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Approximation with a fixed number of solutions of some multiobjective maximization problems

Introduction

In multiobjective combinatorial optimization a solution is evaluated considering several objective functions and a major challenge in this context is to generate the set of efficient solutions or the Pareto set (see [START_REF] Ehrgott | Multicriteria optimization[END_REF] about multiobjective combinatorial optimization). However, it is usually difficult to identify the efficient set mainly due to the fact that the number of efficient solutions can be exponential in the size of the input and moreover the associated decision problem is NP-complete even if the underlying single-objective problem can be solved in polynomial time. To handle these two difficulties, researchers have been interested in developing approximation algorithms with an a priori provable guarantee such as polynomial time constant approximation algorithms. Considering that all objectives have to be maximized, and for a positive ρ ≤ 1, a ρ-approximation of Pareto set is a set of solutions that includes, for each efficient solution, a solution that is at least at a factor ρ on all objective values. Intuitively, the larger the size of the approximation set, the more accurate it can be.

It has been pointed out by Papadimitriou and Yannakakis [START_REF] Papadimitriou | On the approximability of trade-offs and optimal access of web sources[END_REF] that, under certain general assumptions, there always exists a (1ε)-approximation, with any given accuracy ε > 0, whose size is polynomial both in the size of the instance and in 1/ε but exponential in the number of criteria. In this result, the accuracy ε > 0 is given explicitly but the size of the approximation set is not given explicitly. When the number of solutions in the approximation set is limited, not every level of accuracy is possible. So, once the number of solutions is fixed in the approximation set of a multiobjective problem, the following questions are raised: What is the accuracy for which an approximation is guarantee to exist? Which accuracy can be obtained in polynomial time?

In this paper we are interested in establishing for biobjective maximization problems the best approximation ratio of the set of efficient solutions when the size of the approximation set is given explicitly. We give two approaches that deal with biobjective problems that allow us to obtain approximations of the set of efficient solutions with one or several solutions. More precisely, in a first approach, we consider a general maximization problem (denoted by Π 1 in the following) and establish a sufficient condition that guarantees the construction of a constant approximation of the Pareto set with an explicitly given number of solutions. As a corollary, we can construct a (1ε)-approximation of the Pareto set with O( 1 ε ) solutions. In a second approach, we establish a necessary and sufficient condition for the construction of a constant approximation of the Pareto set with one solution.

Properties defined in these two approaches apply to several problems previously studied in single-objective approximation. Then we derive polynomial time constant approximations with one solution for Biobjective Max Bisection, Biobjective Max Partition, Biobjective Max Cut, Biobjective Max Set Splitting, Biobjective Max Matching. Some instances show that the given biobjective appromixation ratios are the best we can expect. In addition Biobjective Max Partition, Biobjective Max Cut, Biobjective Max Set Splitting admit a (1ε)-approximation of the Pareto set with O( 1 ε ) solutions.

Several results exist in the literature on the approximation of multiobjective combinatorial optimization problems. One can mention the existence of fully polynomial time approximation schemes for biobjective shortest path [START_REF] Hansen | Bicriteria path problems[END_REF][START_REF] Warburton | Approximation of pareto-optima in multiple-objective shortest path problems[END_REF][START_REF] Tsaggouris | Multiobjective optimization: Improved fptas for shortest paths and non-linear objectives with applications[END_REF], knapsack [START_REF] Erlebach | Approximating multiobjective knapsack problems[END_REF][START_REF] Bazgan | Implementing an efficient fptas for the 0-1 multi-objective knapsack problem[END_REF], minimum spanning tree [START_REF] Papadimitriou | On the approximability of trade-offs and optimal access of web sources[END_REF], scheduling problems [START_REF] Angel | On the approximate tradeoff for bicriteria batching and parallel machine scheduling problems[END_REF], randomized fully polynomial time approximation scheme for matching [START_REF] Papadimitriou | On the approximability of trade-offs and optimal access of web sources[END_REF], and polynomial time constant approximation for max cut [START_REF] Angel | Approximation algorithms for the bi-criteria weighted max-cut problem[END_REF], a biobjective scheduling problem [START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF] and the traveling salesman problem [START_REF] Angel | Non)-approximability for the multi-criteria TSP(1,2)[END_REF][START_REF] Manthey | On approximating multi-criteria tsp[END_REF]. Note that [START_REF] Angel | Approximation algorithms for the bi-criteria weighted max-cut problem[END_REF] and [START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF] are approximations with a single solution.

This article is organized as follows. In Section 2, we introduce basic concepts about multiobjective optimization and approximation. Section 3 is devoted to an approach for approximating some biobjective problems with one or several solutions. Section 4 presents a necessary and sufficient condition for approximating within a constant factor some biobjective problems with one solution. Conclusions are provided in a final section. Due to space limitation, some proofs are omitted.

