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Coq provides linear arithmetic tactics like omega or lia. Currently, these tactics either fully prove the goal in progress, or fail. We propose to improve this behavior: when the goal is not provable in linear arithmetic, we inject in hypotheses new equalities discovered from the linear inequalities. These equalities may help other Coq tactics to discharge the goal. In other words, we apply -in interactive proofsone of the seminal idea of SMT-solving: combining tactics by exchanging equalities. The paper describes how we have implemented equality learning in a new Coq tactic, dealing with linear arithmetic over rationals. It also illustrates how this tactic interacts with other Coq tactics.

Introduction

Several Coq tactics prove goals containing linear (in)equalities: omega and lia on integers; fourier or lra on reals and rationals [START_REF]The Coq Development Team: The Coq proof assistant reference manual -version 8[END_REF][START_REF] Besson | Fast reflexive arithmetic tactics the linear case and beyond[END_REF]. This paper provides yet another tactic for proving such goals. This tactic -called vpl 1 -is currently limited to rationals. It is built on the top of the Verified Polyhedra Library (VPL), a Coq-certified abstract domain of convex polyhedra [START_REF] Fouilhé | Efficient Generation of Correctness Certificates for the Abstract Domain of Polyhedra[END_REF]. Its main feature appears when it cannot prove the goal. In this case, whereas above tactics fail, our tactic "simplifies" the goal. In particular, it injects as hypotheses a complete set of linear equalities that are deduced from the linear inequalities in the context. Then, many Coq tactics -like congruence, field or even auto -can exploit these equalities, even if they cannot deduce them from the initial context by themselves. By simplifying the goal, our tactic both improves the user experience and proof automation.

Let us illustrate this feature on the following -almost trivial -Coq goal, where Qc is the type of rationals on which our tactic applies. This goal is valid on Qc and Z, but both omega and lia fail on the Z instance without providing any help to the user. Indeed, since this goal contains an uninterpreted function f, it does not fit into the pure linear arithmetic fragment. On the contrary, this goal is proved by two successive calls to the vpl tactic. As detailed below, equality learning plays a crucial role in this proof: the rewriting of a learned equality inside a non-linear term (because under symbol f) is interleaved between deduction steps in linear arithmetic. Of course, such a goal is also provable in Z by SMT-solving tactics: the verit tactic of SMTCoq [START_REF] Armand | A modular integration of SAT/SMT solvers to coq through proof witnesses[END_REF] or the one of Besson et al [START_REF] Besson | Modular SMT proofs for fast reflexive checking inside coq[END_REF]. However, such a SMT-tactic is also a "prove-or-fail" tactic that do not simplify the goal when it cannot prove it. On the contrary, our tactic may help users in their interactive proofs, by simplifying goals that do not fully fit into the scope of existing SMT-solving procedures.

In short, this paper provides three contributions. First, we provide a Coq tactic with equality learning, which seems a new idea in the Coq community. Second, we provide a new algorithm which learns these equalities from conflicts between strict inequalities detected by a linear programming solver. This algorithm can be viewed as a special but optimized case of "conflict driven clause learning" -at the heart of modern DPLL procedures [START_REF] Silva | Conflict-driven clause learning SAT solvers[END_REF]. On most cases, it is strictly more efficient than the naive equality learning algorithm previously implemented in the VPL [START_REF] Fouilhé | Efficient Generation of Correctness Certificates for the Abstract Domain of Polyhedra[END_REF]. In particular, our algorithm is cheap when there is no equality to learn. At last, we have implemented this algorithm in an Ocaml oracle, able to produce proof witnesses for these equalities. The paper partially details this process, and in particular, how the proof of the learned equalities are computed in Coq by reflection from these witnesses. Actually, we believe that our tactic could be easily adapted to other interactive provers, and, in particular, our oracle could be directly reused.

The paper follows a "top-down" presentation. Section 2 describes the specification of the vpl tactic. It also introduces a high-level specification of its underlying oracle. Section 3 illustrates our tactic on a non-trivial example and in particular how it collaborates with other Coq tactics through equality learning. Section 4 details the certificate format produced by our oracle, and how it is applied in our Coq tactic. At last, Section 5 details the algorithm we developed to produce such certificates.

Specification of the VPL Tactic

Let us now introduce the specification of the vpl tactic. As mentioned above, the algorithmic core of the tactic is performed by an oracle programmed in Ocaml, and called reduce. This oracles takes as input a convex polyhedron P and outputs a reduced polyhedron P such that P ⇔ P and such that the number of constraints in P is lower or equals to that of P.

Definition 1 (Convex Polyhedron).

A (convex) polyhedron 2 on Q is a conjunction of linear (in)equalities of the form i a i x i b where a i , b are constants 2 Dealing only with convex polyhedra on Q, we often omit the adjective "convex". in Q, where x i are variables ranging over Q, and where represents a binary relation on Q among ≥, > or =.

A polyhedron may be suboptimally written. In particular, one of its constraints may be implied by the others: it is thus redundant and can be discarded. Moreover, a set of inequalities can imply implicit equalities, such as x = 0 that can be deduced from x ≥ 0 ∧ -x ≥ 0. This notion of implicit equalities is standard and defined for instance in [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF]. Definition 2 characterizes polyhedra without implicit equalities.

