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input and output delays. The uncertain delay case is treated as well as the partial state knowledge case.
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1. Introduction

Time-delay systems (TDS) is a very wide area of research in the control community since delays
are almost always present in real systems. The survey papers Richard (2003) and Gu and Niculescu
(2003) give an overview about the topic. TDS can be classified according to the variables affected
by the delays: input, state, output or any combination of them. As soon as a plant is remotely
controlled, input and output delays occur because of communication time-lag. This article deals
with the combination of both input and output delays.

1.1 Input delay systems

A vast literature is available for the control of input-delay systems. The works on this topic can be
divided into two main classes according to the controller design: memory free (or memoryless) and
memory controllers. The interest of memory free controllers is that they are easier to implement
in practice. The truncated predictor feedback is an example of such a technique: see Zhou, Lin,
and Duan (2010) for constant delay and Yoon and Lin (2013), Zhou, Lin, and Duan (2012), Zhou
and Lin (2014) for time-varying delays. Sliding mode and adaptive control have also been used in
Richard, Gouaisbaut, and Perruquetti (2001) and Choi and Lim (2006) respectively. The drawback
of memoryless control is that it is usually not possible to compensate for an arbitrarily long delay
except for some particular classes of systems as in Mazenc, Mondié, and Niculescu (2003), Mazenc,
Mondié, and Francisco (2004), Lin and Haijun (2007).
The other class of controller is the memory controllers. For systems with a single delay, a mem-
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ory controller is often a prediction-based controller. Note that a predictive controller is always a
memory controller but a memory controller is not always a predictive controller. The Smith pre-
dictor presented in Smith (1957) is the most famous memory controller. This method is based on
a frequency approach to control stable systems with a constant and known delay in the input. The
works of Artstein (1982), Kwon and Pearson (1980) and Olbrot (1978) have extended the Smith
predictor to state-space representation and unstable systems. In the last decade, the predictive
methods have been widely studied and numerous extensions have been proposed. This interest has
been supported by the use of new tools for the stability analysis: the backstepping transformation
associated to a systematic Lyapunov-Krasovskii functional design has been presented in Krstic
(2008) for constant delays and in Krstic (2010) for time-varying delays. For a complete overview
of the backstepping method, the reader can refer to Krstic and Bekiaris-Liberis (2010) and Krstic
(2009). A different Lyapunov-Krasovskii analysis has been used in Mazenc, Niculescu, and Krstic
(2012). A Lyapunov-Krasovskii functional construction for multiple input delays is proposed in
Li, Zhou, and Lam (2014). The backstepping transformation has been extensively used in order
to design adaptive predictive control when the delay is unknown as in Bresch-Pietri and Krstic
(2010) and also in case of parameter uncertainties in Bresch-Pietri and Krstic (2010). These results
have been extended to systems with state delay in Bekiaris-Liberis and Krstic (2010). A further
extension of this adaptive method in presence of perturbation and for the output feedback case
is given in Bresch-Pietri, Chauvin, and Petit (2012). The trajectory tracking in presence of pa-
rameter uncertainties and unknown input delay is achieved in Zhu, Su, and Krstic (2015). A new
prediction more robust to external perturbation has been presented in Léchappé, Moulay, Plestan,
Glumineau, and Chriette (2015). A different memory method using dynamical systems to compute
an approximate prediction has been presented in Besançon, Georges, and Benayache (2007) and
Najafi, Hosseinnia, Sheikholeslam, and Karimadini (2013) for systems with constant input delay.
The inconvenient of above methods (except adaptive methods) is that they require the exact

knowledge of the delay in order to compute the control law. In Michiels and Niculescu (2003), the
delay sensitivity of the Smith Predictor is investigated. The maximal delay mismatch that preserves
stability is characterized. More recently, this problem has also been studied for state-space systems.
In Krstic (2008) a robustness analysis to delay mismatch is performed thanks to the backstepping
techniques and a Lyapunov-Krasovskii analysis as well as in Bresch-Pietri and Krstic (2010). It
has been shown in Bekiaris-Liberis and Krstic (2013) that the global exponential stability of the
nonlinear predictor feedback is preserved when the delay mismatch and its rate are small enough.
In Karafyllis and Krstic (2013a), a small-gain analysis allows to compute an upper bound of the
delay uncertainty. In Li, Zhou, and Lin (2014), less conservatives bounds are obtained using a delay
partition technique and a stability analysis from neutral system theory. All the previous results
consider a constant delay or a constant delay estimation or both in the robustness analysis. In
practice, the delay and its estimation are usually time-varying that is why, in the present work,
the robustness analysis will be carried out with both a time-varying delay and a time-varying
estimation.