Preliminaries on multi-objective optimization and approximation

Consider an instance of a multi-objective optimization problem with k criteria or objectives where X denotes the finite set of feasible solutions. Each solution x ∈ X is represented in the objective space by its corresponding objective vector w(x) = (w 1 (x), . . . , w k (x)). We assume that each objective has to be maximized. From these k objectives, the dominance relation defined on X states that a feasible solution x dominates a feasible solution x ′ if and only if w i (x) ≥ w i (x ′ ) for i = 1, . . . , k with at least one strict inequality. A solution x is efficient if and only if there is no other feasible solution x ′ ∈ X such that x ′ dominates x, and its corresponding objective vector is said to be non-dominated. Usually, we are interested in finding a solution corresponding to each non-dominated objective vector, set that is called Pareto set.

For any 0 < ρ ≤ 1, a solution x is called a ρ-approximation of a solution x ′ if w i (x) ≥ ρ • w i (x ′ ) for i = 1, . . . , k. A set of feasible solutions X ′ is called a ρapproximation of a set of efficient solutions if, for every feasible solution x ∈ X, X ′ contains a feasible solution x ′ that is a ρ-approximation of x. If such a set exists, we say that the multi-objective problem admits a ρ-approximate Pareto set with |X ′ | solutions.

An algorithm that outputs a ρ-approximation of a set of efficient solutions in polynomial time in the size of the input is called a ρ-approximation algorithm. In this case we say that the multi-objective problem admits a polynomial time ρ-approximate Pareto set.

Consider in the following a single-objective maximization problem P defined on a ground set U. Every element e ∈ U has a non negative weight w(e). The goal is to find a feasible solution (subset of U) with maximum weight. The weight of a solution S must satisfy the following scaling hypothesis: if opt(I) denotes the optimum value of I, then opt(I ′ ) = t • opt(I), where I ′ is the same instance as I except that w ′ (e) = t • w(e). For example, the hypothesis holds when the weight of S is defined as the sum of its elements' weights, or min w(e) : e ∈ S, etc.

In the biobjective version, called biobjective P , every element e ∈ U has two non negative weights w 1 (e), w 2 (e) and the goal is to find a Pareto set within the set of feasible solutions. Given an instance I of biobjective P , we denote by opt i (I) (or simply opt i ) the optimum value of I restricted to objective i, i = 1, 2.

Here, the objective function on objective 1 is not necessarily the same as on objective 2, but both satisfy the scaling hypothesis.

3 Approximation with a given number of solutions Papadimitriou and Yannakakis [START_REF] Papadimitriou | On the approximability of trade-offs and optimal access of web sources[END_REF] proved the existence of at least one (1ε)approximation of size polynomial in the size of the instance and 1 ε . In this result, the accuracy ε > 0 is given explicitly but the size of the approximation set is not given explicitly. In this section we consider a general maximization problem Π 1 and establish a sufficient condition that guarantees the construction of a constant approximation of the Pareto set with an explicitly given number of solutions for Π 1 . This result allows to construct a (1ε)-approximation of the Pareto set with O( 1 ε ) solutions but not necessarily in polynomial time. Moreover, if the single objective problem is polynomial time constant approximable and the sufficient condition is strengthened then the biobjective version is also polynomial time constant approximable with one solution. Thus we obtain constant approximations and polynomial time constant approximations with one solution for Biobjective Max Partition, Biobjective Max Cut, Biobjective Max Set Splitting, Biobjective Max Matching.

In the following, we are interested in particular cases of biobjective maximization problems, Biobjective Π 1 , which satisfy the following property.

Property 1. Given any two feasible solutions S 1 and S 2 , and any real α satisfying 0 < α ≤ 1, if w 2 (S 1 ) < αw 2 (S 2 ) and w 1 (S 2 ) < αw 1 (S 1 ) then there exists a feasible solution S 3 which satisfies w

1 (S 3 ) > (1 -α)w 1 (S 1 ) and w 2 (S 3 ) > (1 -α)w 2 (S 2 ).
We say that Biobjective Π 1 satisfies polynomially Property 1 if S 3 can be constructed in polynomial time.

Property 1 means that if S 1 is not an α-approximation of S 2 and S 2 is not an α-approximation of S 1 for both objective functions w 1 and w 2 , then there exists a feasible solution S 3 which simultaneously approximates S 1 and S 2 with performance guarantee 1α.

Given a positive integer ℓ, consider the equations x 2ℓ = 1x ℓ and x 2ℓ-1 = 1x ℓ . Denote by α ℓ and β ℓ their respective solutions in the interval [0, 1).

