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Abstract. We investigate the problem of approximating the Pareto set
of biobjective optimization problems with a given number of solutions.
This task is relevant for two reasons: (i) Pareto sets are often computa-
tionally hard so approximation is a necessary tradeoff to allow polyno-
mial time algorithms; (ii) limiting explicitly the size of the approximation
allows the decision maker to control the expected accuracy of approxi-
mation and prevents him to be overwhelmed with too many alternatives.
Our purpose is to exploit general properties that many well studied prob-
lems satisfy. We derive existence and constructive approximation results
for the biobjective versions of Max Bisection, Max Partition, Max

Set Splitting and Max Matching.

1 Introduction

In multiobjective combinatorial optimization a solution is evaluated considering
several objective functions and a major challenge in this context is to generate
the set of efficient solutions or the Pareto set (see [8] about multiobjective com-
binatorial optimization). However, it is usually difficult to identify the efficient
set mainly due to the fact that the number of efficient solutions can be expo-
nential in the size of the input and moreover the associated decision problem
is NP-complete even if the underlying single-objective problem can be solved in
polynomial time. To handle these two difficulties, researchers have been inter-
ested in developing approximation algorithms with an a priori provable guarantee
such as polynomial time constant approximation algorithms. Considering that
all objectives have to be maximized, and for a positive ρ ≤ 1, a ρ-approximation
of Pareto set is a set of solutions that includes, for each efficient solution, a so-
lution that is at least at a factor ρ on all objective values. Intuitively, the larger
the size of the approximation set, the more accurate it can be.

It has been pointed out by Papadimitriou and Yannakakis [18] that, under
certain general assumptions, there always exists a (1 − ε)-approximation, with
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any given accuracy ε > 0, whose size is polynomial both in the size of the instance
and in 1/ε but exponential in the number of criteria. In this result, the accuracy
ε > 0 is given explicitly but the size of the approximation set is not given
explicitly. When the number of solutions in the approximation set is limited, not
every level of accuracy is possible. So, once the number of solutions is fixed in
the approximation set of a multiobjective problem, the following questions are
raised: What is the accuracy for which an approximation is guarantee to exist?
Which accuracy can be obtained in polynomial time?

In this paper we are interested in establishing for biobjective maximization
problems the best approximation ratio of the set of efficient solutions when the
size of the approximation set is given explicitly. We give two approaches that
deal with biobjective problems that allow us to obtain approximations of the
set of efficient solutions with one or several solutions. More precisely, in a first
approach, we consider a general maximization problem (denoted by Π1 in the
following) and establish a sufficient condition that guarantees the construction
of a constant approximation of the Pareto set with an explicitly given number
of solutions. As a corollary, we can construct a (1 − ε)-approximation of the
Pareto set with O(1

ε ) solutions. In a second approach, we establish a necessary
and sufficient condition for the construction of a constant approximation of the
Pareto set with one solution.

Properties defined in these two approaches apply to several problems pre-
viously studied in single-objective approximation. Then we derive polynomial
time constant approximations with one solution for Biobjective Max Bisec-

tion, Biobjective Max Partition, Biobjective Max Cut, Biobjective Max

Set Splitting, Biobjective Max Matching. Some instances show that the
given biobjective appromixation ratios are the best we can expect. In addi-
tion Biobjective Max Partition, Biobjective Max Cut, Biobjective Max Set

Splitting admit a (1−ε)-approximation of the Pareto set with O(1
ε ) solutions.

Several results exist in the literature on the approximation of multiobjective
combinatorial optimization problems. One can mention the existence of fully
polynomial time approximation schemes for biobjective shortest path [12, 22,
21], knapsack [9, 5], minimum spanning tree [18], scheduling problems [4], ran-
domized fully polynomial time approximation scheme for matching [18], and
polynomial time constant approximation for max cut [2], a biobjective schedul-
ing problem [20] and the traveling salesman problem [3, 16]. Note that [2] and
[20] are approximations with a single solution.

This article is organized as follows. In Section 2, we introduce basic concepts
about multiobjective optimization and approximation. Section 3 is devoted to
an approach for approximating some biobjective problems with one or several
solutions. Section 4 presents a necessary and sufficient condition for approxi-
mating within a constant factor some biobjective problems with one solution.
Conclusions are provided in a final section. Due to space limitation, some proofs
are omitted.
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2 Preliminaries on multi-objective optimization and

approximation

Consider an instance of a multi-objective optimization problem with k criteria
or objectives where X denotes the finite set of feasible solutions. Each solution
x ∈ X is represented in the objective space by its corresponding objective vector
w(x) = (w1(x), . . . , wk(x)). We assume that each objective has to be maximized.