1.2 Output delay systems

Some works have treated the observation problem in presence of output delays: see for example
Cacace, Germani, and Manes (2010) for systems with a time-varying delay, Germani, Manes, and
Pepe (2002), Ahmed-Ali, Karafyllis, and Lamnabhi-Lagarrigue (2013) for a sub-observer method,
Ghanes, de León Morales, and Barbot (2013) for systems with an unknown delay. Above articles
do not tackle the control issue of output delay systems. In Cacace, Germani, and Manes (2014a)
and Cacace, Germani, and Manes (2014b), the estimated state value fed a memory free controller
to control the system with full and partial state knowledge respectively.
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1.3 Input and output delays

A generalization of the reduction method proposed by Artstein (1982) is presented in Jankovic
(2010) when input and output delays (and state) are present in the loop. Predictive techniques
are used in Karafyllis and Krstic (2012) and Karafyllis and Krstic (2013b) to control delayed
nonlinear systems with Zero-order hold input and sampled measurements. The dynamic predictor
method has been extended to nonlinear systems with sample measurement and output feedback in
Karafyllis, Krstic, Ahmed-Ali, and Lamnabhi-Lagarrigue (2014). A prediction method for systems
with multiple state delays is presented in Yoon and Lin (2015). All the previous works deal with
constant delays. In Zhou, Li, and Lin (2013), the truncated predictor method is extended to input
and output time-varying delays. A chain of predictors is designed in Cacace, Conte, Germani, and
Pepe (2016). The drawback of these two works is that the delay has to be known in advance to
compute the controllers. In Selivanov, Fridman, and Fradkov (2015), an adaptive memory free
controller is proposed and it does not need the delay value. However, it cannot compensate for
arbitrarily large delays.

1.4 Contributions

The contributions of this work are stated below:

• The results from Bekiaris-Liberis and Krstic (2013) and Bresch-Pietri and Krstic (2010) are
extended to both time-varying and uncertain input and output delay systems. The controller
only requires an estimation of the round-trip delay (input delay plus output delay).

• A prediction-based controller is designed using only partial state knowledge. Since both input
and output delays are time varying, the closed-loop stability analysis is not straightforward
and is a major contribution of this work.

• The reduction method is combined with a Lyapunov-Razumikhin analysis to study the closed-
loop stability. As far as the authors’ knowledge, this analysis has not been used in this context
and allows to obtain simpler stability conditions than with the Lyapunov-Krasovskii analysis.

Most of the works that deal with input and output delays assume that the delays are known and as
far as the authors know, no work is available combining input and output uncertain time-varying
delays and output predictive feedback.

1.5 Organization

The paper is organized as follows. Section 2 gives the problem statement. The stability of the
observer, the prediction-based controller and the plant is studied in Section 3. Simulations support
previous theoretical results in Section 4. Finally, some perspectives are given in Section 5.

2. Problem statement

The systems considered in this work have the following form

{

ẋ(t) = Ax(t) +Bu(t− hI(t))
y(t) = Cx(t− hO(t))

(1)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p and hI(t) and hO(t) are uncertain time-varying delays.

The matrices A, B and C are known and of appropriate dimensions. Throughout this paper, the
following assumption holds.
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Assumption 1: The pair (A,B) is controllable so there exists a matrix K such that A + BK
is Hurwitz which ensures the existence of a unique symmetric positive matrix P , solution of the
Lyapunov equation

(A+BK)TP + P (A+BK) = −cuIn (2)

The time-varying delays satisfy the following assumption.

Assumption 2: The time-varying delays hI(t) and hO(t) are uncertain but bounded, i.e. there
exist hmin, hmax > 0 such that

hmin ≤ hI(t) ≤ hmax (3)

and

hmin ≤ hO(t) ≤ hmax. (4)

In addition, the delays are differentiable and the time-derivatives are bounded, i.e. there exist
δI , δO > 0 such that

|ḣI(t)| ≤ δI and |ḣO(t)| ≤ δO. (5)

Remark 2.1: Assumption 2 is standard since, in practice, communication delays are bounded and
cannot have arbitrary fast variations.

Since only a part of the state is known, an observer is designed in the next sections to estimate
the whole state of system (1). Consequently, the following assumption is made.

Assumption 3: The pair (C,A) is observable so there exists a matrix L such that A + LC is
Hurwitz and this ensures the existence of a unique symmetric positive matrix Q, solution of the
Lyapunov equation

(A+ LC)TQ+Q(A+ LC) = −clIn. (6)

In practice, it is difficult to know exactly the delays hI(t) and hO(t). That is why, in this sub

section, one supposes that only an approximation ĥ(t) of the round-trip delay (input and output
delays) is available. It is assumed that this estimation complies with the assumption below.