Remark that α ℓ = √ 5-1 2 1/ℓ and α ℓ < β ℓ+1 < α ℓ+1 , ℓ ≥ 1.
Theorem 1. If Biobjective Π 1 satisfies Property 1, then it admits a β ℓ -approximate Pareto set (resp. an α ℓ -approximate Pareto set) containing at most p solutions, where p is a positive odd integer such that p = 2ℓ -1 (resp. a positive even integer such that p = 2ℓ).

Proof. Let S 1 (resp. S 2 ) be a solution optimal for the first objective (resp. second one). In the following, opt denotes the optimal value on the first objective and also on the second objective. This can be assumed without loss of generality because a simple rescaling can make the optimal values coincide (e.g. we can always assume that opt 2 = 0, thus by multiplying each weight w 2 (e) by opt1 opt2 we are done). Then

w 1 (S 1 ) = w 2 (S 2 ) = opt. If p is odd then ρ = β ℓ with p = 2ℓ -1, otherwise ρ = α ℓ with p = 2ℓ. Subdivide the bidimensionnal value space with coordinates {0} ∪ {ρ i opt : 0 ≤ i ≤ p}. See Figure 1 for an illustration. Given i, 1 ≤ i ≤ p, the strip s(i, .
) is the part of the space containing all couples (w 1 , w 2 ) satisfying ρ i opt < w 1 ≤ ρ i-1 opt and 0 ≤ w 2 ≤ opt. The strip s(p + 1, .) is the part of the space containing all couples (w 1 , w 2 ) satisfying 0 ≤ w 1 ≤ ρ p opt and 0 ≤ w 2 ≤ opt. Given j, 1 ≤ j ≤ p, the strip s(., j) is the part of the space containing all couples (w 1 , w 2 ) satisfying ρ j opt < w 2 ≤ ρ j-1 opt and 0 ≤ w 1 ≤ opt. The strip s(., p + 1) is the part of the space containing all couples (w 1 , w 2 ) satisfying 0 ≤ w 2 ≤ ρ p opt and 0 ≤ w 1 ≤ opt. Suppose that w 2 (S 1 ) < ρ p opt and w 1 (S 2 ) < ρ p opt. In other words S 1 ∈ s(1, .) ∩ s(., p + 1) and S 2 ∈ s(., 1) ∩ s(p + 1, .). Using Property 1 there exists a solution S 3 satisfying w 1 (S 3 ) > (1ρ p )opt and w 2 (S 3 ) > (1ρ p )opt. For the case ρ = β ℓ and p = 2ℓ -1, we get that 1 -

ρ p = 1 -β 2ℓ-1 ℓ = β ℓ ℓ = ρ ℓ .
For the case ρ = α ℓ and p = 2ℓ, we get that 1 -

ρ p = 1 -α 2ℓ ℓ = α ℓ ℓ = ρ ℓ . Then S 3 is a ρ-approximation of any solution S satisfying max{w 1 (S), w 2 (S)} ≤ ρ ℓ-1 opt.
One can construct a ρ-approximate Pareto set P as follows: P = {S 3 } at the beginning and for j = ℓ -1 down to 1, pick a feasible solution s with maximum weight w 1 in s(., j) (if s(., j) contains at least one value of a feasible solution) and set P = P ∪ {S}. Afterwards, for i = ℓ -1 down to 1, pick a feasible solution S with maximum weight w 2 in s(i, .) (if s(i, .) contains at least one value of a feasible solution) and set P = P ∪ {S}. For every strip the algorithm selects a solution which ρ-approximates (on both objective functions) any other solution in the strip. Since the solutions of P approximate the whole bidimensionnal space, P is a ρ-approximate Pareto set containing at most 2ℓ -1 solutions. Here 2ℓ -1 is equal to p when p is odd, otherwise it is equal to p -1. Now suppose that w 2 (S 1 ) ≥ ρ p opt (the case w 1 (S 2 ) ≥ ρ p opt is treated similarly). Solution S 1 must be in s(., j * ) for 1 ≤ j * ≤ p. Since w 1 (S 1 ) = opt, S 1 is a ρ-approximation of any solution S in s(., p) ∪ s(., p + 1). One can build an ρapproximate Pareto set P as follows: P = {S 1 } at the beginning and for j = j * -1 down to 1, pick a feasible solution S with maximum weight w 1 in s(., j) (if s(., j) contains at least one value of a feasible solution) and set P = P ∪ {S}. Since the strips form a partition of the space, the algorithm returns an ρ-approximate Pareto set containing at most p solutions.