Definition 2 (Complete set of linear equalities)

. Let E be a set of linear equalities and I be a set of linear inequalities. E is said complete w.r.t. I if any linear equality deduced from the conjunction E ∧ I can also be deduced from E alone, meaning that I contains no equality, neither implicit nor explicit. Formally, E is complete iff for all linear terms

t 1 t 2 , (E ∧ I ⇒ t 1 = t 2 ) implies (E ⇒ t 1 = t 2 ) (1)

Definition 3 (Reduced Polyhedron).

A polyhedron P is reduced iff it satisfies the following condition.

-If P is unsatisfiable, then P is a single constant constraint like 0 > 0 or 0 ≥ 1.

In other words, its unsatisfiability is checked by one comparison on Q. -Otherwise, P contains no redundant constraint and it is syntactically given as a conjunction E ∧ I where polyhedron I contains only inequalities and where polyhedron E is a complete set of equalities w.r.t. I.

Having a reduced polyhedron ensures that any provable linear equality admits a pure equational proof which ignores the remaining inequalities.

Specification of the Tactic. Roughly speaking, a Coq goal corresponds to a sequent Γ T where context Γ represents a conjunction of hypotheses and T a conclusion. In other words, this goal is logically interpreted as the metaimplication Γ ⇒ T . The tactic transforms the current goal Γ T through three successive steps:

1. First, the goal is rewritten equivalently as Γ , P (m)

T where P is a polyhedron and m an assignment of P variables. For example, the ex1 goal is rewritten as P 1 (m 1 ) False, where

P 1 := x 1 ≤ 1 ∧ x 2 < x 3 ∧ x 1 ≥ 1 m 1 := { x 1 → x; x 2 → (f x); x 3 → (f 1) }
Hence, P (m) corresponds to a conjunction of inequalities on Q that are not necessarily linear, because m may assign variables of P to arbitrary Coq terms on Q. Actually, P (m) contains at least all (in)equalities on Q that appear as hypotheses of Γ . Moreover, if T is an inequality on Q, then an inequality equivalent to ¬T appears in P (m) and T is proposition False. 3This step is traditionally called reification in Coq tactics.

2. Second, the goal is rewritten equivalently as Γ , P (m) T where P is the reduced polyhedron computed from P by our reduce oracle. For instance, polyhedron P 1 found above is reduced into

P 1 := x 1 = 1 ∧ x 2 < x 3
3. At last, if P is unsatisfiable, then so is P (m), and the goal is finally discharged. Otherwise, given E the complete set of equalities in P , equalities of E (m) are rewritten in the goal. For example, on the ex1 goal, our tactic rewrites the learned equality "x=1" into the remaining hypothesis. In summary, a first call to the vpl tactic transforms the ex1 goal into x=1, ( f 1) <( f 1 ) False

A second call to vpl detects that hypothesis ( f 1) <( f 1 ) is unsatisfiable and finally proves the goal.

In the description above, we claim that our transformations on the goals are equivalences. This provides a guarantee to the user: the tactic can always be applied on the goal, without loss of information. However, in order to make the Coq proof checker accept our transformations, we only need to prove implications, as detailed in the next paragraph.

The Coq Proof Built by the Tactic. The tactic mainly proves the two following implications which are verified by the Coq kernel:

Γ , P (m) T ⇒ Γ T (2) ∀m, P (m) ⇒ P (m) (3) 
Semantics of polyhedron . is encoded as a Coq function, using binary integers to encode variables of polyhedra. After simple propositional rewritings in the initial goal Γ T , an Ocaml oracle provides m and P to the Coq kernel, which simply computes P (m) and checks that is syntactically equals to the expected part of the context. Hence, verifying implication (2) is mainly syntactical. For implication (3), our reduce oracle actually produces a Coq AST, that represents a proof witness allowing to build each constraint of P as a nonnegative linear combination of P constraints. Indeed, such a combination is necessarily a logical consequence of P. In practice, this proof witness is a value of a Coq inductive type. A Coq function called reduceRun takes in input a polyhedron P and its associated witness, and computes P . A Coq theorem ensures that any result of reduceRun satisfies implication (3). Thus, this implication is ensured by construction, while -for the last step of the tactic described above -the Coq kernel computes P by applying reduceRun.

Using the vpl Tactic

Combining solvers by exchanging equalities is one of the basis of modern SMTsolving, as pioneered by approaches of Nelson-Oppen [START_REF] Nelson | Simplification by cooperating decision procedures[END_REF][START_REF] Oppen | Complexity, convexity and combinations of theories[END_REF] and Shostak [START_REF] Shostak | Deciding combinations of theories[END_REF]. This section illustrates how equality learning in a interactive prover mimics such equality exchange, in order to combine independent tactics. While much less automatic than standard SMT-solving, our approach provides opportunities for the user to compensate by "hand" for the weaknesses of a given tactic.

The main aspects of the vpl tactic are illustrated on the following single goal. This goal contains two uninterpreted functions f and g such that f domain and g codomain are the same uninterpreted type A. As we will see below, in order to prove this goal, we need to use its last hypothesis -of the form "g (. . .) <> g ( 1 3 ) " -by combining equational reasoning on g and on Qc field. Of course, we also need linear arithmetic on Qc order.

