole proce-
dure by fitting4; to a confident propagation model (Scherg et al. (1999); Catiaé
(2014)). The localization accuracy will still be subjecttbe inherent uncertainties of
the used model, however this ECD fitting step maps the soumdége continuous so-
lution space and the solutions are not constrained to tlteflell grid. The constant
factor scaling the chosen post-fitting propagation modéh&oposterior lead-field;
solves the scalar ambiguity between the true source ardpliund the corresponding
unitary-dipole projection column.

In practice for each posterior forward fiedgd the optimization algorithm (Sequen-
tial Quadratic Programming) is initialized with the parasrs of the prior ECD associ-
ated toag;, the new ECD being constrained to remain close to its pricsiva through
the model-driven prior precision matrlx,. The outcomes of this procedure are the
parameters of the fitted dipotk (position, orientation and scaling factor). Theoret-
ically, this ECD assignment step has to be carried out foh @i¢he Ns columns of
A. However such procedure would be neither computationedigtéable neither rele-
vant for silent or low amplitude sources (for which the pasteforward field might
be unreliable due to the relative low SNR ). Thus it will be g only to the poste-
rior columns{&} associated to the set of active sourdes, those associated to the
most powerful time-course } (as defined in the evaluation section 3), resulting in a
limited set of identified dipole&. An illustration of the global localization procedure
including this post-optimization step is given fig.2.

3. Evaluation

We first validate the method on simulations and we comparpdtfermance of our
algorithm with several algorithms of the literature (SBIQBOMORE, Champagne
and RAP-MUSIC). We then evaluate the methods when facinigdega, first in the
context of intracranial stimulation (ICS) and finally forettocalization of interictal
spikes event.

li.e. representing the projection of unitary dipoles on thetetetes

10
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Figure 2: a) Work-flow of the method including the ECD identifion step, withd the set of identified
dipoles. b) Example of a posterior lead-field column maé&mred) superimposed with its OSM fitting (dashed
green) and its prior versioay (blue). c) Prior dipole (blue) and fitted dipole (red)1®mdistant one from
the other in this case (with a prior lead-field resolution il

3.1. Simulations

We use the adult MNI-ICBM152 averaged model (Fonov et all{2Ppwhich is
freely available for download on the webTlhe forward model is computed using a five
compartment Finite Element Model (FEM) for 509 source poisé regularly sampling
the gray matter volume. For more details on how the FEM has bemputed, please
refer to Caune et al. (2014).

To simulate the uncertainties of the forward model, we use Sphere Models
(OSM (Yao (2000))) to solve the inverse problem and build [ded-field priorAg
(with conductivities of 0.33 S/m)M = 17 different OSM are computed using locally
fitted spheres at 17 poiritef the upper skull mesh, for which closed-form are avail-
able (Zhang (1995)). For each of these 17 models, the lelti§iecomputed for a
regular grid of freely oriented dipoles wittctn resolution, situated within acn en-
velope of the gray matter mesh and with no overlap with the fr@9iously sampled
positions used form the forward FEM computation (in b, = 2214 possible dipole
positions). The prior matriXdg and the associated precision matri¢€s, } are then

2http:/Avww.ucl.ac.uk/medphys/research/borl/introireadels/adult
30ne on top of the head, 8 around the horizontal plane padsioggh the nasion, and one at mid-distance
of each surface line linking these 8 previous points to tipeotae
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computed using the procedure described section 2.2.1.

We have simulated a realistic SEEG implantation with the béthe neuro-physiologists
of the Nancy CHU. The number of electrode shafts equals 12ykinh 186 con-
tacts are spread (about 14 to 18 per electrodes). Our pridd @8d-field Ag en-
codes the projections in the three directions for each gopomnt, and is then of size
Nc x 3% Np = 186x 6642.