Assumption 4: Denoting by h(t) = hI(t) + hO(t) the round trip delay, its estimation ĥ(t) is
bounded, i.e.

2hmin ≤ ĥ(t) ≤ 2hmax (7)

with hmin and hmax defined in Assumption 2. In addition, the estimation ĥ is differentiable and
its time-derivative is bounded, i.e. there exists δ̂ > 0 such that

| ˙̂h(t)| ≤ δ̂. (8)

Remark 2.2: The delay estimations can be available by a direct computation: in the framework
of NCS, the information is sent through the network thanks to time-stamped packets. Then, it is
possible to compute the value of the delay by comparing the time-stamps as in Hetel, Daafouz,
Richard, and Jungers (2011). However, if the clocks in the network are not perfectly synchronized,
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the delay is not exact: this is why it is useful to consider an approximate value. Another way to have
a delay approximation is to use a delay estimator: see O’Dwyer (2000) for references on constant
delay estimation and Léchappé, De León, Moulay, Plestan, and Glumineau (2015), Léchappé et al.
(2016) for some references on the estimation of time-varying delays. An example of delay estimator
will be given in Section 4.

3. Main results

Since the delays are uncertain, a state observer based on the round-trip delay estimation ĥ(t) is
used to estimate the state:

˙̂x(t) = Ax̂(t) +Bu(t− ĥ(t)) + L[Cx̂(t)− y(t)] (9)

Then, an approximate prediction1 is computed thanks to the estimated state x̂ and the uncertain
delay ĥ as follows

z(t) = eAĥ(t)x̂(t) +

t
∫

t−ĥ(t)

eA(t−s)Bu(s)ds. (10)

This approximate prediction z can be used to control the system by defining the following
prediction-based controller

u(t) = Kz(t). (11)

The analysis of the closed-loop convergence of system (1) with controller (11) is studied below.

Theorem 1: Consider system (1), where hI and hO are uncertain and comply with Assumption

2 and ĥ complies with Assumption 4. Suppose that system (1) is controlled by the feedback (11)
where z and x̂ are given in (9) and (10) respectively, and define

Υ(t) = ||x(t)||2 + ||e(t)||2 + sup
s∈[t−2hmax,t]

||u(s)||2 + sup
s∈[t−2hmax,t]

||u̇(s)||2 (12)

where e(t) = x̂(t)− x(t− hO(t)). Then, there exist δ∗O, δ̂
∗,D∗, ε, ς > 0 such that, provided that

δO < δ∗O, δ̂ < δ̂∗ (13)

and

D < D∗ (14)

where D = max
t≥0

|hO(t) + hI(t− hO(t))− ĥ(t)|, one has

Υ(t) ≤ ςΥ(0)e−εt, ∀t ≥ 0 (15)

and therefore lim
t→+∞

||x(t)|| = 0 and lim
t→+∞

||e(t)|| = 0.

1This prediction has been presented in Bresch-Pietri and Krstic (2010) for an uncertain input delay. In Bresch-Pietri and Krstic
(2010), the analysis is carried out only for a constant uncertain delay and when the full state is known.
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Proof. By using Leibniz’s formula for integral differentiation given in Flanders (1973), the derivative
of z defined by (10) is

ż(t) = A
˙̂
heAĥx̂(t) + eAĥ ˙̂x(t) +Bu(t)− (1− ˙̂

h)eAĥBu(t− ĥ) +A
t
∫

t−ĥ

eA(t−s)Bu(s)ds. (16)

From (10), one has

eAĥ(t)x̂(t) = z(t)−
t

∫

t−ĥ

eA(t−s)Bu(s)ds (17)

Substituting ˙̂x(t) by expression (9) and eAĥ(t)x̂ by (17), one obtains that the prediction z is solution
of the following equation

ż(t) = A
˙̂
hz(t)−A

˙̂
h

t
∫

t−ĥ

eA(t−s)Bu(s)ds+Bu(t) + eAĥAx̂(t) + eAĥBu(t− ĥ) + eAĥLCe(t)

−(1− ˙̂
h)eAĥBu(t− ĥ) +A

t
∫

t−ĥ

eA(t−s)Bu(s)ds.

(18)

Noting that eAĥA = AeAĥ, we recognize

Az(t) = AeAĥx̂(t) +A

t
∫

t−ĥ

eA(t−s)Bu(s)ds (19)

and using (11), one gets

ż(t) = (A+BK)z(t) +
˙̂
hAz(t) +

˙̂
heAĥBu(t− ĥ)− ˙̂

hA
t
∫

t−ĥ

eA(t−s)Bu(s)ds+ eAĥLCe(t).