Lemma ex2 ( A : Type ) ( f : A → Qc ) ( g : Qc → A ) ( v1 v2 v3 v4 : Qc ): 6* v1 -v2 -10* v3 + 7*( f ( g v1 ) + 1) ≤ -1 → 3*( f ( g v1 ) -2* v3 ) + 4 ≥ v2 -4* v1 → 8* v1 -3* v2 -4* v3 -f ( g v1 ) ≤ 2 → 11* v1 -4* v2 > 3 → v3 > -1 → v4 ≥ 0 → g ((11 -v2 + 13* v4 ) / ( v3 + v4 )) <> g (13) → 3 + 4* v2 + 5* v3 + f ( g v1 ) > 11* v1 .
The vpl tactic reduces this goal to the equivalent one given below (where typing of variables is omitted).

H5 : g ((11 -(11 -13* v3 ) + 13* v4 ) / ( v3 + v4 )) = g 13 → False vpl : v1 = 4 -4 * v3 vpl0 : v2 = 11 -13 * v3 vpl1 : f ( g (4 -4 * v3 )) = -3 + 3 * v3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (1/1) 0 ≤ v4 → (3#8) < v3 → False
Here, three equations vpl, vpl0 and vpl1 have been learned from the goal. Two non-redundant inequalities remain in the hypotheses of the conclusion -where (3#8) is the Coq notation for 3 8 . The bound v3 > -1 had disappeared because it is implied by (3#8) < v3. By taking v3 = 1, we can build a model satisfying all the hypotheses of the goal -including (3#8) < v3 -except H5. Thus, using H5 is necessary to prove False.

Actually, we provide another tactic called vpl_post which automatically proves the remaining goal. This tactic combines equational reasoning on Qc field with a bit of congruence. 4 Let us detail how it works on this example. First, in backward reasoning, H5 is applied to eliminate False from the conclusion. We get the following conclusion (where previous hypotheses have been omitted).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (1/1) g ((11 -(11 -13* v3 ) + 13* v4 ) / ( v3 + v4 )) = g 13
Here, backward congruence reasoning reduces this conclusion to

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (1/1) (11 -(11 -13* v3 ) + 13* v4 ) / ( v3 + v4 ) = 13
Now, the field tactic reduces the conclusion to

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (1/1) v3 + v4 <> 0
Indeed, the field tactic mainly applies ring rewritings on Qc while generating subgoals for checking that denominators are not zero. Here, because we have a linear denominator, we discharge the remaining goal using the vpl tactic again. Indeed, it gets the following polyhedron in hypotheses -which is unsatisfiable.

v4 ≥ 0 ∧ v3 > 3 8 ∧ v3 + v4 = 0
Let us remark that lemma ex2 is also valid when the codomain of f and types of variables v1 . . . v4 are restricted to Z and operator "/" means the Euclidean division. However, both omega and lia fail on this goal without providing any help to the user. This is also the case of the verit tactic of SMTCoq because it deals with "/" as a non-interpreted symbol and can only deal with uninterpreted types A providing a decidable equality. By assuming a decidable equality on A and by turning the hypothesis involving "/" into "g((11-v2+13*v4))<>g(13*(v3+v4))", we get a slightly weaker version of ex2 goal which is proved by verit.

This illustrates that our approach is complementary to SMT-solving: it generally provides less automation than SMT-solving, but it may still help to progress in an interactive proof when SMT-solvers fail.

The Witness Format and its Interpreter in the Tactic

Section 4.3 below presents our proof witness format in Coq to build a reduced polyhedron P as a logical consequence of P . It also details the implementation of reduceRun and its correctness property, formalizing property (3) given in introduction. In preliminaries, Section 4.1 recalls the Farkas operations of the VPL, at the basis of our proof witness format, itself illustrated in Section 4.2.

Certified Farkas Operations on Linear Constraints

The tactic uses the linear constraints defined in the VPL [START_REF] Fouilhé | A certifying frontend for (sub)polyhedral abstract domains[END_REF], that we recall here. Type var is the type of variables in polyhedra. Actually, it is simply defined as type positive, the unbounded binary positive integers of Coq. Module Cstr provides an efficient representation for linear constraints on Qc, the Coq type for Q. Type Cstr . t handles constraints of the form "t 0" where t is a linear term and ∈ {=, ≥, >}. Hence, each input constraint "t 1 t 2 " will be encoded as "t 1 -t 2 0". Linear terms are themselves encoded as radix trees over positive with values in Qc.

The semantics of Cstr . t constraints is given by predicate ( Cstr . sat c m ) , expressing that model m : var → Qc satisfies constraint c. Module Cstr provides also the following operations:

P :=          x1 + x2 ≥ x3 x1 ≥ -10 3x1 ≥ x2 2x3 ≥ x2 -1 2 x2 ≥ x1
--------→ reduceRun 

P := x1 = -x3 x2 = 2x3 x3 ≤ 0 Script Computations 1 BindHyp H0 x1 + x2 -x3 ≥ 0 2 SkipHyp 3 BindHyp H1 3x1 -x2 ≥ 0 4 BindHyp H2 2x3 -x2 ≥ 0 5 BindHyp H3 -x1 -1 2 x2 ≥ 0 6 Bind H4 ← (H0 + 1 2 • H2) & H3 x1 + 1 2 x2 = 0 7 Bind X ← ( 1 2 • H2 + H3) & H0 -x1 -x2 + x3 = 0 8 Bind H5 ← X + H4 -1 2 x2 + x3 = 0 9 Bind H6 ← H5 + H4 x1 + x3 = 0 10 Return { 11 [x1] H6 x1 + x3 = 0 12 [x2] -2 • H5 x2 -2x3 = 0 13 1 5 • (H1 + -3 • H6 + -2 • H5) -x3 ≥ 0 14 }
-(t 1 1 0) + (t 2 2 0) (t 1 + t 2 ) 0 where max( 1 , 2 )
for the total increasing order induced by the sequence =, ≥, >;