Either three or five equivalent dipoles with random posgiamd orientations are
selected among the set of 509 dipoles. We affect real tinueses to these seeded
dipoles, taken from the SEEG recordings of an epilepticepaton bipolar montage
(difference of two consecutive contacts of a same electeb@dt, assumed to catch
the activity of a local source). A set of 200 windows with tileagth 256ns (128
samples) have been selected, corresponding to backgratindies, inter-epileptic
events, as well as various representative periods of taeagents (from spike burst-
ing to paroxystic rhythmic activities). Additive spatialindependent white noise is
simulated on the contacts, with standard deviations taken a

|1 Xs|lF

= 23
e T % Ne % Ng % 10-snr/20 (23)

with Xs the potential due to the; simulated sources, ahngyrthe desired SNR in
dB which varies in the seft10,5,0, —5} in our simulations. The division bys ensure
that the SNR for each dipole respectively is comparable enage from a simulation
to another across the two source configurations {3,5}.

We evaluate the benefit of re-estimating the lead-feltly comparing the localiza-
tion results based on the proposed VBLF approach (secttbp)2vith a SBL approach
(section 2.1). We also compare the performances with SOFREO While gaussian
priors of equal variance are attributed to each projectiaim @f a given lead-field
column in its original version (Stahlhut et al. (2011)), wet the variance values as
estimated by our method. €., the diagonal values of the covariance matrices as com-
puted in equation (9)). SOFOMORE is then a particular caseuofapproach with
diagonal lead-field column precisions. This comparisoraisied out to assess the im-
portance of explicitly encoding physical model-driven swaints within the lead-field
priors. We also compare the results using RAP-MUSIC (Mosimel Leahy (1998))
informed with the true number of sources, and another eogbiBayesian approach
called Champagne (Wipf et al. (2010)) for which the true dtad-deviation of the
noise has been informed. For SBL, RAP-MUSIC, and Champaglueal OSM lead-
field is built: for each position of the lead-field grid, theeh cartesian projections are
given by the OSM model (among tiv= 17 previously computed) whose fitting point
on the skull mesh is the closest to the considered grid point.

3.1.1. Evaluation criteria

The performances of the different algorithms are evalubtestd on two comple-
mentary metrics. The first one is the Distance of Localizaforor (DLE) (Yao and
Dewald (2005); Becker et al. (2014)), which measure thelilwatgon accuracy of the

4used in its non-informative form (gamma hyper-parameters it to
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true sources while penalizing the presence of spuriouscesyfalse positives). The
DLE is given by:

1 . . 1 . -
DLE = 5 3 minjes|lx —%i[1+ 55, 3 mincs| b %1 (24)
jes

with 8 and$ the set of simulated sources and of estimated sources teshec;
the position of thé'" simulated source ang the position of thg" estimated source,
andns is the number of simulated sources whilgs the number of estimated sources.
In this paper, a dipole is included in the solutidnf the standard-deviation of its
estimated time-course is above a threshold given as thie térihe largest standard-
deviation in the current solution.

The second metric is tha' metric (Snodgrass and Corwin (1988); Wipf et al.
(2010)) which take into account both the ratio of successfulrce localization (hits)
and the ratio of false positives. A simulated source is awsrsid as recovered (true
positive) if at least one dipole in the solutiénis less than &ém far from this dipole.
The hits rate is the number of true positives divided by ttial toaumber of simulated
sourcesns. Any dipoles in the solutio§ farther than tm from all the true dipoles
are considered as false positive. To define a false poséies & maximum number of
possible false positives has to be defined. This maximum euimés been arbitrarily
set to 100 in Wipf et al. (2010). In this paper we decide to s&i 48, which is the
highest number of false positives obtained in our simufeti@Champagne algorithm
with 5 dipoles in the-5dB case). Given these hit ratedr) and false positives rates
(FPr), theA’ metric is computed as (Snodgrass and Corwin (1988)):

/ {0.5+(Hr—FPr)(1+Hr—FPr)/(4Hr(l—FPr)), if Hr > FPr (25)

0.5+ (FPr—Hr)(1+FPr—Hr)/(4FPr(1—Hr)), if FPr>Hr

In addition, we assess the ability of the methods in estimgatie dipoles time-
courses and projections on the contacts using the cooelatiefficients between the
estimations and the ground-truth. Finally, we also evaltia¢ sparsity of the methods
by providing the number of dipoles Selected in the final solutioh

3.1.2. Results

We iterate 400 simulations for each configuration (numbesmfrces and noise
level). For all the algorithm, the variance of the noise isiatized using a minimum
description length (MDL) approach (except for RAP-MUSICemb the exact number
of sources is given and Champagne to which the true noisanagiis given). For all
empirical Bayes algorithm, the prior source precidigyis set as the identity matrix.