(20)
The dynamics of the observation error is

ė(t) = (A+ LC)e(t)− ḣOAe(t) + ḣOAe
−Aĥz(t)− ḣOAe

−Aĥ
t
∫

t−ĥ

eA(t−s)Bu(s)ds

+ḣOBu(φ(t)) +B
t−ĥ
∫

φ(t)

u̇(s)ds

(21)

where φ(t) = t − hO(t) − hI(t− hO(t)). We define the following Lyapunov-Razumikhin candidate
function

V (z(t), e(t)) = V1(z(t)) + αV2(e(t)) (22)

with α > 0 and

V1(z(t)) = zT (t)Pz(t),

V2(e(t)) = eT (t)Qe(t),

(23)

(24)
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Note that P and Q are defined in (2) and (6). The function V1(z(t)) verifies the inequalities

λmin(P )||z(t)||2 ≤ V1(z(t)) ≤ λmax(P )||z(t)||2 (25)

where λmin(.) (respectively λmax(.)) denotes the minimum (respectively maximum) eigenvalue of
a matrix. Similarly the function V2(e(t)) verifies the inequalities

λmin(Q)||e(t)||2 ≤ V2(e(t)) ≤ λmax(Q)||e(t)||2. (26)

Taking the time derivative of V1 along the trajectories of system (20) leads to the following in-
equality:

V̇1(z(t)) ≤ −
[

cu − δ̂c1

]

||z(t)||2 + δ̂c2||z(t)|| ||u(t− ĥ)||+ δ̂c3||z(t)|| ||v(t)|| + c4||z(t)|| ||e(t)|| (27)

with c1 = 2 ||PA||, c2=2e2||A||hmax||B|| ||P ||, c3=2e2||A||hmax||PA|| ||B||, c4 = 2e2||A||hmax||P || ||LC|| and

||v(t)|| =
t

∫

t−ĥ

||u(s)||ds. (28)

The time derivative of V2 along the trajectories of system (21) verifies the following inequality

V̇2(e(t)) ≤ −
[

cl − δOc5

]

||e(t)||2 + δOc6||e(t)|| ||z(t)|| + δOc7||e(t)|| ||v(t)|| + δOc8||e(t)|| ||u(φ(t))||
+c8||e(t)|| ||w(t)||.

(29)
with c5 = 2 ||QA||, c6 = 2||QA||e2||A||hmax , c7 = 2||QA|| ||B||e2||A||hmax, c8 = 2||QB|| and

||w(t)|| =
max(φ(t),t−ĥ(t))

∫

min(φ(t),t−ĥ(t))

||u̇(s)||ds. (30)

The following Razumikhin condition is assumed: for a given κ > 1, the inequality

V (z(t− s), e(t− s)) ≤ κV (z(t), e(t)) ∀s ∈ [0, 2hmax] (31)

holds. Then it follows that

||z(t− s)|| ≤ c9

(

||z(t)|| +
√
α||e(t)||

)

∀s ∈ [0, 2hmax] (32)

with c9 =
√

κmax(λmax(P ), λmax(Q))/λmin(P ). Using (32), we get

δ̂c2||z(t)|| ||u(t− ĥ)|| ≤ δ̂c10||z(t)||
(

||z(t)|| +
√
α||e(t)||

)

(33)

with c10 = c2c9||K|| and

δ̂c3||z(t)|| ||v(t)|| ≤ δ̂c11||z(t)||
(

||z(t)|| +
√
α||e(t)||

)

(34)
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with c11 = c3c9||K||hmax. Similarly for the term in V̇2, one has

δOc7||e(t)|| ||v(t)|| ≤ δOc12||e(t)||
(

||z(t)|| +
√
α||e(t)||

)

(35)

with c12 = c7c9||K||hmax and

δOc8||e(t)|| ||u(φ(t))|| ≤ δOc13||e(t)||
(

||z(t)|| +
√
α||e(t)||

)