-n • (t 0) (n • t) 0 assuming n ∈ Q and, if ∈ {≥, >} then n ≥ 0; -(t ≥ 0) & (-t ≥ 0) t = 0.
It is easy to prove that each of these operations returns a constraint that is satisfied by the models of its inputs. For example, given c1 and c2 such that ( sat c1 m ) and ( sat c2 m ) , then ( sat ( c1+c2 ) m ) holds. When invoked on a wrong precondition, these operations actually return "0 = 0" which also is satisfied by any model. Still, this precondition violation only appears if there is a bug in the reduce oracle. These operations are called Farkas operations, in reference to Farkas lemma recalled on page 11.

In the following, we actually handle each constraint with a proof that it satisfies a given set s of models (encoded here by its characteristic function). The type of such a constraint is ( wcstr s ) , as defined below. Hence, all the Farkas operations are actually lifted to type ( wcstr s ) , for all s.

Example of Proof Witness

We introduce our syntax for proof witnesses on Figure 1. Our oracle detects that P is satisfiable, and thus returns the "proof script" of Figure 1. This script instructs reduceRun to produce P from P . By construction, we have P ⇒ P . This script has three parts. In the first part -from line 1 to 5 -the script considers each constraint of P and binds it to a name, or skips it. For instance, x 1 ≥ -10 is skipped because it is redundant: it is implied by P and thus not necessary to build P from P . In the second part -from line 6 to 9 -the script Each of these constraints is bound to a name. Hence, when a constraint -like H 4 -is used several times, we avoid a duplication of its computation.

In the last part -from line 10 to 14 -the script returns the constraints of P . As further detailed in Section 5, each equation defines one variable in terms of the others. For each equation, this variable is explicitly given between brackets "[.]" in the script of Figure 1, such as x 1 at line 11 and x 2 at line 12. This instructs reduceRun to rewrite equations in the form "x = t".

The HOAS of Proof Witnesses and its Interpreter

Our reduceRun function and its correctness are defined on Figure 2. In this Coq code, the input polyhedron of reduceRun is given as a list of constraints l of type pedra. Its output is given as type ( option pedra ) where a None value corresponds to the case where l is unsatisfiable.

Given a value l : pedra, its semantics -still noted l -is a predicate of type ( var → Qc ) → Prop which is defined from Cstr . sat. This semantics is extended to type ( option pedra ) by the predicate answ. thus formalizes property (3) of page 4 with a minor improvement: when the input polyhedron is unsatisfiable, a proof of False is directly generated. The proof witness in input of reduceRun is a value of type ∀ v , script v. Here, script -defined at Figure 5 -is the type of a Higher-Order Abstract Syntax (HOAS) parameterized by the type v of variables [START_REF] Chlipala | Parametric higher-order abstract syntax for mechanized semantics[END_REF]. A HOAS avoids the need to handle explicit variable substitutions when interpreting binders: those are encoded as functions, and variable substitution is delegated to the Coq engine. 5 The universal quantification over v avoids exposing the representation of v -used by reducedRun -in the proof witness p.

The bottom level of our HOAS syntax is given by type fexp defined at Figure 3 and representing "Farkas expressions". Each constructor in this type corresponds to a Farkas operation, except constructor Var that represents a constraint name which is bound to a Bind or a BindHyp binder (see Figure 1). The function fexpEval computes any such Farkas expression c into a constraint of type ( wcstr s ) -for some given s -where type v is itself identified with type ( wcstr s ) .

Farkas expressions are combined in order to compute polyhedra. This is expressed through "polyhedral expressions" of type pexp on Figure 4 which are computed by pexpEval into ( option pedra ) values. Type pexp has 3 constructors. First, constructor ( Bind c ( fun H ⇒ p ) ) is a higher-order binder returns an a priori satisfiable reduced polyhedron, which is encoded as a list of Farkas expressions associated to an optional variable of type var (indicating a variable defined by an equation, see example of Figure 1). Finally, a witness of type script first starts by naming useful constraints of the input (given as a value l : pedra) and then runs a polyhedral expression in this naming context. This semantics is given by scriptEval specified at Figure 5. On a script ( SkipHyp p ' ) , function scriptEval simply skips the first constraint by running recursively ( scriptEval p ' ( List . tl l ) ) . Similarly, on a script ( BindHyp ( fun H ⇒ p ' ) ) , scriptEval pops the first constraint of l in variable H and then run itself on p ' . Technically, scriptEval assumes the following precondition on polyhedron l: it must satisfies all models m characterized by s. As shown on Figure 2, ( reduceRun l p ) is a simple instance of ( scriptEval ( p ( wcstr s ) ) l ) where s:= l . Hence, this precondition is trivially satisfied.

The Reduction Algorithm

The specification of the reduce oracle is given in introduction of the paper: it transforms a polyhedron P into a reduced polyhedron P with a smaller number of constraints and such that P ⇔ P. Sections 5.4 and 5.5 describe our implementation. In preliminaries, Section 5.1 gives a sufficient condition, through Lemma 2, for a polyhedron to be reduced. This condition leads to learn equalities from conflicts between strict inequalities as detailed in Sections 5.2 and 5.3. In our proofs and algorithms, we only handle linear constraints in the restricted form "t 0". But, for readability, our examples use the arbitrary form "t 1 t 2 ".