The performances in term of time-course and lead-field r&tcoctions (fig 3, rows
1 & 2) demonstrate the good performance of our approach. VBLlikRdeed consis-
tently the most accurate in median over all configuration#h significantly higher
time-course correlation rateg;] compared to the other methods. The method is par-
ticularly accurate in estimating the forward field coeffiti reaching correlation rates
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Figure 3: Performance evaluation for 3 (first column) and 5dsdcolumn) simultaneous dipoles. Medians
of the correlation coefficients of the estimated time-course laad-field projections with the ground-truth
are given on resp. firsp{) and secondg ) rows. The median number of significant dipoles in the solution
(fs) for each method are given on the third row. Error bars comedjmg to first and third quartiles are also
given.

pLr over Q99 for 3 and 5 dipoles form 10 to 0dB SNR. If SOFOMORE manages to
compete with both RAP-MUSIC and Champagne in the 3 dipoles,dais less accu-
rate than these two fixed lead-field methods in reconstryittia lead-field columns in
the 5 dipoles case. This proves that it might be inapprapt@give degrees of freedom
to the lead-field coefficients if the optimization procedisraot carefully constrained.
On fig.4 are given an example of lead-field coefficients raveges {.e., including the
post-ECD scaling procedure) for both VBLF and SOFOMOREt lier5 dipoles/10dB
simulation case. Starting with an OSM prior, VBLF proves &odble to produce rel-
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evant forward field posterior mean close to the true (sinedlabne, here given by a
FEM. The unconstrained versiong, SOFOMORE, diagonal precision matrix over
the columns ofA) brings less accurate estimates (see figidr@w 39 column in par-
ticular, errors are visible between the blue and dasheddirees). Such bad estimates
interfere with the estimates of the other simultaneousldgompacting significantly
the localization results.

One can notice the good performance of the Champagne &ligoit this recon-
struction task, this method being originally dedicatedoust estimation of the source
time-courses (Wipf et al. (2010)). RAP-MUSIC also managprtuce reliable esti-
mates of the lead-field and time-courses, the method is ssitdén identifying the 3D
subspaces best fitting the projections of each simulatealadip

The performances of both SOFOMORE and VBLF in estimatingrtreenumber of
sources are consistently very near the RAP-MUSIC referémaee number of sources
informed), with a small but significant advantage for our \IBapproach considering
the tight quartile values (see the metric, third row of fig 3). These methods are able
to retrieve the true number of sources even in case of stnuegférences (up to 5
simultaneous dipoles) and noise level (-5dB on averagedch dipole), while Cham-
pagne and SBL provides large over-estimations of the numbenderlying sources.
This can be explained by the basis mismatch issue as distirsgghi et al. (2011)),
the true forward field of the sources being not perfectlyradid) with any columns of
the lead-field matrix, a high number of lead-field elemengsrecessary for the algo-
rithm to reconstruct the observations. The re-estimatidhese lead-field columns in
SOFOMORE or VBLF brings a data-driven fitting of the leaddi&b the true source
projection, avoiding such scattering effects.

The performances in term of localization precision (DLEY #@1metric are given
fig 5. The informed version of RAP-MUSIC is expected to prevatcurate results in
this context of additive white Gaussian noise. The Chamgagproach also provides
very accurate localization results, with DLE below or vepanto Tmwithin eachng
and SNR configurations. However as shown by the rather higtbeu of significantly
powerful sources in the solution (see fig 5), the number akfglositives can be high
as shown by thd" metric, especially in thes = 5 dipoles case.

After applying the ECD fitting step (as described section3),2/BLF brings the
best DLE performance, in concordance with the high accunatye source lead-field
estimates. The DLE is decreased of abauti@n median with respect to SOFOMORE
over all configurations, which can be considered as a sigmifigain in accuracy con-
sidering that the DLE are consistently beloami(representing roughly a gain in per-
formance of about 20%). The true number of sources beingraisiy estimated by
VBLF, very few false positives are produced, explaining lihgh A" values. This is
not observed for SOFOMORE, for which the rather low numbéiatse positives are
compensate by higher localization errors due to inaccesaici the source lead-field
estimates. The superiority of our method with respect toSB&OMORE approach
demonstrates the importance of constraining the dipolggtions through the intro-
duction of non-null off-diagonal values in eath.

