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The stability of a prediction-based controller for LTI systems is studied in presence of time-varying input and output delays. The uncertain delay case is treated as well as the partial state knowledge case. The reduction method is used in order to prove the convergence of the closed-loop system including the state-observer, the predictor and the plant. Explicit conditions that guarantee the closed-loop stability are given thanks to a Lyapunov-Razumikhin analysis. The results are illustrated thanks to simulations.

Introduction

Time-delay systems (TDS) is a very wide area of research in the control community since delays are almost always present in real systems. The survey papers [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF] and [START_REF] Gu | Survey on recent results in the stability and control of time-delay systems[END_REF] give an overview about the topic. TDS can be classified according to the variables affected by the delays: input, state, output or any combination of them. As soon as a plant is remotely controlled, input and output delays occur because of communication time-lag. This article deals with the combination of both input and output delays.

Input delay systems

A vast literature is available for the control of input-delay systems. The works on this topic can be divided into two main classes according to the controller design: memory free (or memoryless) and memory controllers. The interest of memory free controllers is that they are easier to implement in practice. The truncated predictor feedback is an example of such a technique: see [START_REF] Zhou | Stabilization of linear systems with input delay and saturation -A parametric Lyapunov equation approach[END_REF] for constant delay and [START_REF] Yoon | Truncated predictor feedback control for exponentially unstable linear systems with time-varying input delay[END_REF], [START_REF] Zhou | Truncated predictor feedback for linear systems with long time-varying input delays[END_REF], [START_REF] Zhou | Truncated predictor feedback stabilization of polynomially unstable linear systems with multiple time-varying input delays[END_REF] for time-varying delays. Sliding mode and adaptive control have also been used in [START_REF] Richard | Sliding mode control in the presence of delay[END_REF] and [START_REF] Choi | Stabilization of a chain of integrators with an unknown delay in the input by adaptive output feedback[END_REF] respectively. The drawback of memoryless control is that it is usually not possible to compensate for an arbitrarily long delay except for some particular classes of systems as in [START_REF] Mazenc | Global asymptotic stabilization for chains of integrators with a delay in the input[END_REF], [START_REF] Mazenc | Global asymptotic stabilization of feedforward systems with delay in the input[END_REF], [START_REF] Lin | On asymptotic stabilizability of linear systems with delayed input[END_REF].