A Refined Specification of the Reduction Definition 4 (Echelon Polyhedron

). An echelon polyhedron is written as a conjunction E ∧ I where polyhedron I contains only inequalities and where E is written " i∈{1,...,k} x i -t i = 0" such that each x i is a variable and each t i is a linear term, and such that the two following conditions are satisfied. First, no variable x i appears in polyhedron I. Second, for all integers i, j ∈ {1, . . . , k} with i < j then x i does not appear in t j .

Intuitively, in such a polyhedron, each equation "x i -t i = 0" actually defines variable x i as t i . As a consequence, E ∧ I is satisfiable iff I is satisfiable.

We recall below the Farkas lemma [START_REF] Farkas | Theorie der einfachen Ungleichungen[END_REF][START_REF] Cook | Combinatorial Optimization[END_REF] which reduces the unsatisfiability of a polyhedron to the one of a constant constraint, like 0 > 0. The unsatisfiability of such a constraint is checked by a simple comparison on Q.

Lemma 1 (Farkas). Let I be a polyhedron containing only inequalities. I is unsatisfiable if and only if there is an unsatisfiable constraint "-λ

0", computable from a nonnegative linear combination of constraints of I (i.e. using operators "+" and "•" defined at Section 4.1), and such that ∈ {≥, >} and λ ∈ Q + .

Proof. This standard lemma is proved by induction on the number of variables in I. In the inductive case, one variable is eliminated using Fourier-Moztkin's elimination (i.e. by combining all pairs of inequalities in which this variable appears with an opposite sign).

From Farkas lemma, we derive the following standard corollary which reduces the verification of an implication I ⇒ t ≥ 0 to the verification of a syntactic equality between linear terms.

Corollary 1 (Implication Witness).

Let t be a linear term and let I be a satisfiable polyhedron written j∈{1,...,k} t j j 0 with j ∈ {≥, >}.

If I ⇒ t ≥ 0 then there are k + 1 nonnegative rationals (λ j ) j∈{0,...,k} such that t = λ 0 + Σ j∈{1,...,k} λ j t j .

Proof. Let us assume that I ∧ -t > 0 is unsatisfiable. By Farkas lemma, there is an unsatisfiable constant constraint -λ 0 0 such that -λ 0 = (Σ j∈{1,...,k} λ j t j )+λ k+1 .(-t) with all λ j being nonnegative rationals. Actually, λ k+1 > 0. Otherwise, -λ 0 0 would be a proof that I is unsatisfiable. Thus, for all j ∈ {0, . . . , k}, λj λ k+1 ≥ 0 and t = λ0 λ k+1 + Σ j∈{1,...,k} λj λ k+1 t j .

In the following, we call the nonnegative coefficients (λ j ) j∈{1,...,k} a Farkas combination of t in terms of I.

Definition 5 (Strict Version of Inequalities).

Let I be a polyhedron with only inequalities. We note I > the polyhedron obtained from I by replacing each large inequality "t ≥ 0" by its strict version "t > 0". Strict inequalities of I remain unchanged in I > .

Geometrically, polyhedron I > is the interior of polyhedron I. Hence if I > is satisfiable (i.e. the interior of I is non empty), then polyhedron I does not fit inside an hyperplane. The following Lemma 2 is only a logical reformulation of this trivial geometrical fact. Nevertheless, we provide a purely "logical" proof to this geometrical intuition. Let us first introduce another corollary of Farkas' lemma that will be useful for the proof of Lemma 2.

Corollary 2.

Let I be a satisfiable polyhedron written j∈{1,...,k} t j j 0 with j ∈ {≥, >}. Then, I > is unsatisfiable if and only if there exists k nonnegative rationals (λ j ) j∈{1,...,k} ∈ Q + such that Σ j∈{1,...,k} λ j t j = 0.

Proof. ⇐: Suppose there exists k nonnegative rationals (λ j ) j∈{1,...,k} ∈ Q + such that Σ j∈{1,...,k} λ j t j = 0. It means that there is a Farkas combination of 0 > 0 in terms of I > . Thus by Farkas' lemma, I > is unsatisfiable. ⇒: Assume I > is unsatisfiable. By Farkas' lemma, there exists (λ j ) j∈{1,...,k} ∈ Q + such that Σ j∈{1,...,k} λ j t j = -λ, with λ ∈ Q + . Let m be an assignment of I variables such that I m. By definition, Σ j∈{1,...,k} λ j t j m = λ with λ ∈ Q + . Therefore, -λ = λ = 0.

Lemma 2 (Completeness from Strict Satisfiability). Let us assume an echelon polyhedron E ∧ I without redundant constraints, and such that I

> is satisfiable. Then, E ∧ I is a reduced polyhedron.
Proof. Let us prove property (1) of Definition 2, i.e. that E is complete w.r.t. I. Because t 1 = t 2 ⇔ t 1 -t 2 = 0, without loss of generality, we only prove property (1) in the case where t 2 = 0 and t 1 be an arbitrary linear term t.

Let t be a linear term such that E ∧ I ⇒ t = 0. In particular, E ∧ I ⇒ t ≥ 0. By Corollary 1, there are k + 1 nonnegative rationals (λ j ) j∈{0,...,k} such that t = λ 0 + Σ j∈{1,...,k} λ j t j . Moreover, since I > is satisfiable, then by Corollary 2, ∀(λ j ) j∈{1,...,k} ∈ Q + , Σ j∈{1,...,k} λ j t j > 0.