(36)

with c13 = c7c9||K||. From (20), one can derive the following maximization

||ż(t)|| ≤ c14||z(t)|| + c15(||z(t)|| +
√
α||e(t)||) + hmaxc15(||z(t)|| +

√
α||e(t)||) + c16||e(t)||

(37)

with c14 = ||A+BK||+ δ̂||A||, c15 = e2||A||hmax||BK||c9 and c16 = e2||A||hmax||LC|| so

||ż(t)|| ≤ c17||z(t)|| + (c18
√
α+ c16)||e(t)|| (38)

with c17 = c14 + c15(1 + hmax) and c18 = c15(1 + hmax). Then, using (38), one obtains

c8||e(t)|| ||w(t)|| ≤ c19D||e(t)|| ||z(t)|| + c20D(c18
√
α+ c16)||e(t)||2 (39)

with c19 = c8c17||K|| and c20 = c8||K|| and

D = max
t≥0

|hO(t) + hI(t− hO(t))− ĥ(t)|. (40)

Substituting inequalities (33)-(36) and (39) into (27) and (29), one gets

V̇ (z(t), e(t)) ≤ −
[

cu − δ̂c21

]

||z(t)||2 −
[

δ̂c22(α) + c4 + αδOc23 + c19αD
]

||e(t)|| ||z(t)||
−α

[

cl − δOc24(α)− c25(α)D
]

||e(t)||2
(41)

with c21 = c1+c10+c11, c22(α) = (c10+c11)
√
α, c23 = c6+c12+c13 and c24(α) = c5+(c12+c13)

√
α

and c25(α) = c20(c18
√
α+ c16). Using the Young’s inequality given in Mitrinović, Pečarić, and Fink

(2013) and the completing the square method from Narasimhan (2009) to get rid of the crossed
terms, one has

V̇ (z(t), e(t)) ≤ −
[

cu − δ̂(c21 + c22(α)/2) − αδOc23/2− c19αD/2 − c2
4

2αcl

]

||z(t)||2

−α
[

cl/2− δ̂c22(α)/2α − δO(c24(α) + c23/2) −D(c25(α) + c19/2)
]

||e(t)||2
(42)

Choosing α sufficiently large too minimize the term c2
4

2αcl
, then taking δ̂, δO and D sufficiently

guarantee the existence of c26, c27 > 0 such that

V̇ (z(t), e(t)) ≤ −c26||z(t)||2 − c27α||e(t)||2. (43)

As a consequence using (25) and (26), one can deduce that

V̇ (z(t), e(t)) ≤ −εV (z(t), e(t)) (44)
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with ε = min
(

c26
λmax(P ) ,

c27
λmax(Q)

)

. Using the Razumikhin theorem reminded in Appendix A, we

deduce that the equilibrium points (z, e) = (0, 0) of (20)-(21) is asymptotically stable. Inequality
(15) can be deduced using Lemma 1 in Appendix B.

Remark 3.1: Some numerical estimations of δ∗O, δ̂
∗ and D∗ can be computed. Note that these

values will be smaller than the real values because the stability analysis is conservative as shown in
the simulation section.

Remark 3.2: In the case of a Lyapunov-Krasoskii stability analysis, the function V (z(t), e(t)) =
zT (t)Pz(t) + eT (t)Qe(t) would have been replaced by a functional of the form

V ′(e(t), z(t), ut , u̇t) = zT (t)Pz(t) + αeT (t)Qe(t) +

t
∫

t−2hmax

(2hmax + s− t)(β||u̇(s)||2 + γ||u(s)||2)ds

with α, β, γ > 0 and ut(θ) = u(t + θ), u̇t(θ) = u̇(t + θ) for θ ∈ [−2hmax, 0]. The integral term in
||u̇(s)||2 is needed to deal with the term in u̇ in equation (21) and the integral term in ||u(s)||2 is
required to maximize the terms in u in equations (20) and (21). As a result, computations in the
Lyapunov-Krasovskii analysis involve more terms and result in intricate stability conditions.

Condition (14) shows that the estimated round trip delay ĥ has to be close to the delay hO(t) +
hI(t− hO(t)) to guarantee the closed-loop stability. Note that if the input delay is slow varying or

if the output delay is small then, in this case, hI(t− hO(t)) ≈ hI(t) and ĥ(t) is close to the round
trip delay hO(t)+hI(t). Note also that even if there is no condition on ḣI in Theorem 1, the input

delay dynamics is indirectly constrained by conditions δ̂ < δ̂∗ and D < D∗. Indeed, δ̂ < δ̂∗ means
that ĥ should be sufficiently slow varying and D < D∗ means that ĥ has to be close to the real
delay. Consequently, if δ̂ < δ̂∗ and D < D∗ are verified it means that ḣI is small.
Remark that if the delays hI and hO are known, they can be used to compute the prediction (10).

In this case, defining ĥ(t) = hI(t) + hO(t), the following corollary of Theorem 1 can be obtained.