⊓ ⊔ Corollary 1. If Biobjective Π 1 satisfies Property 1, then it admits a (1ε)approximate Pareto set containing O( 1 ε ) solutions. Property 1 can be relaxed in the following way: Property 2. We are given two feasible solutions S 1 and S 2 , and a real α satisfying 0 < α ≤ 1. If w 2 (S 1 ) < αw 2 (S 2 ) and w 1 (S 2 ) < αw 1 (S 1 ) then there exists a feasible solution S 3 which satisfies w 1 (S 3 ) > (cα)w 1 (S 1 ) and w 2 (S 3 ) > (cα)w 2 (S 2 ), where 0 < c ≤ 1.

We define similarly that Biobjective Π 1 satisfies polynomially Property 2.

Given a positive integer ℓ, consider the equations x 2ℓ = cx ℓ and x 2ℓ-1 = c-x ℓ . Denote by γ ℓ and δ ℓ their respective solutions in the interval [0, 1). Remark that γ ℓ = (

√ 1+4c- 1 2 
) 1/ℓ and γ ℓ < δ ℓ < γ ℓ+1 , ℓ ≥ 1.

Theorem 2. If Biobjective Π 1 satisfies Property 2, then it admits a δ ℓ -approximate Pareto set (resp. an γ ℓ -approximate Pareto set) containing at most p solutions, where p is a positive odd integer such that p = 2ℓ -1 (resp. a positive even integer such that p = 2ℓ).

Proof. The proof is similar with the proof of Theorem 1. Suppose that w 2 (S 1 ) < ρ p opt and w 1 (S 2 ) < ρ p opt. Using Property 2 there exists a solution S 3 satisfying w 1 (S 3 ) > (c-ρ p )opt and w 2 (S 3 ) > (c-ρ p )opt. For the case ρ = δ ℓ and p = 2ℓ-1, we get that c -

ρ p = c -δ 2ℓ-1 ℓ = δ ℓ ℓ = ρ ℓ .
For the case ρ = γ ℓ and p = 2ℓ, we get that cρ p = cγ 2ℓ ℓ = γ ℓ ℓ = ρ ℓ . Then S 3 is a ρ-approximation of any solution S satisfying max{w 1 (S), w 2 (S)} ≤ ρ ℓ-1 opt.

⊓ ⊔

The previous results of this section consider the construction, not necessarily in polynomial time, of an approximate Pareto set with a fixed number of solutions. We give in the following some conditions on the construction in polynomial time of an approximate Pareto set with one solution.

Proposition 1. If Π 1 is polynomial time ρ-approximable and Biobjective Π 1 satisfies polynomially Property 1 (resp. 2), then Biobjective Π 1 is polynomial time ρ 2 -approximable (resp. cρ 2 -approximable) with one solution. Proof. Let S 1 (resp. S 2 ) be a polynomial time ρ-approximation solution for the first objective (resp. second one). In the following, opt 1 (resp. opt 2 ) denotes the optimal value on the first objective (resp. second one). If w 2 (S 1 ) ≥ w2(S2) 

Max Pos NAE

The Max Pos NAE problem consists of a set of clauses C defined on a set of boolean variables x 1 , . . . , x n . The clauses are composed of two or more positive variables and they are endowed with a non negative weight. The Max Pos NAE problem consists of finding an assignment of the variables such that the total weight of the clauses that are satisfied is maximum, where a positive clause is satisfied by an assignment if it contains at least a true variable and at least a false variable. Max Pos NAE generalizes Max Cut and so it is NP-hard and 0.7499-approximable [START_REF] Zhang | Improved approximations for max set splitting and max NAE SAT[END_REF]. Max Pos NAE is also known under the name Max Set Splitting or Max Hypergraph Cut [START_REF] Zhang | Improved approximations for max set splitting and max NAE SAT[END_REF]. Lemma 1. Biobjective Max Pos NAE satisfies polynomially Property 1.

Proof. Let α ∈ (0, 1] and S 1 , S 2 two solutions of an instance of biobjective Max Pos NAE satisfying the inequalities: w 2 (S 1 ) < αw 2 (S 2 ) and w 1 (S 2 ) < αw 1 (S 1 ). Consider S 3 = (S 1 \ S 2 ) ∪ (S 2 \ S 1 ). Let c(S) be the set of clauses satisfied by assigning variables from S to true and those from S to false. Clearly c(S) = {C i = x i1 ∨ . . . ∨ x it : ∃x ij ∈ S, ∃x i ℓ ∈ S}. In the following a clause C i is identified by the set of variables that it contains {x i1 , . . . , x it }. Then c(S 1 ) \ c(S 2 ) = {C :