A last metric is given by the final values of the free energyction (equation (21))
which describe the relevance of the model to the data (Fristal. (2008)). This lower
bound of the model evidence can be evaluated for SBL, SOFOM&t VBLF. While
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Figure 4: An illustration of the lead-field coefficients essites when using VBLF (top/dashed red) or SO-
FOMORE (bottom/dashed green), in the 5 dipoles case - 10d8 figare per dipole). The estimates are
super-imposed with the true FEM lead-field (blue) and thermadumn (black).

the actual values of this function has no meaning in itselftomparison from a model
to another can be used to determined which model is the mpsbaigate to explain the
data (fixed lead-field (SBL), diagonal lead-field column a@ce matrices (SOFO-
MORE), and non-diagonal lead-field column covariance roesi{\VVBLF)). Using the
values of the SBL free energy estimates as a referencen(gétto 0), VBLF provides
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Figure 5: Performance evaluation for 3 (first column) and 5dsdcolumn) simultaneous dipoles. Median
of the DLE andA’ metrics are given resp. on the first and second rows. On therthir is given the relative
median values of the Free Energy for VBLF and SOFOMORE witpeesto the SBL reference values.
Error bars of first and third quartiles are superimposed.

the highest free energy values over all the configurationcamdirms its relevance for
this simulated source localization task (bottom figuresg8ji

3.2. Intracranial Stimulations

The localization method is tested on Intracranial StimatalCS) data, where two
consecutive electrode contacts are used to inject a cunréim brain volume. We will
consider a data set from a 40-year-old man with presumexhpieal lobe epilepsy. He
was implanted with ten depth electrodes in the right tenidokee and insular cortex
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Figure 6: One second of SEEG signals recorded during an I€8cseon TB'8-9. These 20 channels are
used for the localization of the stimulation.

and four in the left temporal lobe. The reference was FPasarélectrode from the
classical 10-20 system. The depth contacts coordinatesavgomatically determined
using the procedure described in Hofmanis et al. (2011). Wsider stimulations

injected in the left (less implanted) hemisphere, usingdtetacts of the electrodes
TB".

Three ICS data-set are used, and correspond to a profoun@-g)Bintermediate
(TB’4-5) and superficial (TB’8-9) stimulation site. Therstilation is applied for about
4sfor each site, and consists it in a train of 55 biphasic pidsé&e have extracteds3
of signal centered within the stimulation window, and we itin 12 sub-windows of
250mseach (thus 13 to 14 pulses per window). The localization dieg separately
on each sub-windows. While it is true that the ICS source @nger than physiolog-
ical sources, it may not be the dominant activity recordedabyelectrodes on which
local physiological activities are super-imposed. On #g@y the time-courses of the
potentials generated by the ICS dipoles for the stimulagitanTB’8-9 are given. On
the contact T'1, distant of 36mm from the stimulation sites potentials due to the ICS
source are visible but is clearly weaker than the surrounghysiological activity.

The lead-field matrix is built based on 17 locally fitted OSMnhgsa 1cm resolu-
tion grid (like in the simulations), the spheres being fitbedl7 well distributed points
on the upper part of the inner skull. The contacts of the sddet TB’ used for the
stimulation are not considered. We aim at localizing theasltation based only on a
limited set of distant contacts. We restrict the used measents to those of the hemi-
sphere of the stimulation, thus 20 channels spread on Fediecshafts (A,B’,T’, see
fig 6). Using electrode shafts can pose a conditioning propées tackled in previous
works (Caune et al. (2014)). We arrived to the conclusiohdhkeast a dozen contacts
from 3 different electrode shafts are needed to succegsfaliry out a brain source
localization, such conditions being met in the particulsesof this data set.