The other class of controller is the memory controllers. For systems with a single delay, a mem-ory controller is often a prediction-based controller. Note that a predictive controller is always a memory controller but a memory controller is not always a predictive controller. The Smith predictor presented in [START_REF] Smith | Closer control of loops with dead time[END_REF] is the most famous memory controller. This method is based on a frequency approach to control stable systems with a constant and known delay in the input. The works of [START_REF] Artstein | Linear systems with delayed controls: A reduction[END_REF], [START_REF] Kwon | Feedback stabilization of linear systems with delayed control[END_REF] and [START_REF] Olbrot | Stabilizability, detectability, and spectrum assignment for linear autonomous systems with general time delays[END_REF] have extended the Smith predictor to state-space representation and unstable systems. In the last decade, the predictive methods have been widely studied and numerous extensions have been proposed. This interest has been supported by the use of new tools for the stability analysis: the backstepping transformation associated to a systematic Lyapunov-Krasovskii functional design has been presented in [START_REF] Krstic | Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch[END_REF] for constant delays and in [START_REF] Krstic | Lyapunov stability of linear predictor feedback for time-varying input delay[END_REF] for time-varying delays. For a complete overview of the backstepping method, the reader can refer to [START_REF] Krstic | Compensation of infinite-dimensional input dynamics[END_REF] and [START_REF] Krstic | Delay compensation for nonlinear, adaptive, and pde systems[END_REF]. A different Lyapunov-Krasovskii analysis has been used in [START_REF] Mazenc | Lyapunov-krasovskii functionals and application to input delay compensation for linear time-invariant systems[END_REF]. A Lyapunov-Krasovskii functional construction for multiple input delays is proposed in [START_REF] Li | Lyapunov-krasovskii functionals for predictor feedback control of linear systems with multiple input delays[END_REF]. The backstepping transformation has been extensively used in order to design adaptive predictive control when the delay is unknown as in Bresch-Pietri and [START_REF] Krstic | Lyapunov stability of linear predictor feedback for time-varying input delay[END_REF] and also in case of parameter uncertainties in Bresch-Pietri and [START_REF] Krstic | Lyapunov stability of linear predictor feedback for time-varying input delay[END_REF]. These results have been extended to systems with state delay in Bekiaris-Liberis and [START_REF] Krstic | Lyapunov stability of linear predictor feedback for time-varying input delay[END_REF]. A further extension of this adaptive method in presence of perturbation and for the output feedback case is given in [START_REF] Bresch-Pietri | Adaptive control scheme for uncertain time-delay systems[END_REF]. The trajectory tracking in presence of parameter uncertainties and unknown input delay is achieved in [START_REF] Zhu | Adaptive backstepping control of uncertain linear systems under unknown actuator delay[END_REF]. A new prediction more robust to external perturbation has been presented in [START_REF] Léchappé | New predictive scheme for the control of LTI systems with input delay and unknown disturbances[END_REF]. A different memory method using dynamical systems to compute an approximate prediction has been presented in [START_REF] Besançon | Asymptotic state prediction for continuoustime systems with delayed input and application to control[END_REF] and [START_REF] Najafi | Closed-loop control of dead time systems via sequential sub-predictors[END_REF] for systems with constant input delay. The inconvenient of above methods (except adaptive methods) is that they require the exact knowledge of the delay in order to compute the control law. In [START_REF] Michiels | On the delay sensitivity of Smith predictors[END_REF], the delay sensitivity of the Smith Predictor is investigated. The maximal delay mismatch that preserves stability is characterized. More recently, this problem has also been studied for state-space systems. In [START_REF] Krstic | Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch[END_REF] a robustness analysis to delay mismatch is performed thanks to the backstepping techniques and a Lyapunov-Krasovskii analysis as well as in Bresch-Pietri and [START_REF] Krstic | Lyapunov stability of linear predictor feedback for time-varying input delay[END_REF]. It has been shown in Bekiaris-Liberis and Krstic (2013) that the global exponential stability of the nonlinear predictor feedback is preserved when the delay mismatch and its rate are small enough. In Karafyllis and Krstic (2013a), a small-gain analysis allows to compute an upper bound of the delay uncertainty. In [START_REF] Li | On robustness of predictor feedback control of linear systems with input delays[END_REF], less conservatives bounds are obtained using a delay partition technique and a stability analysis from neutral system theory. All the previous results consider a constant delay or a constant delay estimation or both in the robustness analysis. In practice, the delay and its estimation are usually time-varying that is why, in the present work, the robustness analysis will be carried out with both a time-varying delay and a time-varying estimation.

Output delay systems

Some works have treated the observation problem in presence of output delays: see for example [START_REF] Cacace | An observer for a class of nonlinear systems with time varying observation delay[END_REF] for systems with a time-varying delay, [START_REF] Germani | A new approach to state observation of nonlinear systems with delayed output[END_REF], Ahmed-Ali, [START_REF] Ahmed-Ali | Global exponential sampleddata observers for nonlinear systems with delayed measurements[END_REF] for a sub-observer method, [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF] for systems with an unknown delay. Above articles do not tackle the control issue of output delay systems. In Cacace, Germani, and Manes (2014a) and [START_REF] Cacace | Predictor-based control of linear systems with large and variable measurement delays[END_REF], the estimated state value fed a memory free controller to control the system with full and partial state knowledge respectively.

Input and output delays

A generalization of the reduction method proposed by [START_REF] Artstein | Linear systems with delayed controls: A reduction[END_REF] is presented in Jankovic (2010) when input and output delays (and state) are present in the loop. Predictive techniques are used in [START_REF] Karafyllis | Nonlinear stabilization under sampled and delayed measurements, and with inputs subject to delay and zero-order hold[END_REF] and [START_REF] Karafyllis | Stabilization of nonlinear delay systems using approximate predictors and high-gain observers[END_REF] to control delayed nonlinear systems with Zero-order hold input and sampled measurements. The dynamic predictor method has been extended to nonlinear systems with sample measurement and output feedback in [START_REF] Karafyllis | Global stabilisation of nonlinear delay systems with a compact absorbing set[END_REF]. A prediction method for systems with multiple state delays is presented in [START_REF] Yoon | Predictor based control of linear systems with state, input and output delays[END_REF]. All the previous works deal with constant delays. In [START_REF] Zhou | Observer based output feedback control of linear systems with input and output delays[END_REF], the truncated predictor method is extended to input and output time-varying delays. A chain of predictors is designed in [START_REF] Cacace | Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors[END_REF]. The drawback of these two works is that the delay has to be known in advance to compute the controllers. In [START_REF] Selivanov | Passification-based adaptive control: Uncertain input and output delays[END_REF], an adaptive memory free controller is proposed and it does not need the delay value. However, it cannot compensate for arbitrarily large delays.

