
HAL Id: hal-01505598
https://hal.science/hal-01505598v1

Preprint submitted on 11 Apr 2017 (v1), last revised 20 Jul 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Coq Tactic for Equality Learning in Linear Arithmetic
Sylvain Boulmé, Alexandre Maréchal

To cite this version:
Sylvain Boulmé, Alexandre Maréchal. A Coq Tactic for Equality Learning in Linear Arithmetic. 2017.
�hal-01505598v1�

https://hal.science/hal-01505598v1
https://hal.archives-ouvertes.fr

A Coq Tactic for
Equality Learning in Linear Arithmetic ?

Sylvain Boulmé and Alexandre Maréchal

Univ. Grenoble-Alpes, VERIMAG, F-38000 Grenoble, France
{sylvain.boulme,alex.marechal}@univ-grenoble-alpes.fr

Abstract. Coq provides linear arithmetic tactics like omega or lia.
Currently, these tactics let the current goal unchanged when they can
not prove it. We propose to improve this behavior: when the goal is
not provable in linear arithmetic, we inject in hypotheses new equalities
discovered from the linear inequalities. These equalities may help other
Coq tactics to discharge the goal. The paper describes how we have
implemented this idea in a new Coq tactic, dealing with linear arithmetic
over rationals. It also illustrates that equality learning allows our tactic
to interact with other Coq tactics.

Keywords: Linear Programming, Clause Learning, Skeptical Approach

1 Introduction

Several Coq tactics prove goals containing linear (in)equalities: omega and lia
on integers; fourier or lra on reals and rationals [7,1]. This paper provides yet
another tactic for proving such goals. This tactic – called vpl1 – is currently
limited to rationals. It is built on the top of the Verified Polyhedra Library
(VPL), a Coq-certified abstract domain of convex polyhedra [4]. Its main feature
appears when it can not prove the goal. In this case, whereas above tactics let
the goal unchanged (they fail), our tactic “simplifies” the goal. In particular, it
injects as hypotheses a complete set of linear equalities that are deduced from the
linear inequalities in the context. Then, many Coq tactics – like congruence,
field or even auto – can exploit these equalities, even if they can not deduce
them from the initial context by themselves. By simplifying the goal, our tactic
both improves the user experience and proof automation.

Let us illustrate this feature on the following – almost trivial – Coq goal,
where Qc is the type of rationals on which our tactic applies.

Lemma ex1 (x:Qc) (f:Qc → Qc): x≤1 → (f x)<(f 1) → x <1.

? This work was partially supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement nr. 306595 “STATOR”.

1 Coq plugin available on http://github.com/VERIMAG-Polyhedra/VplTactic.

http://erc.europa.eu/
http://stator.imag.fr
http://github.com/VERIMAG-Polyhedra/VplTactic

2 Sylvain Boulmé and Alexandre Maréchal

This goal is valid on Qc and Z, but both omega and lia fail on the Z instance
without providing any help to the user. Indeed, since this goal contains an un-
interpreted function f, it does not fit into the pure linear arithmetic fragment.
On the contrary, this goal is proved by two successive calls to the vpl tactic. As
detailed below, equality learning plays a crucial role in this proof: the rewrit-
ing of a learned equality inside a non-linear term (because under symbol f) is
interleaved between deduction steps in linear arithmetic.

In short, this paper provides three contributions. First, we provide a Coq
tactic with equality learning, which seems a new idea in the Coq community.
Second, we provide a new algorithm which learns these equalities from conflicts
between strict inequalities detected by a linear programming solver. This algo-
rithm can be viewed as a special but optimized case of “conflict driven clause
learning” – at the heart of modern DPLL procedures [6]. On most cases, it is
strictly more efficient than the naive equality learning algorithm previously im-
plemented in the VPL [4]. In particular, our algorithm is cheap when there is
no equality to learn. At last, we have implemented this algorithm in an Ocaml
oracle, able to produce proof witnesses for these equalities. The paper partially
details this process, and in particular, how the proof of the learned equalities
are computed in Coq by reflection from these witnesses.

Specification of the Oracle. Let us now introduce the specification of the vpl
tactic. As mentioned above, the algorithmic core of the tactic is performed by
an oracle programmed in Ocaml, and called reduce. This oracles takes as input
a convex polyhedron P and outputs a reduced polyhedron P ′ such that P ′ ⇔ P
and such that the number of constraints in P ′ is lower or equals to that of P.

Definition 1 (Convex Polyhedron). A (convex) polyhedron2 on Q is a con-
junction of linear (in)equalities of the form

∑
i aixi ./ b where ai, b are constants

in Q, where xi are variables ranging over Q, and where ./ represents a binary
relation on Q among ≥, > or =.

A polyhedron may be suboptimally written. In particular, one of its constraints
may be implied by the others: it is thus redundant and can be discarded. More-
over, a set of inequalities can imply implicit equalities, such as x = 0 that can
be deduced from x ≥ 0 ∧ −x ≥ 0. Definition 2 characterizes polyhedra without
implicit equalities.

Definition 2 (Complete set of linear equalities). Let E be a set of linear
equalities and I be a set of linear inequalities. E is said complete w.r.t. I if any
linear equality deduced from the conjunction E ∧ I can also be deduced from E
alone. Formally, E is complete iff – with t1 and t2 ranging over linear terms –

for all t1 t2, (E ∧ I ⇒ t1 = t2) implies (E ⇒ t1 = t2) (1)

Definition 3 (Reduced Polyhedron). A polyhedron P is reduced iff it sat-
isfies the following condition.
2 Dealing only with convex polyhedra on Q, we often omit the adjective “convex”.

Equality Learning in Linear Arithmetic 3

– If P is unsatisfiable, then P is a single constant constraint like 0 > 0 or 0 ≥ 1.
In other words, its unsatisfiability is checked by one comparison on Q.