Suppose by contradiction that a constraint of I appears in the Farkas combination of t in terms of E∧I. Then, the Farkas combination t = λ 0 +Σ j∈{1,...,k} λ j t j is positive, which contradicts the initial hypothesis t = 0. Thus, E ⇒ t ≥ 0.

A similar reasoning with E ∧I ⇒ t ≤ 0 finishes the proof that E ⇒ t = 0.

Lemma 2 gives a strategy to implement the reduce oracle. If the input polyhedron P is satisfiable, then try to rewrite P as an echelon polyhedron E ∧ I where I > is satisfiable. The next step is to see that from an echelon polyhedron E ∧ I where I > is unsatisfiable, we can learn new equalities from a minimal subset of I > inequalities that is unsatisfiable. The inequalities in such a minimal subset are said "in conflict".

Conflict Driven Equality Learning

Conflict Driven Clause Learning (CDCL) is a standard framework of modern DPLL SAT-solving [START_REF] Silva | Conflict-driven clause learning SAT solvers[END_REF]. Given a set of large inequalities I, we reformulate the satisfiability of I into this framework by considering each large constraint t ≥ 0 of I as a clause (t > 0) ∨ (t = 0). Hence, our literals are either strict inequalities or equalities.

Let us run a CDCL SAT-solver on such a set of clauses I. This "thought experiment" will simply help to interpret our equality learning algorithm -presented in the next sections -as a particular optimization of the generic clause learning algorithm. First, let us imagine that the SAT-solver assumes all literals of I > . Then, an oracle decides whether I > is satisfiable. If so, then we are done. Otherwise, by Corollary 2, the oracle returns the unsatisfiable constant constraint 0 > 0 that is written Σ j∈J λ j t j where for all j ∈ J, λ j > 0 and (t j > 0) ∈ I > . The CDCL solver learns the new clause j∈J t j = 0 equivalent to ¬I > under hypothesis I.

In fact, a simple arithmetic argument improves this naive CDCL algorithm by learning directly the conjunction of literals j∈J t j = 0 instead of the clause j∈J t j = 0. Indeed, since Σ j∈J λ j t j = 0 (by Corollary 2) and ∀j ∈ J, λ j > 0, then each term t j of this sum must be 0. Thus, ∀j ∈ J, t j = 0.

In the following, we learn equalities from conflicts between strict inequalities in an approach inspired from this naive CDCL algorithm. Whereas the number of oracle calls for learning n equalities in the naive CDCL algorithm is Ω(n), our additional arithmetic argument limits this number to O(1) in the best cases.

Building Equality Witnesses from Conflicts

Let us now detail our algorithm to compute equality witnesses. Let I be a satisfiable inequality set such that I > is unsatisfiable. The oracle returns a witness combining n + 1 constraints of I > (for n ≥ 1) that implies a contradiction:

n+1 i=1 λ i • I > i
where λ i > 0 By Corollary 2, this witness represents a contradictory constraint 0 > 0 and each inequality I i is large. Each inequality I i is turned into an equality written I = i -proved by

I i & 1 λi • j∈{1...n+1} j =i λ j • I j
Hence, each equality I = i is proved by combining n + 1 constraints. Proving (I = i ) i∈{1,...,n+1} in this naive approach combines Θ(n 2 ) constraints.

We rather propose a more symmetric way to build equality witnesses which leads to a simple linear algorithm. Actually, we build a system of n equalities noted (E i ) i∈{1,...,n} , where -for i ∈ {1, . . . , n} -each E i corresponds to the unsatisfiability witness where the i-th "+" has been replaced by a "&":

i j=1 λ j • I j & n+1 j=i+1 λ j • I j
This system of equations is proved equivalent to (I = i ) i∈{1,...,n+1} thanks to the following correspondence. This also shows that one equality I = i is redundant, because (I = i ) i∈{1,...,n+1} contains one more equality than (E i ) i∈{1,...,n} .

I = 1 = 1 λ 1 • E1 and I = n+1 = -1 λn • En and for i ∈ {2, . . . , n} , I = i = 1 λ i • (Ei -Ei-1)
In order to use a linear number of combinations, we build (E i ) i∈{1,...,n} thanks to two lists of intermediate constraints (A i ) i∈{1,...,n} and (B i ) i∈{2,...,n+1} defined by

A 1 := λ 1 • I 1 and for i from 2 up to n, A i := A i-1 + λ i • I i B n+1 := λ n+1 • I n+1 and for i from n down to 2, B i := B i+1 + λ i • I i
Then, we build E i := A i & B i+1 for i ∈ {1, . . . , n}.

Illustration on the Running Example

Let us detail how to compute the reduced form of polyhedron P from Figure 1.