From these k objectives, the dominance relation defined on X states that
a feasible solution x dominates a feasible solution x′ if and only if wi(x) ≥
wi(x

′) for i = 1, . . . , k with at least one strict inequality. A solution x is efficient
if and only if there is no other feasible solution x′ ∈ X such that x′ dominates
x, and its corresponding objective vector is said to be non-dominated. Usually,
we are interested in finding a solution corresponding to each non-dominated
objective vector, set that is called Pareto set.

For any 0 < ρ ≤ 1, a solution x is called a ρ-approximation of a solution x′

if wi(x) ≥ ρ · wi(x
′) for i = 1, . . . , k. A set of feasible solutions X ′ is called a ρ-

approximation of a set of efficient solutions if, for every feasible solution x ∈ X ,
X ′ contains a feasible solution x′ that is a ρ-approximation of x. If such a set
exists, we say that the multi-objective problem admits a ρ-approximate Pareto
set with |X ′| solutions.

An algorithm that outputs a ρ-approximation of a set of efficient solutions in
polynomial time in the size of the input is called a ρ-approximation algorithm.
In this case we say that the multi-objective problem admits a polynomial time
ρ-approximate Pareto set.

Consider in the following a single-objective maximization problem P defined
on a ground set U . Every element e ∈ U has a non negative weight w(e). The goal
is to find a feasible solution (subset of U) with maximum weight. The weight of
a solution S must satisfy the following scaling hypothesis: if opt(I) denotes the
optimum value of I, then opt(I ′) = t · opt(I), where I ′ is the same instance as I
except that w′(e) = t ·w(e). For example, the hypothesis holds when the weight
of S is defined as the sum of its elements’ weights, or min w(e) : e ∈ S, etc.

In the biobjective version, called biobjective P , every element e ∈ U has two
non negative weights w1(e), w2(e) and the goal is to find a Pareto set within
the set of feasible solutions. Given an instance I of biobjective P , we denote by
opti(I) (or simply opti) the optimum value of I restricted to objective i, i = 1, 2.
Here, the objective function on objective 1 is not necessarily the same as on
objective 2, but both satisfy the scaling hypothesis.

3 Approximation with a given number of solutions

Papadimitriou and Yannakakis [18] proved the existence of at least one (1 − ε)-
approximation of size polynomial in the size of the instance and 1

ε . In this result,
the accuracy ε > 0 is given explicitly but the size of the approximation set is
not given explicitly. In this section we consider a general maximization prob-
lem Π1 and establish a sufficient condition that guarantees the construction of
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a constant approximation of the Pareto set with an explicitly given number of
solutions for Π1. This result allows to construct a (1 − ε)-approximation of the
Pareto set with O(1

ε ) solutions but not necessarily in polynomial time. Moreover,
if the single objective problem is polynomial time constant approximable and
the sufficient condition is strengthened then the biobjective version is also poly-
nomial time constant approximable with one solution. Thus we obtain constant
approximations and polynomial time constant approximations with one solution
for Biobjective Max Partition, Biobjective Max Cut, Biobjective Max Set

Splitting, Biobjective Max Matching.

In the following, we are interested in particular cases of biobjective maxi-
mization problems, Biobjective Π1, which satisfy the following property.

Property 1. Given any two feasible solutions S1 and S2, and any real α satisfying
0 < α ≤ 1, if w2(S1) < αw2(S2) and w1(S2) < αw1(S1) then there exists
a feasible solution S3 which satisfies w1(S3) > (1 − α)w1(S1) and w2(S3) >
(1 − α)w2(S2).

We say that Biobjective Π1 satisfies polynomially Property 1 if S3 can be
constructed in polynomial time.

Property 1 means that if S1 is not an α-approximation of S2 and S2 is not
an α-approximation of S1 for both objective functions w1 and w2, then there
exists a feasible solution S3 which simultaneously approximates S1 and S2 with
performance guarantee 1 − α.

Given a positive integer ℓ, consider the equations x2ℓ = 1 − xℓ and x2ℓ−1 =
1 − xℓ. Denote by αℓ and βℓ their respective solutions in the interval [0, 1).