– Otherwise, P contains no redundant constraint and it is syntactically given
as a conjunction E ∧ I where polyhedron I contains only inequalities and
where polyhedron E is a complete set of equalities w.r.t. I.

Having a reduced polyhedron ensures that any provable linear equality admits
a pure equational proof which ignores the remaining inequalities. We shall show
further (in Lemma 1) that this also happens for a larger class of equalities.

Specification of the Tactic. Roughly speaking, a Coq goal corresponds to a
sequent Γ ` T where context Γ represents a conjunction of hypotheses and
T a conclusion. In other words, this goal is logically interpreted as the meta-
implication Γ ⇒ T . The tactic transforms the current goal Γ ` T through three
successive steps:
1. First, the goal is rewritten equivalently as Γ ′, JPK (m) ` T ′ where P is a

polyhedron and m an assignment of P variables. For example, the ex1 goal
is rewritten as JP1K (m1) ` False, where

P1 := x1 ≤ 1 ∧ x2 < x3 ∧ x1 ≥ 1
m1 := { x1 7→ x; x2 7→ (f x); x3 7→ (f 1) }

Hence, JPK (m) corresponds to a conjunction of inequalities on Q that are
not necessarily linear, because m may assign variables of P to arbitrary Coq
terms on Q. Actually, JPK (m) contains at least all (in)equalities on Q that
appear as hypotheses of Γ . Moreover, if T is an inequality on Q, then an
inequality equivalent to ¬T appears in JPK (m) and T ′ is proposition False.3
This step is traditionally called reification in Coq tactics.

2. Second, the goal is rewritten equivalently as Γ ′, JP ′K (m) ` T ′ where P ′ is
the reduced polyhedron computed from P by our reduce oracle. For instance,
polyhedron P1 found in the ex1 goal is reduced into

P ′1 := x1 = 1 ∧ x2 < x3

3. At last, if P ′ is unsatisfiable, then so is JP ′K (m), and the goal is finally
discharged. Otherwise, given E the complete set of equalities in P ′, equali-
ties of JEK (m) are rewritten in the goal. For example, on the ex1 goal, our
tactic rewrites the learned equality “x=1” into the remaining hypothesis. In
summary, a first call to the vpl tactic transforms the ex1 goal into

x=1, (f 1)<(f 1) ` False
A second call to vpl detects that hypothesis (f 1)<(f 1) is unsatisfiable
and finally proves the goal.

In the description above, we claim that our transformations on the goals are
equivalences. This provides a guarantee to the user: the tactic can always be
applied on the goal, without loss of information. However, in order to make the
Coq proof checker accept our transformations, we only need to prove implica-
tions, as detailed in the next paragraph.
3 Here, T ⇔ (¬T ⇒ False) because comparisons on Q are decidable.

4 Sylvain Boulmé and Alexandre Maréchal

The Coq Proof Built by the Tactic. The tactic mainly proves the two following
implications which are verified by the Coq kernel:

Γ ′, JPK (m) ` T ′ ⇒ Γ ` T (2)
∀m, JPK (m) ⇒ JP ′K (m) (3)

Semantics of polyhedron J.K is encoded as a Coq function, using binary integers
to encode variables of polyhedra. After simple propositional rewritings in the
initial goal Γ ` T , an Ocaml oracle provides m and P to the Coq kernel, which
simply computes JPK (m) and checks that is syntactically equals to the expected
part of the context. Hence, verifying implication (2) is mainly syntactical.

For implication (3), our reduce oracle actually produces a Coq AST, that
represents a proof witness allowing to build each constraint of P ′ as a non-
negative linear combination of P constraints. Indeed, such a combination is nec-
essarily a logical consequence of P. In practice, this proof witness is a value of
a Coq inductive type. A Coq function called reduceRun takes in input a poly-
hedron P and its associated witness, and computes P ′. A Coq theorem ensures
that any result of reduceRun satisfies implication (3). Thus, this implication is
ensured by construction, while – for the last step of the tactic described above
– the Coq kernel computes P ′ by applying reduceRun.

Overview of the Paper. Section 2 illustrates our tactic on a non-trivial example.
It also explains how it collaborates with other Coq tactics through equality
learning. Section 3 details the certificate format produced by our oracle, and
how it is applied in our Coq tactic. At last, Section 4 details the algorithm we
developed to produce such certificates.

2 Applications of the vpl Tactic

This section illustrates the applications of the tactic, in particular when it can
not prove the goal. Section 2.1 details the following completeness result – which
is a consequence of the Lemma 1 given below.

Our tactic removes the need to consider inequalities on goals of the form
“P ⇒ t1 = t2” when P is a polyhedron and t1, t2 are first-order terms of
an equational extension of linear rational arithmetic (see Definition 5).

Section 2.2 provides a detailed example which illustrates such equality proofs
and how they may appear inside a larger proof.

2.1 Application to equality proofs
Definition 4. We note Q1,≥,>[#»

X] the first-order theory (with congruence) of
linear arithmetic over Q. This theory syntactically distinguishes Q constants
from other Q terms: each Q constant is considered as a distinct function symbol.
On Q terms, this theory axiomatizes addition, linear multiplication, and orders
using axioms of totally ordered vector spaces – where vectors are Q terms and
scalars are Q constants.

Equality Learning in Linear Arithmetic 5

Definition 5. We call equational extension of linear rational arithmetic a first-
order theory that extends Q1,≥,>[#»

X] with axioms that are only equational Horn
clauses. Such an axiom is of the following form (where ti and t′i are first-order
terms, and #»x ranges over all the variables of the axiom):

∀ #»x , (t1 = t′1 ∧ . . . ∧ tn = t′n) ⇒ tn+1 = t′n+1

For example, equational extensions of linear rational arithmetic are closed under
extensions with uninterpreted function symbols. Indeed, for these new symbols,
we only add congruence axioms, which are equational Horn clauses.