The position errors are given in table 1, averaged over the 12 sub-windows local-
ization results. After convergence, each algorithm gemersolutions whose powers

18



TB'2-TB’'3

TB'4-TB’S5

TB'8-TB’'9

€ PLF

€ PLF

€ PLF

SBL

p Pt
3.0+0.2 098+0.01 093+0.01

p Pt
5.0+0.6 0.96+0.01 097+0.01

P Pt
4.8+0.3 0.95+0.02 093+0.02

VBLF

1.8+0.9 0.97+0.01 0.974+0.01

3.04+0.5 0.95+0.04 0.99+0.01

3.14+0.7 0.9640.03 0.99+0.02

SOFOMORE]

1.3+0.7 0.95+0.02 0.974+0.01

3.1+0.7 0.97+0.03 0.99+0.01

2.3+0.8 0.95+0.02 0.99+0.02

Champagne

4.84+0.08 093+0.04 092+0.02

4.6+1.2 0.97+£0.01 095+0.03

54+0.9 0.95+0.03 090+0.04

RAP-MUSIC

7.6+1.9 097+0.01 097+0.00

5.94+0.0 0.99+0.00 097+0.00

8.84+0.27 098+ 0.01 098+ 0.00

Table 1: Performance values for the localization of three d@@®les (averaged over 12 windows of 250ms
each) for five different algorithms: SBL, VBLF, SOFOMORE, @f@agne and RAP-MUSIC. Position er-
rorsep are given in mm. Correlation coefficienps between the mean of the closest (<1cm) significant
source time-courses and the potential recorded on the @diectf stimulation next to the stimulated con-
tacts. Correlation coefficients ¢ between the mean lead-field projections of the closest signifisources
(re-estimated in the case of VBLF and SOFOMORE) and an estmafithe true projection of the dipole
of stimulation based on the One Sphere Model.

are concentrated around the position of the stimulatiololdip We retain the time-
course and lead-field projection of the equivalent dipolenakimum power as this
representing the stimulation dipole. In the table 1 are tiieen two additional perfor-
mance values (averaged over the 12 sub-windows)is the correlation coefficient
between the estimated equivalent dipole time course angdkential recorded on
a non-saturated (manually chosen) contact belonging teldwrode of stimulation.
pLr is the correlation coefficient between the estimated etprvadipole lead-field
projection with an OSM estimated projection of the dipoletifulation using its true
position and orientation.

The performances of all five algorithms (SBL, VBLF, SOFOMQRIBampagne as
well as RAP-MUSIC) are evaluated (considering the postrtipaition of section 2.2.3
for both SOFOMORE and VBLF). The number of sources in RAP-NMUBas been
informed through an MDL approach (1 to 3 sources are estindgpending on the
analyzed window). All algorithms are successful in lodaligthe stimulation dipole
(under tmon average with small standard-deviation), with consisteivantages for
SBL and SOFOMORE for which the regressed dipole is about 2 ta8from the
stimulation site (taken as the middle of the two stimulatedtacts). These results
are competing with the localization using an ECD approagiiieg on the averaged
stimulation peaks within a window of2s (see Caune et al. (2014)). This can be taken
as proofs that (i) the lead-field projection is indeed wetbreered (further confirmed by
the p_r correlation values) and (ii) the OSM indeed provides a bédiapproximation
of the head propagation medium when a precision of the orfiéevo millimeters
is needed. Relying on recent studies on the topic (Birot ef28114); Caune et al.
(2014)), OSM s reported to provide a reliable approximatd the real propagation
medium and is accurate enough to reach precise localizations of the order of few
millimeters, especially in this context of intracranial B& recordings where we are
far less impacted by errors in the skull:brain ratio estertaian in the case of scalp
recordings (Acar and Makeig (2013); Acar et al. (2016)).

3.3. Epileptic interictal spikes

We now evaluate the methods on a data set of interictal spdaesded from a 28
year-old woman with drug-resistant insulo-operculareggsly (already included in a
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Figure 7: a) SEEG signals of interictal spikes in common refezenontage (FPz scalp electrode). Epileptic
spikes are maximally visible on the contacts 5 and 6 of the deletttrode R’ (left central operculum).
b) Mesh of the head and SEEG configurations. The labels aretheanost profound contact of their
corresponding electrode shafg., the contact 1.