Remark that αℓ =
(

√
5−1
2

)1/ℓ
and αℓ < βℓ+1 < αℓ+1, ℓ ≥ 1.

Theorem 1. If Biobjective Π1 satisfies Property 1, then it admits a βℓ-approxi-
mate Pareto set (resp. an αℓ-approximate Pareto set) containing at most p so-
lutions, where p is a positive odd integer such that p = 2ℓ − 1 (resp. a positive
even integer such that p = 2ℓ).

Proof. Let S1 (resp. S2) be a solution optimal for the first objective (resp. second
one). In the following, opt denotes the optimal value on the first objective and
also on the second objective. This can be assumed without loss of generality
because a simple rescaling can make the optimal values coincide (e.g. we can
always assume that opt2 6= 0, thus by multiplying each weight w2(e) by opt1

opt2
we

are done). Then w1(S1) = w2(S2) = opt. If p is odd then ρ = βℓ with p = 2ℓ− 1,
otherwise ρ = αℓ with p = 2ℓ. Subdivide the bidimensionnal value space with
coordinates {0} ∪ {ρiopt : 0 ≤ i ≤ p}. See Figure 1 for an illustration.

Given i, 1 ≤ i ≤ p, the strip s(i, .) is the part of the space containing all
couples (w1, w2) satisfying ρiopt < w1 ≤ ρi−1opt and 0 ≤ w2 ≤ opt. The strip
s(p + 1, .) is the part of the space containing all couples (w1, w2) satisfying
0 ≤ w1 ≤ ρpopt and 0 ≤ w2 ≤ opt. Given j, 1 ≤ j ≤ p, the strip s(., j) is the part
of the space containing all couples (w1, w2) satisfying ρjopt < w2 ≤ ρj−1opt and
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Fig. 1. Illustration of Theorem 1

0 ≤ w1 ≤ opt. The strip s(., p + 1) is the part of the space containing all couples
(w1, w2) satisfying 0 ≤ w2 ≤ ρpopt and 0 ≤ w1 ≤ opt.

Suppose that w2(S1) < ρpopt and w1(S2) < ρpopt. In other words S1 ∈
s(1, .) ∩ s(., p + 1) and S2 ∈ s(., 1) ∩ s(p + 1, .). Using Property 1 there exists a
solution S3 satisfying w1(S3) > (1 − ρp)opt and w2(S3) > (1 − ρp)opt. For the
case ρ = βℓ and p = 2ℓ − 1, we get that 1 − ρp = 1 − β2ℓ−1

ℓ = βℓ
ℓ = ρℓ. For the

case ρ = αℓ and p = 2ℓ, we get that 1 − ρp = 1 − α2ℓ
ℓ = αℓ

ℓ = ρℓ. Then S3 is a
ρ-approximation of any solution S satisfying max{w1(S), w2(S)} ≤ ρℓ−1opt.

One can construct a ρ-approximate Pareto set P as follows: P = {S3} at the
beginning and for j = ℓ− 1 down to 1, pick a feasible solution s with maximum
weight w1 in s(., j) (if s(., j) contains at least one value of a feasible solution)
and set P = P ∪{S}. Afterwards, for i = ℓ−1 down to 1, pick a feasible solution
S with maximum weight w2 in s(i, .) (if s(i, .) contains at least one value of a
feasible solution) and set P = P ∪ {S}. For every strip the algorithm selects a
solution which ρ-approximates (on both objective functions) any other solution
in the strip. Since the solutions of P approximate the whole bidimensionnal
space, P is a ρ-approximate Pareto set containing at most 2ℓ−1 solutions. Here
2ℓ − 1 is equal to p when p is odd, otherwise it is equal to p − 1.

Now suppose that w2(S1) ≥ ρpopt (the case w1(S2) ≥ ρpopt is treated simi-
larly). Solution S1 must be in s(., j∗) for 1 ≤ j∗ ≤ p. Since w1(S1) = opt, S1 is
a ρ-approximation of any solution S in s(., p) ∪ s(., p + 1). One can build an ρ-
approximate Pareto set P as follows: P = {S1} at the beginning and for j = j∗−1
down to 1, pick a feasible solution S with maximum weight w1 in s(., j) (if s(., j)
contains at least one value of a feasible solution) and set P = P ∪ {S}. Since
the strips form a partition of the space, the algorithm returns an ρ-approximate
Pareto set containing at most p solutions. ⊓⊔

Corollary 1. If Biobjective Π1 satisfies Property 1, then it admits a (1 − ε)-
approximate Pareto set containing O(1

ε ) solutions.