As another example, consider an extension of Q1,≥,>[#»

X] embedding the ring
theory of Q[#»

X], and that provides an axiom – for any rational constant c – linking
linear multiplication (noted below ·) to unrestricted multiplication (noted below
×) given by

∀x, c× x = c · x

This theory is an equational extension of linear rational arithmetic.
As a counter-example, field theory Q(#»

X) can not be encoded with only equa-
tional Horn clauses. Intuitively, a field must provide an axiom for inverse like
x 6= 0⇒ x× x−1 = 1, which is not an equational Horn clause.

Lemma 1 (Extended Completeness). We assume E and I two polyhedra
satisfying property (1) when t1 and t2 are linear terms (i.e. range over Q1[#»

X]).
Property (1) is also satisfied when t1 and t2 range over first-order terms of any
equational extension of linear rational arithmetic.

Proof. By induction on a cut-free proof of t1 = t2. There are two cases. Either
we have applied an axiom corresponding to an equational Horn clause, and we
conclude by induction hypotheses. Otherwise, we are on a pure equality of Q1[#»

X]
which can be deduced from E. ut

For example, property (1) ensures that we have a complete tactic for solving
goals of the form “P ⇒ t1 = t2” – where P is a polyhedron and where t1 and
t2 are polynomials in Q[#»

X] – by first applying our tactic and then applying
the ring tactic. We can extend this completeness result when t1 and t2 contain
uninterpreted symbols by also applying congruence closure.

When t1 and t2 are fractions of Q(#»

X), we can not have such a completeness
result. For example, x = y ∧ y ≥ 1 ⇒ x × y−1 = 1 is a tautology whereas
x = y ⇒ x × y−1 = 1 is false when x = y = 0. However, if denominators
appearing in t1 and t2 are themselves linear, then we can still discharge goals of
the form “P ⇒ t1 = t2” by combining our tactic with the field tactic. This is
illustrated in the following example.

2.2 A Detailed Example

This section illustrates the main aspects of the tactic on a single example. This
goal contains two uninterpreted functions f and g such that f domain and g

6 Sylvain Boulmé and Alexandre Maréchal

codomain are the same uninterpreted type A. As we will see below, in order to
prove this goal, we need to use its last hypothesis – of the form “g (. . .) <> g (13)”
– by combining equational reasoning on g and on Qc field. Of course, we also
need linear arithmetic on Qc order.

Lemma ex2 (A:Type) (f:A → Qc) (g:Qc → A) (v1 v2 v3 v4: Qc):
6*v1 - v2 - 10* v3 + 7*(f(g v1) + 1) ≤ -1
→ 3*(f(g v1) - 2*v3) + 4 ≥ v2 - 4*v1
→ 8*v1 - 3*v2 - 4*v3 - f(g v1) ≤ 2
→ 11* v1 - 4*v2 > 3
→ v3 > -1
→ v4 ≥ 0
→ g((11 - v2 + 13* v4) / (v3+v4)) <> g(13)
→ 3 + 4*v2 + 5*v3 + f(g v1) > 11* v1.

The vpl tactic reduces this goal to the equivalent one given below (where typing
of variables is omitted).

H5 : g((11 - (11 - 13* v3) + 13* v4) / (v3+v4)) = g 13 → False
vpl : v1 = 4 - 4 * v3
vpl0 : v2 = 11 - 13 * v3
vpl1 : f (g (4 - 4 * v3)) = -3 + 3 * v3
______________________________________ (1/1)
0 ≤ v4 → (3#8) < v3 → False

Here, three equations vpl, vpl0 and vpl1 have been learned from the goal.
Two non-redundant inequalities remain in the hypotheses of the conclusion –
where (3#8) is the Coq notation for 3

8 . The bound “v3 > −1” had disappeared
because it is implied by “(3#8) < v3”. By taking v3 = 1, we can build a model
satisfying all the hypotheses of the goal – including (3#8) < v3 – except H5.
Thus, using H5 is necessary to prove False.

Actually, we provide another tactic called vpl_post which automatically
proves this goal. This tactic combines equational reasoning on Qc field with a bit
of congruence.4 Let us detail how it works on this example. First, in backward
reasoning, H5 is applied to eliminate False from the conclusion. We get the
following conclusion (where previous hypotheses have been omitted).

______________________________________ (1/1)
g((11 - (11 - 13* v3) + 13* v4) / (v3+v4)) = g 13

Here, backward congruence reasoning reduces this conclusion to

______________________________________ (1/1)
(11 - (11 - 13* v3) + 13* v4) / (v3+v4) = 13

Now, the field tactic reduces the conclusion to

______________________________________ (1/1)
v3+v4 <> 0

4 It is currently implemented on the top of auto with a dedicated basis of lemma.

Equality Learning in Linear Arithmetic 7

Indeed, the field tactic mainly applies ring rewriting on Qc while generating
subgoals for checking that denominators are not zero. Here, because we have a
linear denominator, we discharge the remaining goal using the vpl tactic again.
Indeed, it gets the following polyhedron in hypotheses – which is unsatisfiable.

v4 ≥ 0 ∧ v3 >
3
8 ∧ v3 + v4 = 0

Let us remark that since lemma ex2 is provable on Q, it is also valid when
the codomain of f and types of variables v1 . . . v4 are restricted to Z. However,
both omega and lia fail on this goal without providing any help to the user.