previous paper (Caune et al. (2014))). She gave her infomordent prior to partici-
pation. The intracranial EEG (SEEG) recording setup ctsisten electrode shafts
implanted in the insulo-opercular regions (internal artdri contacts, see fig.7(b)):
P’, cingulum/parietal operculum ; T’, infero-anterior ina/ superior temporal gyrus ;
B’, anterior insula/pre-motor cortex; X', posterior inalpost-central gyrus; F’, and L,
anterior and posterior part of the inferior frontal sulenigldle frontal gyrus; R’, middle
insula/central operculum; C’, cingulum/middle frontalrgy; S’, superior frontal sul-
cus; M’, supplementary motor area/superior frontal gyfittee inspection of the SEEG
data on bipolar montage reveals the presence of interipigic spikes near the R’
depth electrode, especially on the contacts R’5 and R’6clwaliso impact neighboring
electrodes (especially T and X’), though with rather logrgil to noise ratios. Within
the time windows of spikes occurrence (about 100ms lenfgh),other activities of
lower amplitudes are impacting the electrodes. We thenatxpelocalize the main
generator(s) within a focal area surrounding the electsiidt R'. Three seconds of
interictal recordings on the 100 available contacts arergfig. 7(a).

Several OSM are computed to build the lead-field matrix usedHe inversion.
17 local spheres are fitted on the inner skull of the patietidviing the procedure
described above, and we use a regular 3D grid with 7mm résplugstricted to the
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implanted hemisphere for the forward model computatioaldyng 2322 source po-
sitions {.e., 6966 columns in the forward matrik). The coordinates of the depth
contacts were obtained as for the ICS localization desdréix®ve. All the contacts, at
the exception of those of the electrode R’, are used to partbe localizationi.e., 90
recording channels.

The bipolar analysis of the R’ shaft reveals a polarity isi@n between R'6 and
R’7, indicating a dipolar source situated in a plane betvibertwo contacts and having
a strong component oriented orthogonal to this plane. Franpbtential time course
recorded on the contact R’6, 20 interictal spikes have beéemtified through a simple
thresholding process and validated by the expert. Theikatain is carried out after
averaging the 20 time windows of 64 samples (125ms), thuaratihg the signal to
noise ratio of the inter-ictal activity of interest.

The same five algorithms were tested on this data set. Agdi, 1&gl used for the
initialization of RAP-MUSIC (resulting in 7 estimated soas). Figure 8 illustrates
the localization map for each tested algorithm. The loadilin of the most intense
equivalent dipole is concordant for all the methods, disftaam 6.2mmto 9.8mmfrom
the R’6 contact, and with a maximum distance air6between the two most distant
solutions (SBL with RAP-MUSIC). It is also consistent withetlocalization results
obtained using an ECD approach in a recent paper (Caune(2044)), and validated
by the expert.

In particular, the localization map is very sparse for theL ¥Bapproach, five co-
ativated dipolesi(e., with a standard deviation over the tenth of the most intelijzale)
are found within the cloud of the electrodes, explainingocouring activities of low
amplitudes. These dipoles are localized within the bouredaf the brain (gray matter)
mesh. Champagne also provide a similarly sparse localizatiap, although yielding
nine co-occuring equivalent dipoles. SOFOMORE as well ak &® providing less
sparse maps. Both approaches are estimating dipoles tfeehagh intensity and
distant from the cloud of electrodes (out of the brain messoime case), while such
results seem to be irrelevant for this given data for whighrtain activities are clin-
ically presumed to take place near the electrode R’. Fin®IBLF and Champagne
are producing very similar time courses for the main egemadipole, having their
maximum peak at the same instant, while the activities edéchby the three other
algorithms are delayed of a few samples (fig. 9 left).

When comparing the estimated lead-field projection givenheyMBLF and the
SOFOMORE approach (fig. 9 right), one can see the somewhédusiple estimate
of the lead-field projection produced by SOFOMORE, whilegkgmate of the VBLF
approach is more relevant. This is confirmed when applyiegfitting of both esti-
mated columns using the OSM. The resulting mean squaredadrite OSM fitting is
of 0.01 for the VBLF estimate while it reache<08 in the case of SOFOMORE.

4. Discussion

In this study we propose a distributed approach for simeltas estimation of the
brain source activities under controlled re-adjustmertheir lead-field projection4,
based on a Variational Bayesian (VB) scheme. The re-estmaf the columns are
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Figure 8: Localization maps of averaged inter-ictal spik¥s gvents) over a window length of 125 (64
samples), centered on the maximum values of each spike (aslegcon the electrode R’'6). The potential
values (1V) on the electrodes are given as colors (dark blue for negyasilues to dark red for positive values,
see colorbar), and the contacts used for the localizatiemlack circled (all electrodes except R’ on which
the interictal spikes has been identified by the expert). Tiwws (lateral right and frontal) are given. The
dipoles in red represent the equivalent dipoles identifeetha estimated generators of the interictal spikes,
while the dipoles in black represent the simultaneous gietivestimated by each algorithm.
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Figure 9: Left: estimated time courses for the equivalentldgpof maximum power for each algorithm.