C ∩ S 1 = ∅ and C ∩ S1 = ∅} ∩ {C : C ⊆ S 2 or C ⊆ S2 }. Let C ∈ c(S 1 ) \ c(S 2 ). If C ⊆ S 2 then since C ∩ S1 = ∅ we have ∅ = C ∩ (S 2 \ S 1 ) ⊆ C ∩ S 3 . Moreover C ∩ S3 = ∅ since C ∩ S 1 ∩ S 2 = ∅. Thus C ∈ c(S 3 ). If C ⊆ S2 then since C ∩ S 1 = ∅ we have ∅ = C ∩ (S 1 \ S 2 ) ⊆ C ∩ S 3 . Moreover C ∩ S3 = ∅ since C ∩ S3 ⊆ C ∩ S1 ∩ S2 = ∅. Thus c(S 1 ) \ c(S 2 ) ⊆ C(S 3
). In the similar way we can prove c(S 2 )\c(S 1 ) ⊆ C(S 3 ). Thus, c(S 1 )∆c(S 2 ) = c(S 1 )\c(S 2 ) ∪ c(S 2 )\c(S 1 ) is contained in c(S 3 ).

The inequality w 2 (S 1 ) < αw 2 (S 2 ) can be rewritten as follows:

C∈c(S1) w 2 (C) < α C∈c(S2) w 2 (C) C∈c(S1)\c(S2) w 2 (C) + (1 -α) C∈c(S1)∩c(S2) w 2 (C) < α C∈c(S2)\c(S1) w 2 (C)
We can use it to get

w 2 (S 3 ) ≥ C∈c(S1)\c(S2) w 2 (C) + C∈c(S2)\c(S1) w 2 (C) = = C∈c(S1)\c(S2) w 2 (C) + α C∈c(S2)\c(S1) w 2 (C) + (1 -α) C∈c(S2)\c(S1) w 2 (C) > > 2 C∈c(S1)\c(S2) w 2 (C)+(1-α) C∈c(S1)∩c(S2) w 2 (C)+(1-α) C∈c(S2)\c(S1) w 2 (C) ≥ ≥ (1 -α) C∈c(S2) w 2 (C) = (1 -α)w 2 (S 2 ).
Using the same technique we can show that w 1 (S 3 ) > (1α)w 1 (S 1 ). ⊓ ⊔ Corollary 2. Biobjective Max Pos NAE admits a (i) β ℓ -approximate Pareto set (resp. an α ℓ -approximate Pareto set) containing at most p solutions, where p = 2ℓ -1 (resp. p = 2ℓ).

(ii) (1ε)-approximate Pareto set containing O( 1 ε ) solutions.

As indicated above, Corollary 2 deals with the possibility to reach some approximation bounds when the number of solutions in the Pareto set is fixed. We give in the following an approximation bound that we can obtain in polynomial time with one solution.

Corollary 3. Biobjective Max Pos NAE admits a polynomial time 0.374approximate Pareto set with one solution.

Proof. The results follows from Lemma 1 and Proposition 1 with ρ = 0.7499. ⊓ ⊔ We consider in the following a particular case of Max Pos NAE in which every clause contains exactly k variables, denoted Max Pos kNAE. Max Pos 3NAE is 0.908-approximable [START_REF] Zwick | Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint[END_REF]. For k ≥ 4, Max Pos kNAE is (1 -2 1-k )approximable [START_REF] Alimonti | Non-oblivious local search for graph and hypergraph coloring problems[END_REF][START_REF] Kann | Approximability of maximum splitting of k-sets and some other apx-complete problems[END_REF] and this is the best possible since it is hard to approximate within a factor of 1 -2 1-k + ε, for any constant ε > 0 [START_REF] Hastad | Some optimal inapproximability results[END_REF]. Proof. The results follows from Lemma 1 and Proposition 1 with ρ = 0.908 and

ρ = 1 -2 1-k . ⊓ ⊔
We consider in the following another particular case of Max Pos NAE in which every clause contains exactly 2 variables, that is exactly Max Cut which is 0.878-approximable [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF]. Proof. The results follows from Lemma 1 and Proposition 1 with ρ = 0.878 [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF].

⊓ ⊔

Clearly this last result is the same as the one given in [START_REF] Angel | Approximation algorithms for the bi-criteria weighted max-cut problem[END_REF] but we use a different method. We remark that Biobjective Max Cut is not (1/2 + ε)-approximable with one solution [START_REF] Angel | Approximation algorithms for the bi-criteria weighted max-cut problem[END_REF], meaning that we are close to the best possible approximation result.