Corollary 1: Consider system (1), where hI and hO are known and comply with Assumption 2.
Suppose that system (1) is controlled by the feedback (11) where z and x̂ are given in (9) and (10)

respectively with ĥ(t) = hI(t) + hO(t), and define

Υ(t) = ||x(t)||2 + ||e(t)||2 + sup
s∈[t−2hmax,t]

||u(s)||2 + sup
s∈[t−2hmax,t]

||u̇(s)||2 (45)

where e(t) = x̂(t)− x(t). Then, there exist δ∗I , δ
∗
O, ε, ς > 0 such that, provided that

δI < δ∗I and δO < δ∗O, (46)

one has

Υ(t) ≤ ςΥ(0)e−εt, ∀t ≥ 0 (47)

and therefore lim
t→+∞

||x(t)|| = 0.

Proof. The proof is deduced from the proof of Theorem 1. Noting that if the delays are known then
D = max

t≥0
|hO(t)+hI(t−hO(t))− ĥ(t)| with ĥ(t) = hI(t)+hO(t) becomes D = max

t≥0
|hI(t−hO(t))−

hI(t)|. Remark that from the Taylor-Lagrange formula in Kline (1998), there exists ξ ∈ [t−hO(t), t]

9
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such that hI(t − hO(t)) = hI(t) − hO(t)ḣI(ξ) then one deduces that D ≤ hmaxδI . Choosing δI
sufficiently small guarantees that (14) is verified.

For the known delay case, condition (46) means that the closed-loop system is stable if the input
and the output time-varying delays are sufficiently slow varying. In the next section, the qualitative
behavior described in Section 3 is illustrated by simulation.

4. Simulation

Consider the second order system

{

ẋ(t) = Ax(t) +Bu(t− hI(t))
y(t) = Cx(t− hO(t))

(48)

with A =

[

0 1
−1 1

]

, B =

[

0
1

]

, C = [1, 0] and x(0) = [2, 0]T . The state feedback reads as

u(t) = Kz(t) (49)

with K = [0.85,−1.8] and z defined by (10). The gain L of the observer (9) is equal to L =

[−4,−5]T . Different values of hI , hO and ĥ are tested in order to illustrate the stability conditions
of Theorem 1 and Corollary 1. These values are chosen such that Assumptions 2 and 4 are satisfied
with hmin = 0.2 and hmax = 2. Note that the different values of the delay hi + hO have the same
order of magnitude as the time constant of the open loop system (0.5 s). In addition, system (48)
is open loop unstable so memoryless (non predictive) controllers would not be able to achieve a
good level of performance for an arbitrarily large delay because they often require to have a small
gain controller as in Choi and Lim (2006).

Remark 4.1: The computation of z requires an integration. For open-loop stable system the inte-
gral term can be computed without discretizing the integral as in Watanabe and Ito (1981). However,
for open-loop unstable systems, the integral has to be discretized in a finite number of points. This
step has to be done very carefully since it can destabilize the system as pointed out in Van Assche,
Dambrine, Lafay, and Richard (1999). Safe implementations of the prediction are given in Mondié
and Michiels (2003) and Zhong (2006). In this article, a time-domain approximation with sample-
and-hold is used and guarantees the accuracy of the prediction if the sample time is sufficiently
small Zhong (2006).

4.1 Known delay

For the first simulation, the delays are defined as follows

hI(t) = 0.5 + 0.25 sin(1.5t) for t ≤ 25

and

hO(t) =

{

0.5 + 0.25 sin(1.5t) for t ≤ 25
0.5 + 0.25 sin(0.3t) for t > 25.

10
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These delays are supposed to be known at time t so ĥ(t) = hI(t) + hO(t) is used to compute
prediction (10). As displayed on Figure 1-Top, between t = 0 and t = 25 s, the delays are fast
and the system is not stabilized by the predictive feedback. However, when the output delay hO
becomes slower, after t = 25 s, the system is stabilized by the prediction-based feedback (49). This
is in accordance with the existence of an upper-bound δ∗O for the time-derivative of ḣO in Corollary

1. Note that the actual upper bound for |ḣO| is around 10−2 for this example since the system is
stable for |ḣO| < 0.05 and unstable for |ḣO| < 0.3.
For the second simulation, the delays are chosen as follows

hI(t) =

{

0.5 + 0.25 sin(1.2t) for t ≤ 25
0.5 + 0.25 sin(0.2t) for t > 25

and

hO(t) = 0.5 + 0.25 sin(1.2t) for t ≤ 25

In this configuration, the delay hI is slowed down after t = 25 s but the output delay is kept
constant. It is clear that the system is unstable first and then becomes stable when the input delay
slows down (Figure 2).
This is in accordance with the existence of an upper-bound δ∗I for the time-derivative of ḣI in