Property 1 can be relaxed in the following way:

Property 2. We are given two feasible solutions S1 and S2, and a real α satisfying
0 < α ≤ 1. If w2(S1) < αw2(S2) and w1(S2) < αw1(S1) then there exists
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a feasible solution S3 which satisfies w1(S3) > (c − α)w1(S1) and w2(S3) >
(c − α)w2(S2), where 0 < c ≤ 1.

We define similarly that Biobjective Π1 satisfies polynomially Property 2.

Given a positive integer ℓ, consider the equations x2ℓ = c − xℓ and x2ℓ−1 =
c−xℓ. Denote by γℓ and δℓ their respective solutions in the interval [0, 1). Remark

that γℓ = (
√

1+4c−1
2 )1/ℓ and γℓ < δℓ < γℓ+1, ℓ ≥ 1.

Theorem 2. If Biobjective Π1 satisfies Property 2, then it admits a δℓ-approxi-
mate Pareto set (resp. an γℓ-approximate Pareto set) containing at most p so-
lutions, where p is a positive odd integer such that p = 2ℓ − 1 (resp. a positive
even integer such that p = 2ℓ).

Proof. The proof is similar with the proof of Theorem 1. Suppose that w2(S1) <
ρpopt and w1(S2) < ρpopt. Using Property 2 there exists a solution S3 satisfying
w1(S3) > (c−ρp)opt and w2(S3) > (c−ρp)opt. For the case ρ = δℓ and p = 2ℓ−1,
we get that c− ρp = c− δ2ℓ−1

ℓ = δℓ
ℓ = ρℓ. For the case ρ = γℓ and p = 2ℓ, we get

that c − ρp = c − γ2ℓ
ℓ = γℓ

ℓ = ρℓ. Then S3 is a ρ-approximation of any solution
S satisfying max{w1(S), w2(S)} ≤ ρℓ−1opt. ⊓⊔

The previous results of this section consider the construction, not necessarily
in polynomial time, of an approximate Pareto set with a fixed number of solu-
tions. We give in the following some conditions on the construction in polynomial
time of an approximate Pareto set with one solution.

Proposition 1. If Π1 is polynomial time ρ-approximable and Biobjective Π1

satisfies polynomially Property 1 (resp. 2), then Biobjective Π1 is polynomial
time ρ

2 -approximable (resp. cρ
2 -approximable) with one solution.

Proof. Let S1 (resp. S2) be a polynomial time ρ-approximation solution for the
first objective (resp. second one). In the following, opt1 (resp. opt2) denotes the

optimal value on the first objective (resp. second one). If w2(S1) ≥
w2(S2)

2 then

w2(S1) ≥
ρ
2opt2 and thus S1 is a ρ

2 -approximate Pareto set. If w1(S2) ≥
w1(S1)

2
then w1(S2) ≥ ρ

2opt1 and thus S2 is a ρ
2 -approximate Pareto set. Otherwise,

w2(S1) < w2(S2)
2 and w1(S2) < w1(S1)

2 and since Biobjective Π2 satisfies poly-
nomially Property 1, we can construct in polynomial time a feasible solution S3

which satisfies w1(S3) ≥ w1(S1)
2 and w2(S3) ≥ w2(S2)

2 , that is a ρ
2 -approximate

Pareto set. ⊓⊔

We consider in Sections 3.1, 3.2, and 3.3 several examples of problems Π1

that satisfy the scaling hypothesis and such that Biobjective Π1 satisfy Property
1 or Property 2.

3.1 Max Pos NAE

The Max Pos NAE problem consists of a set of clauses C defined on a set of
boolean variables x1, . . . , xn. The clauses are composed of two or more positive
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variables and they are endowed with a non negative weight. The Max Pos NAE

problem consists of finding an assignment of the variables such that the total
weight of the clauses that are satisfied is maximum, where a positive clause is
satisfied by an assignment if it contains at least a true variable and at least a
false variable. Max Pos NAE generalizes Max Cut and so it is NP-hard and
0.7499-approximable [24]. Max Pos NAE is also known under the name Max

Set Splitting or Max Hypergraph Cut [24].