Max Partition

The Max Partition problem is defined as follows: given a set J of n items 1, . . . , n, each item j of positive weight w(j), find a solution S that is a bipartition J 1 ∪ J 2 of the n items such that w(S) = min{ j∈J1 w(j), j∈J2 w(j)} is maximized. This NP-hard problem was also studied in the context of scheduling, where the number of partitions is not fixed, and consists of maximizing the earliest machine completion time [START_REF] Woeginger | A polynomial time approximation scheme for maximizing the minimum machine completion time[END_REF]. Proof. Max Partition is a particular case of the Max Subset Sum problem. An input of Max Subset Sum is formed by a set J of n items 1, . . . , n, each item j has a positive weight w(j), and an integer t. The problem consists of finding a subset S of J whose sum w(S) is bounded by t and maximum. Max Subset Sum has a fptas [START_REF] Cormen | Introduction to Algorithms[END_REF]. We can obtain a fptas for Max Partition using the previous fptas for t = n i=1 w(i)/2. The results follows from Lemma 2 and Proposition 1 with ρ = 1 -2ε.

⊓ ⊔

Observe that Biobjective Max Partition is not (1/2+ε)-approximable with one solution. In order to see this, consider 3 items of weights w 1 (1) = 2, w 2 (1) = 1, w 1 (2) = 1, w 2 (2) = 2, w 1 (1) = 1, w 2 (3) = 1. The two efficient solutions S i , i = 1, 2 consists of placing i in a part and the other items in the other part and have weights w 1 (S 1 ) = 2, w 2 (S 1 ) = 1, w 1 (S 2 ) = 1, w 2 (S 2 ) = 2. Any other solution is either dominated by one of these two or has weights equal to 1 on both criteria.

Max Matching

Given a complete graph G = (V, E) with non negative weights on the edges, the Max Matching problem is to find a matching of the graph of total weight maximum. Max Matching is solvable in polynomial time [START_REF] Edmonds | Paths, trees, and flowers[END_REF]. We study in this part the biobjective Max Matching problem and consider instances where the graph is a collection of complete graphs inside which the weights satisfy the triangle inequality, since otherwise the biobjective Max Matching problem is not at all approximable with one solution. In order to see this, consider a complete graph on 3 vertices with weights (1, 0), (0, 1), (0, 0). The optimum value on each objective is 1. Nevertheless, any solution has value 0 on at least one objective. Clearly Property 1 is not satisfied in this case.

Biobjective Max Matching problem is NP-hard [START_REF] Serafini | Some considerations about computational complexity for multi objective combinatorial problems[END_REF]. It remains NP-hard even on instances where the graph is a collection of complete graphs inside which the weights satisfy the triangle inequality. ⊓ ⊔

Approximation with one solution

In this section, we establish a necessary and sufficient condition for constructing, not necessarily in polynomial time, a constant approximation with one solution of the Pareto set for biobjective maximization problems. Moreover, if the condition is strengthened and the single-objective problem is polynomial time constant approximable, then the biobjective version is polynomial time constant approximable with one solution. Thus, using this condition, we establish a polynomial time 0.174-approximation with one solution for Biobjective Max Bisection.

In the following, we are interested in particular cases of biobjective maximization problems, Biobjective Π 2 which satisfy the following property. Property 3. We can construct three solutions S 1 , S 2 , S 3 such that S i is a ρ iapproximation for problem Π 2 on objective i, i = 1, 2, and S 3 is such that w 1 (S 2 ) + w 1 (S 3 ) ≥ α • w 1 (S 1 ) and w 2 (S 1 ) + w 2 (S 3 ) ≥ α • w 2 (S 2 ) for some α ≤ 1.

We say that Biobjective Π 2 satisfies polynomially Property 3 if S 1 , S 2 , S 3 can be constructed in polynomial time.

The aim of solution S 3 in Property 3 is to compensate the potential inefficiency of S i on criterion 3i, i = 1, 2.

Theorem 3. Biobjective Π 2 is (resp. polynomial time) constant approximable with one solution if and only if it satisfies (resp. polynomially) Property 3. More precisely, if Biobjective Π 2 satisfies polynomially Property 3 such that S i is a polynomial time ρ i -approximation for problem Π 2 on objective i, i = 1, 2, then Biobjective Π 2 admits a polynomial time α min{ρ1,ρ2} 2 -approximation algorithm with one solution.

Proof. Suppose that Biobjective Π 2 is ρ-approximable with one solution. Let S 3 be this solution and S 1 and S 2 any two solutions. Then w 1 (S 3 ) ≥ ρ • opt 1 ≥ ρ • w 1 (S 1 ) and thus by setting α = ρ we have w 1 (S 2 ) + w 1 (S 3 ) ≥ α • w 1 (S 1 ). The second inequality holds also.

Suppose now that Biobjective Π 2 satisfies Property 3. Since S i is a ρ iapproximation for problem Π 2 on objective i, i = 1, 2, we have w 1 (S 1 ) ≥ ρ 1 •opt 1 and w 2 (S 2 ) ≥ ρ 2 • opt 2 .