P := {I1 : x1 + x2 ≥ x3, I2 : x1 ≥ -10, I3 : 3x1 ≥ x2, I4 : 2x3 ≥ x2, I5 : -1 2 x2 ≥ x1}
P is a satisfiable set of inequalities. Thus, we first extract a complete set of equalities E from constraints of P by applying the previous ideas. We ask to a Linear Programming (LP) solver for a point satisfying P > , the strict version of P . Because there is no such point, the solver returns the unsatisfiability witness

I > 1 + 1 2 • I > 4 + I > 5
(which reduces to 0 > 0). By building the two sequences (A i ) and (B i ) defined previously, we obtain the two equalities

E 1 : x 1 + x 2 = x 3 proved by (x 1 + x 2 ≥ x 3 ) A1: I1 & (x 3 ≥ x 1 + x 2 ) B2: 1 2 •I4+I5 E 2 : x 1 = -1 2 x 2 proved by (x 1 ≥ -1 2 x 2 ) A2: I1+ 1 2 •I4 & (-1 2 x 2 ≥ x 1 ) B3: I5
Thus, P is rewritten into E ∧ I with

E := E 1 : x 1 + x 2 = x 3 , E 2 : x 1 = -1 2 x 2 , I := {I 2 : x 1 ≥ 10, I 3 : 3x 1 ≥ x 2 }
To be reduced, the polyhedron must be in echelon form, as explained in Definition 4. This implies that each equality of E must have the form x i -t i = 0, and each such x i must not appear in I. Here, let us consider that E 1 defines x 2 . To be in the form t = 0, E 1 is rewritten into x 2 -(x 3 -x 1 ) = 0. Then, x 2 is eliminated from E 2 , leading to E 2 : x 1 + x 3 = 0. In practice, our oracle goes one step further by rewriting x 1 (using its definition in E 2 ) into E 1 in order to get a reduced echelon system E of equalities:

E := {E 1 : x 2 -2 • x 3 = 0, E 2 : x 1 + x 3 = 0}
Moreover, the variables defined in E (i.e. x 1 and x 2 ) are eliminated from I, which is rewritten into

I := {I 2 : -x 3 ≥ -10, I 3 : -x 3 ≥ 0}
The last step is to detect that I 2 is redundant w.r.t. I 3 with a process which is indicated in the next section.

Description of the Algorithm

The pseudo-code of Figure 6 describes the reduce algorithm. The input polyhedron is assumed to be given in the form E ∧ I, where E contains only equalities For simplicity, construction of proof witness is omitted on the pseudo-code. To summarize, the result of reduce is • either "Contrad(c)" where c is a contradictory constraint • or "Reduced(P )" where P is a satisfiable reduced polyhedron. and I contains only inequalities. First, polyhedron E ∧ I is echeloned: function echelon returns a new system E ∧ I where E is an echelon system of equalities without redundancies (they have been detected as 0 = 0 during echeloning and removed) and without contradiction (they have been detected as 1 = 0 during echeloning and inserted as a contradictory constraint -1 ≥ 0 in I). Second, the satisfiability of I is tested by function is_sat. If is_sat returns "Unsat (λ)", then λ is a Farkas witness allowing to return a contradictory constant constraint written λ T •I. Otherwise, I is satisfiable and reduce enters into a loop to learn all implicit equalities. At each step of the loop, the satisfiability of I > is tested. If is_sat returns "Unsat (λ)", then a new set E of equalities is learned from λ and I contains the inequalities of I that do not appear in the conflict. After echeloning the new system, the loop continues.

Otherwise, is_sat returns "Sat(m)" where m is a model of I > . Geometrically, m is a point in the interior of polyhedron I. Point m helps function rm_redundancies to detect and remove redundant constraints of I, by a raytracing method described in [START_REF] Maréchal | Efficient elimination of redundancies in polyhedra by raytracing[END_REF]. At last, reduce returns E ∧ I, which is a satisfiable reduced polyhedron because of Lemma 2.

Variant. In a variant of this algorithm, we avoid to test the satisfiability of I before entering the loop (i.e. we avoid the first step of the algorithm). Indeed, the satisfiability of I can be directly deduced from the witness returned by is_sat(I > ). If the combination of the linear terms induced by the witness gives a negative number instead of 0, it means that I is unsatisfiable. However, we could make several loop executions before finding a witness showing that I is unsatisfiable: I can contain several implicit equalities which do not imply the unsatisfiability of I and that may be discovered first. We do not know which version is the more efficient. It probably depends on the kind of polyhedra the user is upon to use.

Conclusion and Related Works

This paper describes a Coq tactic that learns equalities from a set of linear rational inequalities. It is much less powerful than Coq SMT tactics [START_REF] Armand | A modular integration of SAT/SMT solvers to coq through proof witnesses[END_REF][START_REF] Besson | Modular SMT proofs for fast reflexive checking inside coq[END_REF] and than the famous sledgehammer of Isabelle [START_REF] Böhme | Sledgehammer: Judgement day[END_REF][START_REF] Blanchette | Extending sledgehammer with SMT solvers[END_REF]. But, it may help users to progress on goals that do not exactly fit into the scope of existing SMT-solving procedures.

This tactic uses a simple algorithm -implemented in the new VPL -that follows a kind of conflict driven clause learning. This equality learning algorithm only relies on an efficient SAT-solver on inequalities able to generate nonnegativity witnesses. Hence, it seems generalizable to arbitrary polynomials. We may also hope to generalize it to totally ordered rings like Z.

The initial implementation of the VPL [START_REF] Fouilhé | Efficient Generation of Correctness Certificates for the Abstract Domain of Polyhedra[END_REF] also reduces polyhedra as defined in Definition 3. It implements equality learning in a more naive way: for each inequality t ≥ 0 of the current (satisfiable) inequalities I, the algorithm checks whether I ∧ t > 0 is satisfiable. If not, equality t = 0 is learned. In other words, each learned equality derives from one satisfiability test. Our new algorithm is more efficient, since it may learn several equalities from a single satisfiability test. Moreover, when there is no equality to learn, the new algorithm performs only one satisfiability test, whereas the previous version checks all inequalities one by one.