Contributions

The contributions of this work are stated below:

• The results from Bekiaris-Liberis and Krstic (2013) and Bresch-Pietri and [START_REF] Krstic | Lyapunov stability of linear predictor feedback for time-varying input delay[END_REF] are extended to both time-varying and uncertain input and output delay systems. The controller only requires an estimation of the round-trip delay (input delay plus output delay). • A prediction-based controller is designed using only partial state knowledge. Since both input and output delays are time varying, the closed-loop stability analysis is not straightforward and is a major contribution of this work. • The reduction method is combined with a Lyapunov-Razumikhin analysis to study the closedloop stability. As far as the authors' knowledge, this analysis has not been used in this context and allows to obtain simpler stability conditions than with the Lyapunov-Krasovskii analysis.

Most of the works that deal with input and output delays assume that the delays are known and as far as the authors know, no work is available combining input and output uncertain time-varying delays and output predictive feedback.

Organization

The paper is organized as follows. Section 2 gives the problem statement. The stability of the observer, the prediction-based controller and the plant is studied in Section 3. Simulations support previous theoretical results in Section 4. Finally, some perspectives are given in Section 5.

Problem statement

The systems considered in this work have the following form

ẋ(t) = Ax(t) + Bu(t -h I (t)) y(t) = Cx(t -h O (t)) (1)
where Assumption 1: The pair (A, B) is controllable so there exists a matrix K such that A + BK is Hurwitz which ensures the existence of a unique symmetric positive matrix P , solution of the Lyapunov equation

x(t) ∈ R n , u(t) ∈ R m , y(t) ∈ R
(A + BK) T P + P (A + BK) = -c u I n (2)
The time-varying delays satisfy the following assumption.

Assumption 2: The time-varying delays h I (t) and h O (t) are uncertain but bounded, i.e. there exist h min , h max > 0 such that

h min ≤ h I (t) ≤ h max (3) 
and

h min ≤ h O (t) ≤ h max . ( 4 
)
In addition, the delays are differentiable and the time-derivatives are bounded, i.e. there exist

δ I , δ O > 0 such that | ḣI (t)| ≤ δ I and | ḣO (t)| ≤ δ O . ( 5 
)
Remark 2.1: Assumption 2 is standard since, in practice, communication delays are bounded and cannot have arbitrary fast variations.

Since only a part of the state is known, an observer is designed in the next sections to estimate the whole state of system (1). Consequently, the following assumption is made.

Assumption 3: The pair (C, A) is observable so there exists a matrix L such that A + LC is Hurwitz and this ensures the existence of a unique symmetric positive matrix Q, solution of the Lyapunov equation

(A + LC) T Q + Q(A + LC) = -c l I n . (6) 
In practice, it is difficult to know exactly the delays h I (t) and h O (t). That is why, in this sub section, one supposes that only an approximation ĥ(t) of the round-trip delay (input and output delays) is available. It is assumed that this estimation complies with the assumption below.

Assumption 4: Denoting by h(t) = h I (t) + h O (t) the round trip delay, its estimation ĥ(t) is bounded, i.e.

2h min ≤ ĥ(t) ≤ 2h max (7)
with h min and h max defined in Assumption 2. In addition, the estimation ĥ is differentiable and its time-derivative is bounded, i.e. there exists δ > 0 such that

| ḣ(t)| ≤ δ. ( 8 
)
Remark 2.2: The delay estimations can be available by a direct computation: in the framework of NCS, the information is sent through the network thanks to time-stamped packets. Then, it is possible to compute the value of the delay by comparing the time-stamps as in [START_REF] Hetel | Delay-dependent sampled-data control based on delay estimates[END_REF]. However, if the clocks in the network are not perfectly synchronized, the delay is not exact: this is why it is useful to consider an approximate value. Another way to have a delay approximation is to use a delay estimator: see O' Dwyer (2000) for references on constant delay estimation and Léchappé, De León, Moulay, Plestan, and Glumineau (2015), [START_REF] Léchappé | Delay estimation and predictive control of uncertain systems with input delay: Application to a dc motor[END_REF] for some references on the estimation of time-varying delays. An example of delay estimator will be given in Section 4.