Right: original projection coefficients on the 90 contactsthe elementary dipole chosen by both VBLF and
SOFOMORE, along with the lead-field optimization given byreatgorithm, on which are super-imposed
their OSM regressions (dashed lines).

controlled through covariance matrices, constrainingpttegections to remain physi-
ologically plausiblej.e., preventing to deviate implausibly from prior projectioatp
ternsAgp computed using a physical propagation model. We providepeoisons with
several algorithms from the literature (SBL, SOFOMORE, Bphagne, RAP-MUSIC)
with several noise level configurations, giving quantiatfiacts on the benefits of tak-
ing account of the forward model uncertainties.

The simultaneous optimization of the source time-couredthe lead-field pro-
jections implies that the estimated lead-field columndo not corresponds anymore
with the projection of unitary dipolar elements as initfadincoded inAg, in term of
positions, orientations and (unitary) amplitudes. Theiguniby in the estimated source
parameters can be disentangled by a fitting of the posteslanmns based on an ana-
lytical model, such as the One Sphere model used in this shdlyis perspective, the
VBLF approach can be seen as a decomposition on a continicigndry where the
dictionary atoms are iteratively learned from the obséowat(Yang et al. (2013)). The
method separates the different sources contributing tddteg and optimizes their pro-
jection gains on the contacts through a constrained datardprocedure. The modi-
fied projection gains are then mapped and scaled to theegmonding unitary dipolar
components in the source space through a classical Sclséngle-dipole inversion,
providing the final source parameter estimates.

While this is a distributed approach in its formulation, ougthrods might be seen
as an ECD approach where thousands of dipole candidatesnawnktameously opti-
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mized in their amplitudes, positions and orientations.sTgreclude the initialization
issues (multi-start strategies, initial guess of the nunalbeipoles) encountered when
dealing with the ECD approaches (Scherg et al. (1999); Kiebal. (2008); Caune
et al. (2014)).

The gain in sparsity is significant when the lead-field is rsidered (both for
SOFOMORE and our method), and the size of the estimated es@pace is con-
sistently very close to the true one in the simulated case.ofaring such flexible
framework, both the estimation of the equivalent dipoleggmtions and time-courses
are enhanced, on condition that the correction of the ptiojecoefficients is care-
fully controlled. Indeed the unconstrained re-evaluascheme i(e., SOFOMORE)
leads globally to less accurate estimation results tharcanstrained version (VBLF),
especially for low SNR levels.

Our approach provides consistent results when appliedadnlata. First, its appli-
cation to an Intracranial Stimulation (ICS) data set derntraiss its ability to provide
accurate localization, time course estimation and ledd-fieojection estimates in a
real context. Secondly, the method proves to produce filkukicalization map in a
case of inter-epileptic spikes localization. The resuttascordant with the expertise
of the neurologists. In this last case, the importance afigision-diagonal covari-
ance matrix for modeling the lead-field column distributisfurther illustrated, as the
lead-field estimate produce by SOFOMORE is not physioldiyicalevant.

It is worth noticing that the localization accuracy could/musly be enhanced by
introducing a finer grid of elementary dipole positions. Heer it would still remains
a discrete sampling of the source space with uncertain nard@ctions, thus prone
to mismatch basis issues (Chi et al. (2011)). Also, it woeklit to a higher compu-
tational burden. To give a quantitative comparison, in tiheutated case our VBLF
scheme takes about 2 minutes for 1000 iterations with theidered lead-field grid of
Icmresolution (6642 columns), while the SBL approach takesiabaninute for the
same number of iterations. Besides, the variational Bapesptimization scheme is
reported to be slow. As a faster alternative, modified vesaf the gradient descent al-
gorithms inspired from MacKay (1992); Miele and CantreB§9); Zheng et al. (2015)
could be adopted, through a direct gradient optimizatiotheffree-energy function.