3 The Witness Format and its Interpreter in the Tactic

Section 3.3 below presents our proof witness format in Coq to build a reduced
polyhedron P ′ as a logical consequence of P . It also details the implementation
of reduceRun and its correctness property, formalizing property (3) given in
introduction. In preliminaries, Section 3.1 recalls the Farkas operations of the
VPL, at the basis of our proof witness format, itself illustrated in Section 3.2.

3.1 Certified Farkas Operations on Linear Constraints

The tactic uses the linear constraints defined in the VPL [3], that we recall
here. Type var is the type of variables in polyhedra. Actually, it is simply defined
as type positive, the unbounded binary positive integers of Coq. Module Cstr
provides an efficient representation for linear constraints on Qc, the Coq type for
Q. Type Cstr . t handles constraints of the form “t ./ 0” where t is a linear term
and ./∈ {=,≥, >}. Hence, each input constraint “t1 ./ t2” will be encoded as
“t1− t2 ./ 0”. Linear terms are themselves encoded as radix trees over positive
with values in Qc.

The semantics of Cstr . t constraints is given by predicate (Cstr . sat c m) ,
(sat c m) expressing that model m : var → Qc satisfies constraint c. Module
Cstr provides also the following operations:
– (t1 ./1 0) + (t2 ./2 0) , (t1 + t2) ./ 0 where ./, max(./1, ./2) for the total

increasing order induced by the sequence =, ≥, >;
– n · (t ./ 0) , (n · t) ./ 0 assuming n ∈ Q and, if ./∈ {≥, >} then n ≥ 0;
– (t ≥ 0) & (−t ≥ 0) , t = 0.

It is easy to prove that each of these operations returns a constraint that is
satisfied by the models of its inputs. For example, given c1 and c2 such that
(sat c1 m) and (sat c2 m) , then (sat (c1+c2) m) holds. When invoked
on a wrong precondition, these operations actually return “0 = 0” which also
is satisfied by any model. Still, this precondition violation only appears if there
is a bug in the reduce oracle. These operations are called Farkas operations, in
reference to Farkas lemma recalled on page 11.

In the following, we actually handle each constraint with a proof that it
satisfies a given set s of models (encoded here by its characteristic function).
The type of such a constraint is (wcstr s) , as defined below.

8 Sylvain Boulmé and Alexandre Maréchal

P :=

x1 + x2 ≥ x3
x1 ≥ −10
3x1 ≥ x2
2x3 ≥ x2
− 1

2 x2 ≥ x1−−−−−−−−→
reduceRun

P ′ :=

{
x1 = −x3
x2 = 2x3
x3 ≤ 0

Script Computations
1 BindHyp H0 x1 + x2 − x3 ≥ 0
2 SkipHyp
3 BindHyp H1 3x1 − x2 ≥ 0
4 BindHyp H2 2x3 − x2 ≥ 0
5 BindHyp H3 −x1 − 1

2x2 ≥ 0
6 Bind H4 ← (H0 + 1

2 ·H2) & H3 x1 + 1
2x2 = 0

7 Bind X ← (1
2 ·H2 + H3) & H0 −x1 − x2 + x3 = 0

8 Bind H5 ← X + H4 − 1
2x2 + x3 = 0

9 Bind H6 ← H5 + H4 x1 + x3 = 0
10 Return {
11 [x1] H6 x1 + x3 = 0
12 [x2] − 2 ·H5 x2 − 2x3 = 0
13 1

5 · (H1 +−3 ·H6 +−2 ·H5) −x3 ≥ 0
14 }

Fig. 1. Example of a Proof Script and its Interpretation by reduceRun

Record wcstr (s: (var → Qc) → Prop) :=
{ rep: Cstr.t; rep_sat : ∀ m, s m → Cstr.sat rep m }.

Hence, all the Farkas operations are actually lifted to type (wcstr s) , for all s.

3.2 Example of Proof Witness

We introduce our syntax for proof witnesses on Figure 1. Our oracle detects
that P is satisfiable, and thus returns the “proof script” of Figure 1. This script
instructs reduceRun to produce P ′ from P . By construction, we have P ⇒ P ′.

This script has three part. In the first part – from line 1 to 5 – the script
considers each constraint of P and binds it to a name, or skips it. For instance,
x1 ≥ −10 is skipped because it is redundant: it is implied by P ′ and thus not
necessary to build P ′ from P . In the second part – from line 6 to 9 – the script
builds intermediate constraints: their value is detailed on the right hand-side of
the figure. Each of these constraints is bound to a name. Hence, when a constraint
– like H4 – is used several times, we avoid a duplication of its computation.

In the last part – from line 10 to 14 – the script returns the constraints of P ′.
As further detailed in Section 4, each equation defines one variable in terms of
the others. For each equation, this variable is explicitly given between brackets
“[.]” in the script of Figure 1, such as x1 at line 11 and x2 at line 12. This
instructs reduceRun to rewrite equations in the form “x = t”.

3.3 The HOAS of Proof Witnesses and its Interpreter

Our reduceRun function and its correctness are defined on Figure 2. In this Coq
code, the input polyhedron of reduceRun is given as a list of constraints l of

Equality Learning in Linear Arithmetic 9

Definition pedra := list Cstr.t.
Definition JlK m := List. Forall (fun c ⇒ Cstr.sat c m) l.
Definition answ (o: option pedra) m

:= match o with Some l ⇒ JlK m | None ⇒ False end.

Definition reduceRun (l:pedra)(p:∀ v, script v): option pedra
:= scriptEval (s:=JlK) (p _) l (* . . . *).

Lemma reduceRun_correct l m p: JlK m → answ (reduceRun l p) m.

Fig. 2. Definition of reduceRun and its Correctness

Inductive fexp (v: Type): Type :=
| Var: v → fexp v (* name bound to [Bind] or [BindHyp] *)
| Add: fexp v → fexp v → fexp v
| Mul: Qc → fexp v → fexp v
| Merge: fexp v → fexp v → fexp v.