Main results

Since the delays are uncertain, a state observer based on the round-trip delay estimation ĥ(t) is used to estimate the state:

ẋ(t) = Ax(t) + Bu(t -ĥ(t)) + L[C x(t) -y(t)] (9) 
Then, an approximate prediction1 is computed thanks to the estimated state x and the uncertain delay ĥ as follows z(t) = e A ĥ(t) x(t) + t t-ĥ(t)

e A(t-s) Bu(s)ds.

(10)

This approximate prediction z can be used to control the system by defining the following prediction-based controller

u(t) = Kz(t). (11) 
The analysis of the closed-loop convergence of system (1) with controller ( 11) is studied below.

Theorem 1: Consider system (1), where h I and h O are uncertain and comply with Assumption 2 and ĥ complies with Assumption 4. Suppose that system (1) is controlled by the feedback (11) where z and x are given in (9) and (10) respectively, and define

Υ(t) = ||x(t)|| 2 + ||e(t)|| 2 + sup s∈[t-2hmax,t] ||u(s)|| 2 + sup s∈[t-2hmax,t] || u(s)|| 2 (12)
where e(t) = x(t) -x(t -h O (t)). Then, there exist δ * O , δ * , D * , ε, ς > 0 such that, provided that

δ O < δ * O , δ < δ * (13)
and

D < D * ( 14 
)
where Proof. By using Leibniz's formula for integral differentiation given in [START_REF] Flanders | Differentiation under the integral sign[END_REF], the derivative of z defined by ( 10) is ż(t) = A ḣe A ĥ x(t) + e A ĥ ẋ(t) + Bu(t) -(1 -ḣ)e A ĥBu(tĥ) + A t t-ĥ e A(t-s) Bu(s)ds.

D = max t≥0 |h O (t) + h I (t -h O (t)) -ĥ(t)|,
(16)

From ( 10), one has e A ĥ(t) x(t) = z(t) -t t-ĥ e A(t-s) Bu(s)ds

(17)
Substituting ẋ(t) by expression ( 9) and e A ĥ(t) x by ( 17), one obtains that the prediction z is solution of the following equation

ż(t) = A ḣz(t) -A ḣ t
t-ĥ e A(t-s) Bu(s)ds + Bu(t) + e A ĥAx(t) + e A ĥBu(tĥ) + e A ĥLC e(t)

-(1 -ḣ)e A ĥBu(tĥ) + A t t-ĥ e A(t-s) Bu(s)ds.

(18) Noting that e A ĥA = Ae A ĥ, we recognize

Az(t) = Ae A ĥ x(t) + A t t- ĥ e A(t-s) Bu(s)ds (19)
and using (11), one gets ż(t) = (A + BK)z(t) + ḣAz(t) + ḣe A ĥBu(tĥ) -ḣA t t-ĥ e A(t-s) Bu(s)ds + e A ĥLC e(t).

(20) The dynamics of the observation error is ė(t) = (A + LC)e(t) -ḣO Ae(t) + ḣO Ae -A ĥz(t) -ḣO Ae -A ĥ t t-ĥ e A(t-s) Bu(s)ds

+ ḣO Bu(φ(t)) + B t-ĥ φ(t) u(s)ds (21) where φ(t) = t -h O (t) -h I (t -h O (t)
). We define the following Lyapunov-Razumikhin candidate function

V (z(t), e(t)) = V 1 (z(t)) + αV 2 (e(t)) ( 22 
)
with α > 0 and

V 1 (z(t)) = z T (t)P z(t), V 2 (e(t)) = e T (t)Qe(t), (23) (24) 
Note that P and Q are defined in ( 2) and ( 6). The function V 1 (z(t)) verifies the inequalities

λ min (P )||z(t)|| 2 ≤ V 1 (z(t)) ≤ λ max (P )||z(t)|| 2 (25)
where λ min (.) (respectively λ max (.)) denotes the minimum (respectively maximum) eigenvalue of a matrix. Similarly the function V 2 (e(t)) verifies the inequalities

λ min (Q)||e(t)|| 2 ≤ V 2 (e(t)) ≤ λ max (Q)||e(t)|| 2 . ( 26 
)
Taking the time derivative of V 1 along the trajectories of system (20) leads to the following inequality: The time derivative of V 2 along the trajectories of system (21) verifies the following inequality