The analysis of the confidence we can place in a localizageunlt must be deep-
ened, in particular in this difficult context of SEEG recarg where the conditioning
of the electrode shafts and their positions with regard éostinuctures of interest are
sensitive questions. Such issues have been tackled in Bpsestudy (Caune et al.
(2014)) in the case where a single dominant dipole is to batifikd, based on a
dipole fitting (ECD) procedure. The case of multiple simoéaus sources can now
be studied through the use of the proposed distributed sauadels, with the aim
to provide a clinical added value on how the electrode sheftsto be implanted for
reaching confident localization results covering the whwkén volume, or at least for
the brain structures suspected to contain the sourcesearksit In this perspective,
extended validation campaign on real recordings of int&rispikes, or more likely
on evoked potential activities (for which the source posii, time courses and instant
of apparition are perfectly controlled), must be carrietliniclose collaboration with
neurophysiologists.
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Appendix A. VB simultaneous optimization of S and A

In this appendix we develop the expressions of the updatethéodistributions
q(S) andgq(A):

Update of g(S):

|nq(S) <|n p(X7S7A“_S7y87AO7rA)>q(A) (Al)

O
O (Inp(X|S,A,¥e))qa) +Inp(SITs) (A.2)

where we have suppressed all the additive factors indepén@i8. The expression
for the updates of the Gaussian distributgi®) then writes:

g = rg+ys(ATA+D|=;1) (A.3)
S = yfg'A™X (A.4)

with Dflzl is aNs x Ns diagonal matrix composed of the trace of the updated co-
variance matrix of thé&ls columns ofA, andA is the updated version &.

Update ofg(A):
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We write g(A) as the product of its marginatgA) = |‘|'j\'ilq(aj). The marginal
likelihoods{q(aj)}j-1.n, are updated as:
Inq(aj) 0 <|n p(anaA|rSay87rAaA0)>q(S)7q(A\-J') (A5)
D <|n p(x‘stvyﬁ»q(S),q(A\-l‘) +In p(al‘aojvra])) (A6)

with A\ the matrixA minus the columnj. q(a;) is a gaussian distribution with
the updated mean and precision paramei@s 5, ):

Fay = Taj+VeEgln (A7)
& = [;M(Taa0+VeA)) (A.8)
where we define:
Es, = &8 +T%° (A.9)
A= X AP +814) (A.10)

With f;jj' the jth column off s minus itsjt" elementS\I- the estimated source ma-
trix S minus itsjt" line. A, the updated version &, is composed of th&ls columns

{aj}.
Updates ofl's and v:

We derive the expected model likelihodd p(X, S,A[l"s, Ve, Ao, Za) ) q(s),q(A) With
respect td s andyg to get the expression of their updates:

. E

| (A.11)
vl o= i\|X —AS|2 + itrace(,&f*lAT) b S Eqtrace(l ;1 A.12)
€ TN P Ne S Tl\lci; . a A

Appendix B. Free Energy

The Bayesian scheme is closely related to the optimizatfoth@ free-energy,
whose expression is given as:

F@ = (Inp(X,SA[0))qsa) —(INA(SA))qsA) (B.1)
(Inp(X,S,Al6))qsa) — (INA(S))qs) — (INA(A))g(a) (B.2)

with

(Inp(X,S,A18))qsa) = (INP(X[S,Ye))qs) + (INP(SITs))g(s) + (IN P(A|Ao, rA)>(ch%)
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It brings a way to quantify how a model fits the data, and cam the used to
compare model and select the best one in Bayesian sense vélemithe computation
of each term as follows:

TN

(Inp(X|S,Ye))qs) = —TInZH (B.4)
TN 1 T £l
(Inp(SIFs))qs = —TInZH—EZ&FSSt +Ttracglsl ™) (B.5)
t=
NgN, 1N
(np(AAGTA)qn) = ——5(n2m—3 Y [In|Fy
=1
+trace(F; T o)) + (&) —a0j) 'Tay(&) —a0))] (B.6)
TNs T ~
(Inq(S))gs) = —T(In2n+1)+iln\l's| (B.7)
NsN, 1N
(Ing(A))gay = — s2c(ln21'[—s-l)+E len|raj| (B.8)
J:
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