Fixpoint fexpEval {s} (c: fexp (wcstr s)): (wcstr s) :=
match c with
| Var c ⇒ c
| Add c1 c2 ⇒ (fexpEval c1) + (fexpEval c2)
| Mul n c ⇒ n·(fexpEval c)
| Merge c1 c2 ⇒ (fexpEval c1) & (fexpEval c2)
end.

Fig. 3. Farkas Expressions and their Interpreter

type pedra. Its output is given as type (option pedra) where a None value
corresponds to the case where l is unsatisfiable.

Given a value l : pedra, its semantics – still noted JlK – is a predicate of type
(var→ Qc)→ Prop which is defined from Cstr . sat. This semantics is extended
to type (option pedra) by the predicate answ. Lemma reduceRun_correct
thus formalizes property (3) of page 4 with a minor improvement: when the
input polyhedron is unsatisfiable, a proof of False is directly generated.

The proof witness in input of reduceRun is a value of type ∀ v , script v.
Here, script – defined at Figure 5 – is the type of a Higher-Order Abstract
Syntax (HOAS) parameterized by the type v of variables. A HOAS avoids the
need to handle explicit variable substitutions when interpreting binders: those
are encoded as functions, and variable substitution is delegated to the Coq
engine. The universal quantification over v avoids exposing the representation
of v – used by reducedRun – in the p proof witness.

The bottom level of our HOAS syntax is given by type fexp defined at
Figure 3 and representing “Farkas expressions”. Each constructor in this type
corresponds to a Farkas operation, except constructor Var that represents a
constraint name which is bound to a Bind or a BindHyp binder (see Figure 1).
The function fexpEval computes any such Farkas expression c into a constraint

10 Sylvain Boulmé and Alexandre Maréchal

Inductive pexp (v: Type): Type :=
| Bind: fexp v → (v → pexp v) → pexp v
| Contrad : (fexp v) → pexp v
| Return : list ((option var) * (fexp v)) → pexp v.

Fixpoint pexpEval {s} (p: pexp (wcstr s)): option pedra :=
match p with
| Bind c bp ⇒ pexpEval (bp (fexpEval c))
| Contrad c ⇒ contrad c
| Return l ⇒ Some (ret l nil)
end.

Lemma pexpEval_correct s (p: pexp (wcstr s)) m:
s m → answ (pexpEval p) m.

Fig. 4. Polyhedral Computations and their Interpreter

Inductive script (v: Type): Type :=
| SkipHyp : script v → script v
| BindHyp : (v → script v) → script v
| Run: (pexp v) → script v.

Fixpoint scriptEval {s} (p: script (wcstr s)) (l: pedra):
(∀ m, s m → JlK m) → option pedra := (* . . . *)

Lemma scriptEval_correct s (p: script (wcstr s)) m: ∀ l:pedra ,
(∀ m, s m →JlK m) → s m → answ (scriptEval p l) m.

Fig. 5. Script Expressions and their Interpreter

of type (wcstr s) – for some given s – where type v is itself identified with
type (wcstr s) .

Farkas expressions are combined in order to compute polyhedra. This is ex-
pressed through “polyhedral expressions” of type pexp on Figure 4 which are
computed by pexpEval into (option pedra) values. Type pexp has 3 con-
structors. First, constructor (Bind c (fun H ⇒ p)) is a higher-order binder
of our HOAS: it computes an intermediate Farkas expression c and stores the
result in a variable H bound in the polyhedral expression p. Second, construc-
tor (Contrad c) returns an a priori unsatisfiable constant constraint, which
is verified by function contrad in pexpEval. At last, constructor (Return l)
returns an a priori satisfiable reduced polyhedron, which is encoded as a list of
Farkas expressions associated to an optional variable of type var (indicating a
variable defined by an equation, see example of Figure 1).

Finally, a witness of type script first starts by naming useful constraints of
the input (given as a value l : pedra) and then runs a polyhedral expression in
this naming context. This semantics is given by scriptEval specified at Fig-

Equality Learning in Linear Arithmetic 11

ure 5. On a script (SkipHyp p ’) , function scriptEval simply skips the first
constraint by running recursively (scriptEval p ’ (List . tl l)) . Similarly,
on a script (BindHyp (fun H ⇒ p ’)) , scriptEval pops the first constraint
of l in variable H and then run itself on p ’ . Technically, scriptEval assumes
the following precondition on polyhedron l: it must satisfies all models m char-
acterized by s. As shown on Figure 2, (reduceRun l p) is a simple instance
of (scriptEval (p (wcstr s)) l) where s :=JlK. Hence, this precondition is
trivially satisfied.

4 The Reduction Algorithm

The specification of the reduce oracle is given in introduction of the paper: it
transforms a polyhedron P into a reduced polyhedron P ′ with a smaller number
of constraints and such that P ′ ⇔ P. Sections 4.4 and 4.5 describe our im-
plementation. In preliminaries, Section 4.1 gives a sufficient condition, through
Lemma 4, for a polyhedron to be reduced. This condition leads to learn equali-
ties from conflicts between strict inequalities as detailed in Sections 4.2 and 4.3.
In our proofs and algorithms, we only handle linear constraints in the restricted
form “t ./ 0”. But, for readability, our examples use the arbitrary form “t1 ./ t2”.

4.1 A Refined Specification of the Reduction

Definition 6 (Echelon Polyhedron). An echelon polyhedron is written as a
conjunction E ∧ I where polyhedron I contains only inequalities and where E is
written “

∧
i∈{1,...,k} xi − ti = 0” such that each xi is a variable and each ti is a

linear term, and such that the two following conditions are satisfied. First, no
variable xi appears in polyhedron I. Second, for all integers i, j ∈ {1, . . . , k} with
i < j then xi does not appear in tj.