Since Property 3 is satisfied, we can construct S 3 such that

w 1 (S 2 ) + w 1 (S 3 ) ≥ α • w 1 (S 1 ) (1) 
and

w 2 (S 1 ) + w 2 (S 3 ) ≥ α • w 2 (S 2 ) (2) 
Now, we study different cases:

• If w 1 (S 2 ) ≥ α 2 w 1 (S 1
), then we deduce that S 2 is a good approximation of the Pareto set. From the hypothesis, we have w 1 (S 2 ) ≥ α 2 w 1 (S 1 ) ≥ α • min{ρ1,ρ2} 2 opt 1 . On the other hand, we also have w

2 (S 2 ) ≥ ρ 2 • opt 2 ≥ α min{ρ1,ρ2} 2 opt 2 . • If w 2 (S 1 ) ≥ α 2 w 2 (S 2
), then we deduce that S 1 is a good approximation of the Pareto set. From the hypothesis, we have w

2 (S 1 ) ≥ α 2 w 2 (S 2 ) ≥ α • min{ρ1,ρ2} 2 
opt 2 . On the other hand, by the construction of S 1 we also have

w 1 (S 1 ) ≥ ρ 1 • opt 1 ≥ α • min{ρ1,ρ2} 2 opt 1 . • If w 1 (S 2 ) ≤ α 2 w 1 (S 1
) and w 2 (S 1 ) ≤ α 2 w 2 (S 2 ), then it is S 3 which is a good approximation of the Pareto set. Indeed, from inequality (1), we deduce

w 1 (S 3 ) ≥ α 2 w 1 (S 1 ) ≥ α • min{ρ1,ρ2}
2 opt 1 and on the other hand, from inequality (2), we also get w

2 (S 3 ) ≥ α 2 w 2 (S 2 ) ≥ α • min{ρ1,ρ2} 2 opt 2 .
In any of these three cases, we obtain a α • min{ρ1,ρ2} 2 -approximation with one solution.

Clearly, if S 1 , S 2 , S 3 are computable in polynomial time, then Biobjective Π 2 is approximable in polynomial time.

⊓ ⊔

Remark that we can extend Theorem 3 to the case where ρ i are not constant. The interest of Property 3 is to find a simple method in order to construct a polynomial time constant approximation for Biobjective Π 2 . This method does not allow us to obtain the best polynomial time constant approximation for Biobjective Π 2 with one solution, but only to prove the fact that the problem is polynomial time constant approximable with one solution.

In Lemma 1 we prove that if a problem Π is (resp. polynomial time) constant approximable and if Biobjective Π satisfies (resp. polynomially) Property 1, then Biobjective Π is (resp. polynomial time) constant approximable with one solution, and thus Biobjective Π satisfies (resp. polynomially) Property 3 by Theorem 3. Thus all problems studied in Section 3 satisfies Property 3.

There exist problems which are polynomial time constant approximable and thus satisfy Property 3 and do not satisfy Property 1. One example is Biobjective TSP, which is polynomial time 7 27 -approximable with one solution [START_REF] Manthey | On approximating multi-criteria tsp[END_REF][START_REF] Paluch | A 7/9 -approximation algorithm for the maximum traveling salesman problem[END_REF] and does not satisfy Property 1.

Proposition 2. Biobjective TSP does not satisfy Property 1.

Proof. Consider the complete graph K 5 where a fixed K 4 is decomposable into 2 Hamiltonian paths P 1 and P 2 . For every edge e ∈ E(K 5 ), set w 1 (e) = 1 and w 2 (e) = 0 if e ∈ P 1 , w 1 (e) = 0 and w 2 (e) = 1 if e ∈ P 2 and w 1 (e) = 0 and w 2 (e) = 0 if e / ∈ P 1 ∪ P 2 . We can check that there are four non-dominated tours T i , i = 1, . . . , 4 with w 1 (T 1 ) = 3, w 2 (T 1 ) = 0, w 1 (T 2 ) = 0, w 2 (T 2 ) = 3, w 1 (T 3 ) = 2, w 2 (T 3 ) = 1 and w 1 (T 4 ) = 1, w 2 (T 4 ) = 2. Consider S i = T i , i = 1, 2 and α = 1/2. Clearly w 2 (S 1 ) < αw 2 (S 2 ) and w 1 (S 2 ) < αw 1 (S 1 ). Moreover there is no solution S 3 such that w 1 (S 3 ) > (1α)w 1 (S 1 ) and w 2 (S 3 ) > (1α)w 2 (S 2 ).

⊓ ⊔

We consider in the following a problem that satisfies Property 3 and for which we are not able to prove that it satisfies Property 1.