Lemma 1. Biobjective Max Pos NAE satisfies polynomially Property 1.

Proof. Let α ∈ (0, 1] and S1, S2 two solutions of an instance of biobjective Max

Pos NAE satisfying the inequalities: w2(S1) < αw2(S2) and w1(S2) < αw1(S1).
Consider S3 = (S1 \ S2) ∪ (S2 \ S1). Let c(S) be the set of clauses satisfied by
assigning variables from S to true and those from S̄ to false. Clearly c(S) = {Ci =
xi1 ∨ . . . ∨ xit

: ∃xij
∈ S, ∃xiℓ

∈ S̄}. In the following a clause Ci is identified
by the set of variables that it contains {xi1 , . . . , xit

}. Then c(S1) \ c(S2) = {C :
C ∩ S1 6= ∅ and C ∩ S̄1 6= ∅} ∩ {C : C ⊆ S2 or C ⊆ S̄2}. Let C ∈ c(S1) \ c(S2).
If C ⊆ S2 then since C ∩ S̄1 6= ∅ we have ∅ 6= C ∩ (S2 \ S1) ⊆ C ∩ S3. Moreover
C ∩ S̄3 6= ∅ since C ∩ S1 ∩ S2 6= ∅. Thus C ∈ c(S3). If C ⊆ S̄2 then since
C ∩ S1 6= ∅ we have ∅ 6= C ∩ (S1 \ S2) ⊆ C ∩ S3. Moreover C ∩ S̄3 6= ∅ since
C ∩ S̄3 ⊆ C ∩ S̄1 ∩ S̄2 6= ∅. Thus c(S1)\ c(S2) ⊆ C(S3). In the similar way we can
prove c(S2)\c(S1) ⊆ C(S3). Thus, c(S1)∆c(S2) =

(

c(S1)\c(S2)
)

∪
(

c(S2)\c(S1)
)

is contained in c(S3).
The inequality w2(S1) < αw2(S2) can be rewritten as follows:

∑

C∈c(S1)

w2(C) < α
∑

C∈c(S2)

w2(C)

∑

C∈c(S1)\c(S2)

w2(C) + (1 − α)
∑

C∈c(S1)∩c(S2)

w2(C) < α
∑

C∈c(S2)\c(S1)

w2(C)

We can use it to get

w2(S3) ≥
∑

C∈c(S1)\c(S2)

w2(C) +
∑

C∈c(S2)\c(S1)

w2(C) =

=
∑

C∈c(S1)\c(S2)

w2(C) + α
∑

C∈c(S2)\c(S1)

w2(C) + (1 − α)
∑

C∈c(S2)\c(S1)

w2(C) >

> 2
∑

C∈c(S1)\c(S2)

w2(C)+(1−α)
∑

C∈c(S1)∩c(S2)

w2(C)+(1−α)
∑

C∈c(S2)\c(S1)

w2(C) ≥

≥ (1 − α)
∑

C∈c(S2)

w2(C) = (1 − α)w2(S2).

Using the same technique we can show that w1(S3) > (1 − α)w1(S1). ⊓⊔
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Corollary 2. Biobjective Max Pos NAE admits a
(i) βℓ-approximate Pareto set (resp. an αℓ-approximate Pareto set) contain-

ing at most p solutions, where p = 2ℓ − 1 (resp. p = 2ℓ).
(ii) (1 − ε)-approximate Pareto set containing O(1

ε ) solutions.

As indicated above, Corollary 2 deals with the possibility to reach some ap-
proximation bounds when the number of solutions in the Pareto set is fixed. We
give in the following an approximation bound that we can obtain in polynomial
time with one solution.

Corollary 3. Biobjective Max Pos NAE admits a polynomial time 0.374-
approximate Pareto set with one solution.

Proof. The results follows from Lemma 1 and Proposition 1 with ρ = 0.7499. ⊓⊔

We consider in the following a particular case of Max Pos NAE in which
every clause contains exactly k variables, denoted Max Pos kNAE. Max Pos

3NAE is 0.908-approximable [25]. For k ≥ 4, Max Pos kNAE is (1 − 21−k)-
approximable [1, 14] and this is the best possible since it is hard to approximate
within a factor of 1 − 21−k + ε, for any constant ε > 0 [13].