Corollary 1. Note that the actual upper bound for |ḣI | is also around 10−2.
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Figure 1. Top: Norm of the state – Bottom: Known Delays hI(t) and ho(t) used to compute the prediction

4.2 Uncertain delay

In this subsection the delays are defined as follows

hI(t) = hO(t) = 0.5 + 0.25 sin(2t) for t ≥ 0

Since the delays are unknown in this part, the delay estimator presented in Léchappé et al. (2016)
is used to obtain an approximation of the delay. The dynamics of the delay estimator is given by

˙̂
h(t) = ρh[u(t− ĥ(t))− u(t− h(t))]u̇(t− ĥ(t)). (50)
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Figure 2. Top: Norm of the state – Bottom: Exact delay h(t) with different dynamics.

where ρh = 0.05 and h(t) = hI(t)+hO(t). Then this estimation is used to compute the estimation x̂
in (9) and the prediction (10). The result of this simulation is displayed on Figure 3. Three phases
can be observed on this figure.

• From t = 0 to t = 20 s, the delay estimation error is large so the system diverges.
• Between t = 20 s and t = 40 s, the delay estimation error is reduced and the system converges

to the origin. From Figure 4, one can see that, when hO(t) + hI(t − hO(t)) − ĥ(t) becomes
sufficiently small, the system becomes stable.

• From t = 40 s to t = 100 s, the system is stabilized to zero and the input is constant so its
time derivative tends to zero. As a consequence, the delay estimator cannot track the delay

variations anymore because the delay estimation dynamics
˙̂
h depends on u̇ in (50).

This simulation confirms that the delay estimation error should be sufficiently small (existence of
D∗ in Theorem 1) to guarantee the stability of the closed-loop system. From Figure 4, one can
see that the order of magnitude of the actual value of D∗ is 10−1. As mentioned in Remark 3.1,
estimations of the theoretical bounds δ∗O, δ̂

∗ and D∗ defined in (13)-(14) can be computed thanks
to equation (42). For this simulation example, the order of magnitude of the theoretical bounds is
10−9 that is much smaller than the actual bounds δ∗I ≈ δ∗O ≈ 10−2 and D∗ ≈ 10−1.

5. Conclusion

In this article, a stability analysis of a prediction-based controller is proposed when both the
input and the output are affected by uncertain time-varying delays. The partial state knowledge
case is also treated by designing a state-observer that reconstruct the delayed state. The reduction
method and a Lyapunov-Razumikhin analysis are used to prove the closed-loop stability. The results
are illustrated by simulation. The extension to uncertain linear systems and nonlinear systems is
considered for future developments.
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Appendix A.

Lyapunov-Razumikhin theorem [Hale and Verduyn Lunel (1993)] is reminded here. Consider the
system

ẋ(t) = f(t, xt) (A1)

where f : R×C[−h, 0] → R
n is continuous in both arguments and is locally Lipschitz in the second

argument and xt(θ) = x(t + θ) for θ ∈ [−h, 0]. It is also assumed that f(t, 0) = 0. Consider also
the differentiable function V : R × R

n → R
+ and define the derivative of V along the solution of

(A1) as

V̇ (t, x(t)) =
d

dt
V (t, x(t)) =

∂V (t, x(t))

∂t
+

∂V (t, x(t))

∂x
f(t, xt).
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Theorem 2 (Lyapunov-Razumikhin theorem): Suppose f : R × C[−h, 0] → R
n maps R ×

(bounded set of C[−h, 0]) into bounded sets of R
n and that u, v, w: R

+ → R
+ are continuous

non decreasing functions, u(s) and v(s) are positive for s > 0 and u(0) = v(0) = 0, v is strictly
increasing. The trivial solution of (A1) is uniformly stable if there exists a differentiable function
V : R× R

n → R
+, which is positive-definite

u(|x|) ≤ V (t, x) ≤ v(|x|) (A2)

such that the derivative of V along the solution of (A1) satisfies

V̇ (t, x(t)) ≤ −w(|x(t)|) if V (t+ θ, x(t+ θ)) ≤ V (t, x(t)) ∀θ ∈ [−h, 0]. (A3)

If, in addition, w(s) > 0 for s > 0, and there exists a continuous non decreasing function κ(s) > s
for s > 0 such that condition (A3) is strengthened to

V̇ (t, x(t)) ≤ −w(|x(t)|) if V (t+ θ, x(t+ θ)) ≤ κ(V (t, x(t))) ∀θ ∈ [−h, 0] (A4)

then the trivial solution of (A1) is uniformly asymptotically stable. If in addition, lim
s→+∞

u(s) =

+∞, then it is globally uniformly asymptotically stable.