Intuitively, in such a polyhedron, each equation “xi − ti = 0” actually defines
variable xi as ti. As a consequence, E ∧ I is satisfiable iff I is satisfiable.

We recall below the Farkas lemma[2] which reduces the unsatisfiability of
a polyhedron to the one of a constant constraint, like 0 > 0 or −1 ≥ 0. The
unsatisfiability of such a constraint is checked by a simple comparison on Q.
Lemma 2 (Farkas). Let I be a polyhedron containing only inequalities. If I
is unsatisfiable then there is an unsatisfiable constraint “−λ ./ 0”, computable
from a non-negative linear combination of constraints of I (i.e. using operators
“+” and “·” defined at Section 3.1), and such that ./∈ {≥, >} and λ ∈ Q+.

Proof. This standard lemma is proved by induction on the number of variables
in I. In the inductive case, one variable is eliminated using Fourier-Moztkin’s
elimination (i.e. by combining all pairs of inequalities in which this variable
appears with an opposite sign). ut

From Farkas lemma, we derive the following auxiliary lemma which reduces
the verification of an implication I ⇒ t ≥ 0 to the verification of a syntactic
equality between linear terms.

12 Sylvain Boulmé and Alexandre Maréchal

Lemma 3 (Implication Witness). Let t be a linear term and let I be a sat-
isfiable polyhedron written

∧
j∈{1,...,k} tj ./j 0 with ./j∈ {≥, >}.

If I ⇒ t ≥ 0 then there are k + 1 non-negative rationals (λj)j∈{0,...,k} such
that t = λ0 +Σj∈{1,...,k}λjtj.

Proof. Let us assume that I ∧ −t > 0 is unsatisfiable.
By Farkas lemma, there is an unsatisfiable constant constraint−λ0 ./ 0 such that
−λ0 = (Σj∈{1,...,k}λjtj) + λk+1.(−t) with all λj being non-negative rationals.
Actually, λk+1 > 0. Otherwise, −λ0 ./ 0 would be a proof that I is unsatisfiable.
Thus, for all j ∈ {0, . . . , k}, λj

λk+1
≥ 0 and t = λ0

λk+1
+Σj∈{1,...,k}

λj

λk+1
tj . ut

Definition 7 (Strict Version of Inequalities). Let I be a polyhedron with
only inequalities. We note I> the polyhedron obtained from I by replacing each
large inequality “t ≥ 0” by its strict version “t > 0”. Strict inequalities of I
remain unchanged in I>.

Lemma 4 (Completeness from Strict Satisfiability). Let us assume an
echelon polyhedron E ∧ I without redundant constraints, and such that I> is
satisfiable. Then, E ∧ I is a reduced polyhedron.

Proof. Obviously, because I> is satisfiable, then I is satisfiable and E ∧ I also.
Now, let us prove property (1) of Definition 3. Let t1 and t2 be two linear terms
such that E ∧ I ⇒ t1 = t2. We aim to prove E ⇒ t1 = t2.

First, we rewrite equations of E into terms of the form t1 − t2. This gives a
term t which does not contain variables xi defined in E. Because variables defined
in E do not appear in I and t, we deduce I ⇒ t = 0 from E ∧ I ⇒ t1 = t2.

By Lemma 3, because I ⇒ t ≥ 0, we have t = λ0 + Σj∈{1,...,k}λjtj where
λj ≥ 0 and I =

∧
j∈{1,...,k} tj ./j 0. Similarly, since I ⇒ −t ≥ 0, we have

−t = λ′0 +Σj∈{1,...,k}λ
′
jtj where λ′j ≥ 0.

Let us define t′ , (λ0+Σj∈Jλjtj)+(λ′0+Σj∈J′λ′jtj). Letm be an assignment
of I variables such that JI>Km. By definition, ∀j ∈ {1, . . . , k} , JtjKm > 0.
If there exists j ∈ {0, . . . , k} such that λj 6= 0, then we have 0 < Jt′K (m) =
Jt− tK (m) = 0. This is impossible. Therefore, t is syntactically the constant 0.
This actually proves E ⇒ t1 = t2, because E ⇒ t1 − t2 = t = 0. ut

In this proof, the modelm of I> is a witness allowing to prove that E is complete.
However, as noted in introduction, for our tactic, we do not need to formally
prove in Coq that E is complete: we do not need to output m from our oracle.

Lemma 4 gives a strategy to implement the reduce oracle. If the input poly-
hedron P is satisfiable, then try to rewrite P as an echelon polyhedron E ∧ I
where I> is satisfiable. The next step is to see that on an echelon polyhedron
E ∧ I where I> is unsatisfiable, we can learn new equalities from a minimal
subset of I> inequalities that is unsatisfiable. The inequalities in such a minimal
subset are said “in conflict”.

Equality Learning in Linear Arithmetic 13

4.2 Conflict Driven Equality Learning

Conflict Driven Clause Learning (CDCL) is a standard framework of modern
DPLL SAT-solving [6]. Given a set of large inequalities I, we reformulate the
satisfiability of I into this framework by considering each large constraint t ≥ 0
of I as a clause (t > 0)∨ (t = 0). Hence, our literals are either strict inequalities
or equalities.

Let us run a CDCL SAT-solver on such a set of clauses I. First, let us imagine
that the SAT-solver assumes all literals of I>. Then, an oracle decides whether
I> is satisfiable. If so, then we are done. Otherwise, by Farkas’ lemma, the oracle
returns an unsatisfiable constant constraint −λ ./ 0 such that λ ≥ 0 and −λ is
written Σj∈Jλjtj where for all j ∈ J , λj > 0 and (tj > 0) ∈ I>. The CDCL
solver learns the new clause

∨
j∈J tj = 0 equivalent to ¬I> under hypothesis I.