Corollary 4. Biobjective Max Pos 3NAE admits a polynomial time 0.454-
approximate Pareto set with one solution. For k ≥ 4, Max Pos kNAE admits
a polynomial time 1/2 − 2−k-approximate Pareto set with one solution.

Proof. The results follows from Lemma 1 and Proposition 1 with ρ = 0.908 and
ρ = 1 − 21−k. ⊓⊔

We consider in the following another particular case of Max Pos NAE in
which every clause contains exactly 2 variables, that is exactly Max Cut which
is 0.878-approximable [10].

Corollary 5. Biobjective Max Cut admits a
(i) βℓ-approximate Pareto set (resp. an αℓ-approximate Pareto set) contain-

ing at most p solutions, where p = 2ℓ − 1 (resp. p = 2ℓ).
(ii) (1 − ε)-approximate Pareto set containing O(1

ε ) solutions.

Corollary 6. Biobjective Max Cut admits a polynomial time 0.439-approximate
Pareto set with one solution.

Proof. The results follows from Lemma 1 and Proposition 1 with ρ = 0.878 [10].
⊓⊔

Clearly this last result is the same as the one given in [2] but we use a different
method. We remark that Biobjective Max Cut is not (1/2 + ε)-approximable
with one solution [2], meaning that we are close to the best possible approxima-
tion result.
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3.2 Max Partition

The Max Partition problem is defined as follows: given a set J of n items
1, . . . , n, each item j of positive weight w(j), find a solution S that is a bipar-
tition J1 ∪ J2 of the n items such that w(S) = min{

∑

j∈J1
w(j),

∑

j∈J2
w(j)} is

maximized. This NP-hard problem was also studied in the context of schedul-
ing, where the number of partitions is not fixed, and consists of maximizing the
earliest machine completion time [23].

Lemma 2. Biobjective Max Partition satisfies polynomially Property 1.

Corollary 7. Biobjective Max Partition admits a
(i) βℓ-approximate Pareto set (resp. an αℓ-approximate Pareto set) contain-

ing at most p solutions, where p = 2ℓ − 1 (resp. p = 2ℓ).
(ii) (1 − ε)-approximate Pareto set containing O(1

ε ) solutions.

Corollary 8. Biobjective Max Partition admits a polynomial time (1/2− ε)-
approximate Pareto set with one solution, for every ε > 0.

Proof. Max Partition is a particular case of the Max Subset Sum problem.
An input of Max Subset Sum is formed by a set J of n items 1, . . . , n, each
item j has a positive weight w(j), and an integer t. The problem consists of
finding a subset S of J whose sum w(S) is bounded by t and maximum. Max

Subset Sum has a fptas [6]. We can obtain a fptas for Max Partition using
the previous fptas for t =

∑n
i=1 w(i)/2.

The results follows from Lemma 2 and Proposition 1 with ρ = 1 − 2ε. ⊓⊔

Observe that Biobjective Max Partition is not (1/2+ε)-approximable with
one solution. In order to see this, consider 3 items of weights w1(1) = 2, w2(1) =
1, w1(2) = 1, w2(2) = 2, w1(1) = 1, w2(3) = 1. The two efficient solutions Si,
i = 1, 2 consists of placing i in a part and the other items in the other part
and have weights w1(S1) = 2, w2(S1) = 1, w1(S2) = 1, w2(S2) = 2. Any other
solution is either dominated by one of these two or has weights equal to 1 on
both criteria.

3.3 Max Matching

Given a complete graph G = (V, E) with non negative weights on the edges,
the Max Matching problem is to find a matching of the graph of total weight
maximum. Max Matching is solvable in polynomial time [7]. We study in this
part the biobjective Max Matching problem and consider instances where the
graph is a collection of complete graphs inside which the weights satisfy the
triangle inequality, since otherwise the biobjective Max Matching problem
is not at all approximable with one solution. In order to see this, consider a
complete graph on 3 vertices with weights (1, 0), (0, 1), (0, 0). The optimum value
on each objective is 1. Nevertheless, any solution has value 0 on at least one
objective. Clearly Property 1 is not satisfied in this case.
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Biobjective Max Matching problem is NP-hard [19]. It remains NP-hard
even on instances where the graph is a collection of complete graphs inside which
the weights satisfy the triangle inequality.

Lemma 3. Biobjective Max Matching satisfies polynomially Property 2 with
c = 1/3.