Appendix B.

Lemma 1: Consider the Lyapunov-Razumikhin function V defined in (22). The time-derivative
of V along the trajectories of (20)-(21) verifies (44) then inequality (15) is verified.

Proof. It follows from (44) that

V (t) ≤ V (0)e−εt. (B1)

Furthermore, since ||z(t)||2 ≤ 1
λmin(P )z

T (t)Pz(t) with λmin(P ) denoting the smallest eigenvalue of

P then ||z(t)||2 ≤ 1
λmin(P )V (t) so one gets

||z(t)||2 ≤ 1

λmin(P )
V (0)e−εt. (B2)

From the definition of V (t), one has

V (0) ≤ λmax(P )||z(0)||2 + αλmax(Q)||e(0)||2 . (B3)

In addition, from (10), Hölder’s inequality, Jensen’s inequality, the following maximization can be
deduced

||z(0)||2 ≤ c′1(||x(0)||2 + ||e(0)||2) + c′2 sup
s∈[−2hmax,0]

||u(s)||2 (B4)

with c′1 = 2e4||A||hmax and c′2 = 2e4||A||hmax||B||2h2max. From (B3) and (B4), it can be deduced that
there exists c′3 > 0 such that

V (0) ≤ c′3Υ(0). (B5)

14
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Then, from (B2) and (B5), one deduces

||z(t)||2 ≤ c′4Υ(0)e−εt (B6)

for all t ≥ 0 and with c′4 =
c3

λmin(P ) . Since u(t) = Kz(t) for all t ≥ 0, one has

sup
s∈[t−2hmax,t]

||u(s)||2 ≤











sup
s∈[−2hmax,0]

||u(s)||2 + ||K||2 sup
s∈[0,t]

||z(s)||2 if t < 2hmax

||K||2 sup
s∈[t−2hmax,t]

||z(s)||2 if t ≥ 2hmax
(B7)

so

sup
s∈[t−2hmax,t]

||u(s)||2 ≤
{

Υ(0) + ||K||2c′4Υ(0) if t < 2hmax

c′5Υ(0)e−εt if t ≥ 2hmax
(B8)

with c′5 = (||K||2c′4 +1)eεhmax . Noting that c′5Υ(0)e−εt ≥ Υ(0) + ||K||2c′4Υ(0) for all t ∈ [0, 2hmax],
one can state that

sup
s∈[t−2hmax,t]

||u(s)||2 ≤ c′5Υ(0)e−εt (B9)

for all t ≥ 0. Similarly, using (20), one gets

sup
s∈[t−2hmax,t]

||u̇(s)||2 ≤ c′6Υ(0)e−εt (B10)

with c′6 > 0. Moreover, rearranging (10) gives

x̂(t) = e−Aĥz(t)−
t

∫

t−ĥ

eA(t−ĥ−s)Bu(s)ds (B11)

so by the same steps as in (B4), one gets

||x̂(t)||2 ≤ c1||z(t)||2 + c2 sup
s∈[t−2hmax,t]

||u(s)||2 (B12)

for all t ≥ 0. Differentiating (B11) with respect to time, we can show that there exist c′7, c
′
8, c

′
9 > 0

such that

|| ˙̂x(t)||2 ≤ c′7||z(t)||2 + c′8 sup
s∈[t−2hmax,t]

||u(s)||2 + c′9 sup
s∈[t−2hmax,t]

||u̇(s)||2 (B13)

Then, using (9), (B12) and (B14) one derives that there exist c′10, c
′
11, c

′
12 > 0 such that

||e(t)||2 ≤ c′10||z(t)||2 + c′11 sup
s∈[t−2hmax,t]

||u(s)||2 + c′12 sup
s∈[t−2hmax,t]

||u̇(s)||2 (B14)
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From (B14) and since

x(t) = e−Aĥz(t)−
t

∫

t−ĥ

eA(t−ĥ−s)Bu(s)ds− e(t) (B15)

then one can deduce the existence of c′13, c
′
14, c

′
14 > 0 such that

||x(t)||2 ≤ c′13||z(t)||2 + c′14 sup
s∈[t−2hmax,t]

||u(s)||2 + c′15 sup
s∈[t−2hmax,t]

||u̇(s)||2 (B16)

Finally, from (B6), (B9), (B10), (B14) and (B16), one can guarantee that there exists ς > 0 such
that

Υ(t) ≤ ςΥ(0)e−εt (B17)

for all t ≥ 0. This ends the proof.
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