In fact, a simple arithmetic argument improves this naive CDCL algorithm
by learning directly the conjunction of literals

∧
j∈J tj = 0 instead of the clause∨

j∈J tj = 0. Indeed, because I ⇒
∧
j∈J tj ≥ 0, we have – for all j′ ∈ J –

(I ∧ tj′ 6= 0)⇒ 0 < Σj∈Jλjtj = −λ
Therefore, since λ ≥ 0, we have I ⇒ tj′ = 0 for all j′ ∈ J .

In the following, we learn equalities from conflicts between strict inequalities
in an approach inspired from this naive CDCL algorithm. Whereas the number
of oracle calls for learning n equalities in the naive CDCL algorithm is Ω(n),
our additional arithmetic argument limits it to O(1) in the best cases.

4.3 Building Equality Witnesses from Conflicts

Let us now detail our algorithm to compute equality witnesses. Let I be a sat-
isfiable inequality set such that I> is unsatisfiable. The oracle returns a witness
combining n+ 1 constraints of I> (for n ≥ 1) that implies a contradiction:∑n+1

i=1 λi · I
>
i where λi > 0

We know that this witness represents a contradictory constraint 0 > 0 and that
each inequality Ii is large: otherwise, we would have a proof that I is unsatisfi-
able. Each inequality Ii is turned into an equality written I=

i – proved by
Ii & 1

λi
·
∑
j∈{1...n+1}

j 6=i
λj · Ij

Hence, each equality I=
i is proved by combining n + 1 constraints. Proving

(I=
i)i∈{1,...,n+1} in this naive approach combines Θ(n2) constraints.
We rather propose a more symmetric way to build equality witnesses which

leads to a simple linear algorithm. Actually, we build a system of n equalities
noted (Ei)i∈{1,...,n}, where – for i ∈ {1, . . . , n} – each Ei corresponds to the
unsatisfiability witness where the i-th “+” has been replaced by a “&”:(∑i

j=1 λj · Ij
)

&
(∑n+1

j=i+1 λj · Ij
)

This system of equations is proved equivalent to (I=
i)i∈{1,...,n+1} thanks to the

following correspondence. This also shows that one equality I=
i is redundant,

14 Sylvain Boulmé and Alexandre Maréchal

because (I=
i)i∈{1,...,n+1} contains one more equality than (Ei)i∈{1,...,n}.

I=
1 = 1

λ1
· E1 and I=

n+1 = − 1
λn
· En and for i ∈ {2, . . . , n} , I=

i = 1
λi
· (Ei − Ei−1)

In order to use a linear number of combinations, we build (Ei)i∈{1,...,n} thanks to
two lists of intermediate constraints (Ai)i∈{1,...,n} and (Bi)i∈{2,...,n+1} defined by

A1 := λ1 · I1 and for i from 2 up to n, Ai := Ai−1 + λi · Ii
Bn+1 := λn+1 · In+1 and for i from n down to 2, Bi := Bi+1 + λi · Ii

Then, we build Ei := Ai & Bi+1 for i ∈ {1, . . . , n}.

4.4 Illustration on the Running Example

Let us detail how to compute the reduced form of polyhedron P from Figure 1.
P := {I1 : x1 + x2 ≥ x3, I2 : x1 ≥ −10, I3 : 3x1 ≥ x2, I4 : 2x3 ≥ x2, I5 : − 1

2 x2 ≥ x1}

P is a satisfiable set of inequalities. Thus, we first extract a complete set of
equalities E from constraints of P by applying the previous ideas. We ask to a
Linear Programming (LP) solver for a point satisfying P>, the strict version of
P . Because there is no such point, the solver returns the unsatisfiability witness
I>1 + 1

2 · I
>
4 + I>5 (which reduces to 0 > 0). By building the two sequences (Ai)

and (Bi) defined previously, we obtain the two equalities
E1 : x1 + x2 = x3 proved by (x1 + x2 ≥ x3)︸ ︷︷ ︸

A1: I1

& (x3 ≥ x1 + x2)︸ ︷︷ ︸
B2: 1

2 ·I4+I5

E2 : x1 = − 1
2x2 proved by (x1 ≥ − 1

2x2)︸ ︷︷ ︸
A2: I1+ 1

2 ·I4

& (− 1
2x2 ≥ x1)︸ ︷︷ ︸
B3: I5

Thus, P is rewritten into E ∧ I with
E :=

{
E1 : x1 + x2 = x3, E2 : x1 = − 1

2x2
}
,

I := {I2 : x1 ≥ 10, I3 : 3x1 ≥ x2}
To be reduced, the polyhedron must be in echelon form, as explained in

Definition 6. This implies that each equality of E must have the form xi−ti = 0,
and each such xi must not appear in I. Here, let us consider that E1 defines x2.
To be in the form t = 0, E1 is rewritten into x2 − (x3 − x1) = 0. Then, x2 is
eliminated from E2, leading to E′2 : x1 +x3 = 0. In practice, our oracle goes one
step further by rewriting x1 (using its definition in E′2) into E1 in order to get
a reduced echelon system E′ of equalities:

E′ := {E′1 : x2 − 2 · x3 = 0, E′2 : x1 + x3 = 0}
Moreover, the variables defined in E′ (i.e. x1 and x2) are eliminated from I,
which is rewritten into

I ′ := {I ′2 : −x3 ≥ −10, I ′3 : −x3 ≥ 0}
The last step is to detect that I ′2 is redundant w.r.t. I ′3 with a process which is
indicated in the next section.