Corollary 9. Biobjective Max Matching admits a δℓ-approximate Pareto set
(resp. an γℓ-approximate Pareto set) containing at most p solutions, where p =
2ℓ − 1 (resp. p = 2ℓ).

Corollary 10. Biobjective Max Matching admits a polynomial time 1
6 -appr-

oximate Pareto set with one solution.

Proof. It follows from Lemma 3 and Proposition 1 considering ρ = 1. ⊓⊔

4 Approximation with one solution

In this section, we establish a necessary and sufficient condition for constructing,
not necessarily in polynomial time, a constant approximation with one solution
of the Pareto set for biobjective maximization problems. Moreover, if the condi-
tion is strengthened and the single-objective problem is polynomial time constant
approximable, then the biobjective version is polynomial time constant approx-
imable with one solution. Thus, using this condition, we establish a polynomial
time 0.174-approximation with one solution for Biobjective Max Bisection.

In the following, we are interested in particular cases of biobjective maxi-
mization problems, Biobjective Π2 which satisfy the following property.

Property 3. We can construct three solutions S1, S2, S3 such that Si is a ρi-
approximation for problem Π2 on objective i, i = 1, 2, and S3 is such that
w1(S2)+ w1(S3) ≥ α ·w1(S1) and w2(S1)+ w2(S3) ≥ α ·w2(S2) for some α ≤ 1.

We say that Biobjective Π2 satisfies polynomially Property 3 if S1, S2, S3

can be constructed in polynomial time.

The aim of solution S3 in Property 3 is to compensate the potential ineffi-
ciency of Si on criterion 3 − i, i = 1, 2.

Theorem 3. Biobjective Π2 is (resp. polynomial time) constant approximable
with one solution if and only if it satisfies (resp. polynomially) Property 3. More
precisely, if Biobjective Π2 satisfies polynomially Property 3 such that Si is a
polynomial time ρi-approximation for problem Π2 on objective i, i = 1, 2, then

Biobjective Π2 admits a polynomial time αmin{ρ1,ρ2}
2 -approximation algorithm

with one solution.



Approximation with a fixed number of solutions 11

Proof. Suppose that Biobjective Π2 is ρ-approximable with one solution. Let S3

be this solution and S1 and S2 any two solutions. Then w1(S3) ≥ ρ · opt1 ≥
ρ ·w1(S1) and thus by setting α = ρ we have w1(S2) +w1(S3) ≥ α ·w1(S1). The
second inequality holds also.

Suppose now that Biobjective Π2 satisfies Property 3. Since Si is a ρi-
approximation for problem Π2 on objective i, i = 1, 2, we have w1(S1) ≥ ρ1 ·opt1
and w2(S2) ≥ ρ2 · opt2.

Since Property 3 is satisfied, we can construct S3 such that

w1(S2) + w1(S3) ≥ α · w1(S1) (1)

and
w2(S1) + w2(S3) ≥ α · w2(S2) (2)

Now, we study different cases:

• If w1(S2) ≥ α
2 w1(S1), then we deduce that S2 is a good approximation

of the Pareto set. From the hypothesis, we have w1(S2) ≥ α
2 w1(S1) ≥

α · min{ρ1,ρ2}
2 opt1. On the other hand, we also have w2(S2) ≥ ρ2 · opt2 ≥

αmin{ρ1,ρ2}
2 opt2.

• If w2(S1) ≥ α
2 w2(S2), then we deduce that S1 is a good approximation of

the Pareto set. From the hypothesis, we have w2(S1) ≥ α
2 w2(S2) ≥ α ·

min{ρ1,ρ2}
2 opt2. On the other hand, by the construction of S1 we also have

w1(S1) ≥ ρ1 · opt1 ≥ α · min{ρ1,ρ2}
2 opt1.

• If w1(S2) ≤ α
2 w1(S1) and w2(S1) ≤ α

2 w2(S2), then it is S3 which is a good
approximation of the Pareto set. Indeed, from inequality (1), we deduce

w1(S3) ≥
α
2 w1(S1) ≥ α · min{ρ1,ρ2}

2 opt1 and on the other hand, from inequal-

ity (2), we also get w2(S3) ≥
α
2 w2(S2) ≥ α · min{ρ1,ρ2}

2 opt2.