We have implemented this algorithm in an Ocaml oracle, able to produce proof witnesses for these equalities. The format of these witnesses is very similar to the one of micromega [START_REF] Besson | Fast reflexive arithmetic tactics the linear case and beyond[END_REF], except that it provides a bind operator which avoids duplications of computations (induced by rewriting of learned equalities). In the core of our oracle, the production of these witnesses follows a lightweight, safe and evolutive design, called polymorphic LCF style [START_REF] Boulmé | Toward Certification for Free![END_REF]. This style makes the implementation of VPL oracles much simpler than in the previous VPL implementation. Our implementation thus illustrates how to instantiate "polymorphic witnesses" of polymorphic LCF style in order to generate Coq abstract syntax trees, and thus to prove the equalities in Coq by computational reflection.

The previous Coq frontend of the VPL [START_REF] Fouilhé | A certifying frontend for (sub)polyhedral abstract domains[END_REF] would also allow to perform such proofs by reflection. Here, we believe than the HOAS approach followed in Section 4.3 is much simpler and more efficient than this previous implementation (where substitutions were very inefficiently encoded with lists of constraints).

Our tactic is still a prototype. Additional works are required to make it really robust in interactive proofs. For example, the user may need to stop the tactic before the rewritings of the learned equalities are performed, for instance when some rewriting interferes with dependent types. The user can invoke instead a subtactic vpl_reduce, and apply these rewritings by "hand". The maintainability of such user scripts thus depends on the stability of the generated equalities and their order w.r.t. small changes in the input goal. A first step toward stability would be to make our tactic idempotent by keeping the goal unchanged on a already reduced polyhedron. However, we have not yet investigated these stability issues.
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 1 Fig. 1. Example of a Proof Script and its Interpretation by reduceRun

  Record wcstr ( s : ( var → Qc ) → Prop ) := { rep : Cstr . t ; rep_sat : ∀ m , s m → Cstr . sat rep m }.

Definition

  pedra := list Cstr . t . Definition l m := List . Forall ( fun c ⇒ Cstr . sat c m ) l . Definition answ ( o : option pedra ) m := match o with Some l ⇒ l m | None ⇒ False end . Definition reduceRun ( l : pedra )( p :∀ v , script v ): option pedra := scriptEval ( s := l ) ( p _ ) l (* . . . *) . Lemma reduceRun_correct l m p : l m → answ ( reduceRun l p ) m .
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 23 Fig. 2. Definition of reduceRun and its CorrectnessInductive fexp ( v : Type ):Type := | Var : v → fexp v (* name bound to [ Bind ] or [ BindHyp ] *) | Add : fexp v → fexp v → fexp v | Mul : Qc → fexp v → fexp v | Merge : fexp v → fexp v → fexp v .Fixpoint fexpEval { s } ( c : fexp ( wcstr s )): ( wcstr s ) := match c with | Var c ⇒ c | Add c1 c2 ⇒ ( fexpEval c1 ) + ( fexpEval c2 ) | Mul n c ⇒ n•( fexpEval c ) | Merge c1 c2 ⇒ ( fexpEval c1 ) & ( fexpEval c2 ) end .

  Lemma reduceRun_correct Inductive pexp ( v : Type ): Type := | Bind : fexp v → ( v → pexp v ) → pexp v | Contrad : ( fexp v ) → pexp v | Return : list (( option var ) * ( fexp v )) → pexp v . Fixpoint pexpEval { s } ( p : pexp ( wcstr s )): option pedra := match p with | Bind c bp ⇒ pexpEval ( bp ( fexpEval c )) | Contrad c ⇒ contrad c | Return l ⇒ Some ( ret l nil ) end . Lemma pexpEval_correct s ( p : pexp ( wcstr s )) m : s m → answ ( pexpEval p ) m .
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 4 Fig. 4. Polyhedral Computations and their Interpreter

Inductive

  script ( v : Type ):Type := | SkipHyp : script v → script v | BindHyp : ( v → script v ) → script v | Run : ( pexp v ) → script v .Fixpoint scriptEval { s } ( p : script ( wcstr s )) ( l : pedra ): (∀ m , s m → l m ) → option pedra := (* . . . *) Lemma scriptEval_correct s ( p : script ( wcstr s )) m : ∀ l : pedra , (∀ m , s m → l m ) → s m → answ ( scriptEval p l ) m .
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 5 Fig. 5. Script Expressions and their Interpreter
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 6 Fig. 6. Pseudo-code of the reduce oracle

Here, T ⇔ (¬T ⇒ False) because comparisons on Q are decidable.

It is currently implemented on the top of auto with a dedicated basis of lemma.

For a prototype like our tactic, such a HOAS has mainly the advantage of simplicity: it avoids formalizing in Coq the use of a substitution mechanism. The impact on the efficiency at runtime remains unclear. On one side, typechecking a higher-order term is more expensive than typechecking a first-order term. On the other side, implementing an efficient substitution mechanism in Coq is currently not straightforward: purely functional data-structures induce a non-negligible logarithmic factor over imperative data-structures. The latter ones -which have precisely been introduced for this purpose in[START_REF] Armand | Extending coq with imperative features and its application to SAT verification[END_REF] -are not yet integrated into the stable release of Coq.
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