Equality Learning in Linear Arithmetic 15

For simplicity, construction of
proof witness is omitted on the
pseudo-code. In other words, the
result of reduce is
• either “Contrad(c)” where c is a
contradictory constraint
• or “Reduced(P ′)” where P ′ is a
satisfiable reduced polyhedron.

function reduce(E∧I) =
(E,I) ← echelon(E,I)
match is_sat(I) with
| Unsat(λ) -> return Contrad(λT·I)
| Sat(_) ->

loop
match is_sat(I>) with
| Unsat(λ) ->

(E′,I ′) ← learn(I,λ)
(E,I) ← echelon(E∧E′,I ′)

| Sat(m) ->
I ← rm_redundancies(I,m)
return Reduced(E∧I)

Fig. 6. Pseudo-code of the reduce oracle

4.5 Description of the Algorithm

The pseudo-code of Figure 6 describes the reduce algorithm. The input polyhe-
dron is assumed to be given in the form E ∧ I, where E contains only equalities
and I contains only inequalities. First, polyhedron E ∧ I is echeloned: function
echelon returns a new system E ∧ I where E is an echelon system of equalities
without redundancies (they have been detected as 0 = 0 during echeloning and
removed) and without contradiction (they have been detected as 1 = 0 during
echeloning and inserted as a contradictory constraint −1 ≥ 0 in I). Second, the
satisfiability of I is tested by function is_sat. If is_sat returns “Unsat (λ)”,
then λ is a Farkas witness allowing to return a contradictory constant constraint
written λT·I. Otherwise, I is satisfiable and reduce enters into a loop to learn
all implicit equalities.

At each step of the loop, the satisfiability of I> is tested. If is_sat returns
“Unsat (λ)”, then a new set E′ of equalities is learned from λ and I ′ contains
the inequalities of I that do not appear in the conflict. After echeloning the new
system, the loop continues.

Otherwise, is_sat returns “Sat(m)” where m is a model of I>. Geomet-
rically, m is a point in the interior of polyhedron I. Point m helps function
rm_redundancies to detect and remove redundant constraints of I, by a ray-
tracing method described in [5]. At last, reduce returns E ∧ I, which is a satis-
fiable reduced polyhedron because of Lemma 4.

5 Conclusion and Related Works

This paper describes a Coq tactic that learns equalities from a set of linear
inequalities. It uses a simple algorithm – implemented in the new VPL – that
follows a kind of conflict driven clause learning. This equality learning algo-
rithm only relies on an efficient SAT-solver on inequalities able to generate non-
negativity witnesses. Hence, it seems generalizable to arbitrary polynomials. We
may also hope to generalize it to totally ordered rings like Z.

16 Sylvain Boulmé and Alexandre Maréchal

The initial implementation of the VPL [4] also reduces polyhedra as defined
in Definition 3. It implements equality learning in a more naive way: for each
inequality t ≥ 0 of the current (satisfiable) inequalities I, the algorithm checks
whether I ∧ t > 0 is satisfiable. If not, equality t = 0 is learned. In other words,
each learned equality derives from one satisfiability test. Our new algorithm is
more efficient, since it may learn several equalities from a single satisfiability
test. Moreover, when there is no equality to learn, the new algorithm performs
only one satisfiability test, whereas the previous version checks all inequalities.

We have implemented this algorithm in an Ocaml oracle, able to produce
proof witnesses for these equalities. The format of these witnesses is very simi-
lar to the one of micromega [1], except that it provides a bind operator which
avoids duplications of computations (induced by rewriting of learned equalities).
In the core of our oracle, the production of these witnesses follows a lightweight,
safe and evolutive design, called polymorphic LCF style 5. This style makes the
implementation of VPL oracles much simpler than in the previous VPL imple-
mentation. Our implementation thus illustrates how to instantiate “polymorphic
witnesses” of polymorphic LCF style in order to generate Coq abstract syntax
trees, and thus to prove the equalities in Coq by computational reflection.

The previous Coq frontend of the VPL [3] would also allow to perform
such proofs by reflection. Here, we believe than the HOAS approach followed in
Section 3.3 is simpler and more efficient than this previous implementation.

References

1. Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In: Types
for Proofs and Programs (TYPES). LNCS, vol. 4502, pp. 48–62. Springer (2006)

2. Farkas, J.: Theorie der einfachen Ungleichungen. Journal für die Reine und Ange-
wandte Mathematik 124 (1902)

3. Fouilhé, A., Boulmé, S.: A certifying frontend for (sub)polyhedral abstract domains.
In: Verified Software: Theories, Tools, Experiments (VSTTE). LNCS, vol. 8471, pp.
200–215. Springer (2014)

4. Fouilhé, A., Monniaux, D., Périn, M.: Efficient Generation of Correctness Certifi-
cates for the Abstract Domain of Polyhedra. In: Static Analysis Symposium (SAS).
LNCS, vol. 7935, pp. 345–365. Springer (2013)

5. Maréchal, A., Périn, M.: Efficient elimination of redundancies in polyhedra by ray-
tracing. In: Verification, Model Checking, and Abstract Interpretation (VMCAI).
pp. 367–385. LNCS, Springer (2017)

6. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol.
185, pp. 131–153. IOS Press (2009)

7. The Coq Development Team: The Coq proof assistant reference manual – version
8.6. INRIA (2016)

5 See our paper Certification for Free! submitted to ICFP’2017.

	A Coq Tactic for Equality Learning in Linear Arithmetic
	Introduction
	Applications of the vpl Tactic
	Application to equality proofs
	A Detailed Example

	The Witness Format and its Interpreter in the Tactic
	Certified Farkas Operations on Linear Constraints
	Example of Proof Witness
	The HOAS of Proof Witnesses and its Interpreter

	The Reduction Algorithm
	A Refined Specification of the Reduction
	Conflict Driven Equality Learning
	Building Equality Witnesses from Conflicts
	Illustration on the Running Example
	Description of the Algorithm

	Conclusion and Related Works