In any of these three cases, we obtain a α · min{ρ1,ρ2}
2 -approximation with one

solution.
Clearly, if S1, S2, S3 are computable in polynomial time, then Biobjective Π2

is approximable in polynomial time. ⊓⊔

Remark that we can extend Theorem 3 to the case where ρi are not constant.
The interest of Property 3 is to find a simple method in order to construct a

polynomial time constant approximation for Biobjective Π2. This method does
not allow us to obtain the best polynomial time constant approximation for
Biobjective Π2 with one solution, but only to prove the fact that the problem is
polynomial time constant approximable with one solution.

In Lemma 1 we prove that if a problem Π is (resp. polynomial time) constant
approximable and if Biobjective Π satisfies (resp. polynomially) Property 1,
then Biobjective Π is (resp. polynomial time) constant approximable with one
solution, and thus Biobjective Π satisfies (resp. polynomially) Property 3 by
Theorem 3. Thus all problems studied in Section 3 satisfies Property 3.

There exist problems which are polynomial time constant approximable and
thus satisfy Property 3 and do not satisfy Property 1. One example is Biobjective
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TSP, which is polynomial time 7
27 -approximable with one solution [16, 17] and

does not satisfy Property 1.

Proposition 2. Biobjective TSP does not satisfy Property 1.

Proof. Consider the complete graph K5 where a fixed K4 is decomposable into
2 Hamiltonian paths P1 and P2. For every edge e ∈ E(K5), set w1(e) = 1 and
w2(e) = 0 if e ∈ P1, w1(e) = 0 and w2(e) = 1 if e ∈ P2 and w1(e) = 0 and
w2(e) = 0 if e /∈ P1 ∪ P2. We can check that there are four non-dominated
tours Ti, i = 1, . . . , 4 with w1(T1) = 3, w2(T1) = 0, w1(T2) = 0, w2(T2) = 3,
w1(T3) = 2, w2(T3) = 1 and w1(T4) = 1, w2(T4) = 2. Consider Si = Ti, i = 1, 2
and α = 1/2. Clearly w2(S1) < αw2(S2) and w1(S2) < αw1(S1). Moreover there
is no solution S3 such that w1(S3) > (1−α)w1(S1) and w2(S3) > (1−α)w2(S2).

⊓⊔

We consider in the following a problem that satisfies Property 3 and for which
we are not able to prove that it satisfies Property 1.

4.1 Max Bisection

Given a graph G = (V, E) with non negative weights on the edges, the Max

Bisection problem consists of finding a bipartition of the vertex set V into two
sets of equal size such that the total weight of the cut is maximum. We establish
in this part a polynomial time ρ

4 -approximation algorithm for Biobjective Max

Bisection where ρ is any polynomial time approximation ratio given for Max

Bisection. Max Bisection is NP-hard [15] and the best approximation ratio
known for Max Bisection is ρ = 0.701 [11].

Lemma 4. Biobjective Max Bisection satisfies polynomially Property 3 with
α = 1 and ρ1 = ρ and ρ2 = ρ

2 , where ρ is any polynomial time approximation
ratio given for Max Bisection.

Corollary 11. Biobjective Max Bisection admits a polynomial time 0.174-
approximate Pareto set with one solution.

Proof. The results follows from Theorem 3 and Lemma 4 and using the polyno-
mial time 0.701-approximation algorithm for Max Bisection [11]. ⊓⊔

5 Conclusion

In this paper, we established some sufficient conditions that allow to conclude
on the existence of constant approximations of the Pareto set with an explicitly
given number of solutions for several biobjective maximization problems. The
results we obtained establish a polynomial time approximation when we ask for a
single solution in the approximation set. A possible future work would be to give
a polynomial time approximation for any explicitly given number of solutions.
A necessary and sufficient condition is given for the construction of (polynomial
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time) constant approximation with one solution for biobjective maximization
problems. It would be interesting to generalize this result to maximization prob-
lems with more than two objectives. Another interesting future work would be
to establish lower bounds for any explicitly given number of solutions for multi-
objective maximization problems.

Our approaches deal with maximization problems and they do not seem to
apply to minimization problems. A possible explanation is that, in the maxi-
mization framework, adding elements to a partial solution rarely deteriorates
it. Minimization problems rarely satisfy this property. Establishing constant ap-
proximation of the Pareto set with a given number of solutions or show that this
is not possible for minimization problems is an interesting open question.
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