Max Bisection

Given a graph G = (V, E) with non negative weights on the edges, the Max Bisection problem consists of finding a bipartition of the vertex set V into two sets of equal size such that the total weight of the cut is maximum. We establish in this part a polynomial time ρ 4 -approximation algorithm for Biobjective Max Bisection where ρ is any polynomial time approximation ratio given for Max Bisection. Max Bisection is NP-hard [START_REF] Karp | Reducibility among combinatorial problems[END_REF] and the best approximation ratio known for Max Bisection is ρ = 0.701 [START_REF] Halperin | A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems[END_REF]. Proof. The results follows from Theorem 3 and Lemma 4 and using the polynomial time 0.701-approximation algorithm for Max Bisection [START_REF] Halperin | A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems[END_REF].

⊓ ⊔

Conclusion

In this paper, we established some sufficient conditions that allow to conclude on the existence of constant approximations of the Pareto set with an explicitly given number of solutions for several biobjective maximization problems. The results we obtained establish a polynomial time approximation when we ask for a single solution in the approximation set. A possible future work would be to give a polynomial time approximation for any explicitly given number of solutions. A necessary and sufficient condition is given for the construction of (polynomial time) constant approximation with one solution for biobjective maximization problems. It would be interesting to generalize this result to maximization problems with more than two objectives. Another interesting future work would be to establish lower bounds for any explicitly given number of solutions for multiobjective maximization problems. Our approaches deal with maximization problems and they do not seem to apply to minimization problems. A possible explanation is that, in the maximization framework, adding elements to a partial solution rarely deteriorates it. Minimization problems rarely satisfy this property. Establishing constant approximation of the Pareto set with a given number of solutions or show that this is not possible for minimization problems is an interesting open question.
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 22212 S 1 ) ≥ ρ 2 opt 2 and thus S 1 is a ρ 2 -approximate Pareto set. If w 1 (S 2 ) ≥ w1(S1) S 2 ) ≥ ρ 2 opt 1 and thus S 2 is a ρ 2 -approximate Pareto set. Otherwise, w 2 (S 1 ) < w2(S2) 2 and w 1 (S 2 ) < w1(S1) 2 and since Biobjective Π 2 satisfies polynomially Property 1, we can construct in polynomial time a feasible solution S 3 which satisfies w 1 (S 3 ) ≥ w1(S1) 2 and w 2 (S 3 ) ≥ w2(S2) that is a ρ 2 -approximate Pareto set. ⊓ ⊔ We consider in Sections 3.1, 3.2, and 3.3 several examples of problems Π 1 that satisfy the scaling hypothesis and such that Biobjective Π 1 satisfy Property 1 or Property 2.

Corollary 4 .

 4 Biobjective Max Pos 3NAE admits a polynomial time 0.454approximate Pareto set with one solution. For k ≥ 4, Max Pos kNAE admits a polynomial time 1/2 -2 -k -approximate Pareto set with one solution.

Corollary 5 .Corollary 6 .

 56 Biobjective Max Cut admits a (i) β ℓ -approximate Pareto set (resp. an α ℓ -approximate Pareto set) containing at most p solutions, where p = 2ℓ -1 (resp. p = 2ℓ).(ii) (1ε)-approximate Pareto set containing O( 1 ε ) solutions. Biobjective Max Cut admits a polynomial time 0.439-approximate Pareto set with one solution.

Lemma 2 .Corollary 7 .Corollary 8 .

 278 Biobjective Max Partition satisfies polynomially Property 1. Biobjective Max Partition admits a (i) β ℓ -approximate Pareto set (resp. an α ℓ -approximate Pareto set) containing at most p solutions, where p = 2ℓ -1 (resp. p = 2ℓ). (ii) (1ε)-approximate Pareto set containing O( 1 ε ) solutions. Biobjective Max Partition admits a polynomial time (1/2ε)approximate Pareto set with one solution, for every ε > 0.

Lemma 3 .Corollary 9 .

 39 Biobjective Max Matching satisfies polynomially Property 2 with c = 1/3. Biobjective Max Matching admits a δ ℓ -approximate Pareto set (resp. an γ ℓ -approximate Pareto set) containing at most p solutions, where p = 2ℓ -1 (resp. p = 2ℓ). Corollary 10. Biobjective Max Matching admits a polynomial time 1 6 -approximate Pareto set with one solution. Proof. It follows from Lemma 3 and Proposition 1 considering ρ = 1.

Lemma 4 .

 4 Biobjective Max Bisection satisfies polynomially Property 3 with α = 1 and ρ 1 = ρ and ρ 2 = ρ 2 , where ρ is any polynomial time approximation ratio given for Max Bisection. Corollary 11. Biobjective Max Bisection admits a polynomial time 0.174approximate Pareto set with one solution.
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