V1 (z(t)) ≤ -c u -
V2 (e(t)) ≤ -c l -δ O c 5 ||e(t)|| 2 + δ O c 6 ||e(t)|| ||z(t)|| + δ O c 7 ||e(t)|| ||v(t)|| + δ O c 8 ||e(t)|| ||u(φ(t))|| +c 8 ||e(t)|| ||w(t)||. (29) with c 5 = 2 ||QA||, c 6 = 2||QA||e 2||A||hmax , c 7 = 2||QA|| ||B||e 2||A||hmax , c 8 = 2||QB|| and ||w(t)|| = max(φ(t),t-ĥ(t))
min(φ(t),t-ĥ(t)) || u(s)||ds.

(30)

The following Razumikhin condition is assumed: for a given κ > 1, the inequality 

V (z(t -s),
D = max t≥0 |h O (t) + h I (t -h O (t)) -ĥ(t)|. ( 40 
)
Substituting inequalities ( 33)-( 36) and ( 39) into ( 27) and ( 29 ). Using the Young's inequality given in [START_REF] Mitrinović | Classical and new inequalities in analysis[END_REF] and the completing the square method from [START_REF] Narasimhan | Precalculus: Building concepts and connections[END_REF] to get rid of the crossed terms, one has

V (z(t), e(t)) ≤ -c u -δ(c 21 + c 22 (α)/2) -αδ O c 23 /2 -c 19 αD/2 -c 2 4 2αcl ||z(t)|| 2 -α c l /2 -δc 22 (α)/2α -δ O (c 24 (α) + c 23 /2) -D(c 25 (α) + c 19 /2) ||e(t)|| 2
(42) Choosing α sufficiently large too minimize the term c 2 4 2αcl , then taking δ, δ O and D sufficiently guarantee the existence of c 26 , c 27 > 0 such that

V (z(t), e(t)) ≤ -c 26 ||z(t)|| 2 -c 27 α||e(t)|| 2 . ( 43 
)
As a consequence using ( 25) and ( 26), one can deduce that V (z(t), e(t)) ≤ -εV (z(t), e(t))

with ε = min c26 λmax(P ) , c27 λmax(Q) . Using the Razumikhin theorem reminded in Appendix A, we deduce that the equilibrium points (z, e) = (0, 0) of ( 20)-( 21) is asymptotically stable. Inequality (15) can be deduced using Lemma 1 in Appendix B.

Remark 3.1: Some numerical estimations of δ * O , δ * and D * can be computed. Note that these values will be smaller than the real values because the stability analysis is conservative as shown in the simulation section.

Remark 3.2: In the case of a Lyapunov-Krasoskii stability analysis, the function V (z(t), e(t)) = z T (t)P z(t) + e T (t)Qe(t) would have been replaced by a functional of the form

V ′ (e(t), z(t), u t , ut ) = z T (t)P z(t) + αe T (t)Qe(t) + t t-2hmax (2h max + s -t)(β|| u(s)|| 2 + γ||u(s)|| 2 )ds with α, β, γ > 0 and u t (θ) = u(t + θ), ut (θ) = u(t + θ) for θ ∈ [-2h max , 0]. The integral term in || u(s)|| 2 is
needed to deal with the term in u in equation ( 21) and the integral term in ||u(s)|| 2 is required to maximize the terms in u in equations ( 20) and (21). As a result, computations in the Lyapunov-Krasovskii analysis involve more terms and result in intricate stability conditions. Condition ( 14) shows that the estimated round trip delay ĥ has to be close to the delay h O (t) + h I (t -h O (t)) to guarantee the closed-loop stability. Note that if the input delay is slow varying or if the output delay is small then, in this case, h I (t -h O (t)) ≈ h I (t) and ĥ(t) is close to the round trip delay h O (t) + h I (t). Note also that even if there is no condition on ḣI in Theorem 1, the input delay dynamics is indirectly constrained by conditions δ < δ * and D < D * . Indeed, δ < δ * means that ĥ should be sufficiently slow varying and D < D * means that ĥ has to be close to the real delay. Consequently, if δ < δ * and D < D * are verified it means that ḣI is small.

Remark that if the delays h I and h O are known, they can be used to compute the prediction (10). In this case, defining ĥ(t) = h I (t) + h O (t), the following corollary of Theorem 1 can be obtained.

Corollary 1: Consider system (1), where h I and h O are known and comply with Assumption 2. Suppose that system (1) is controlled by the feedback (11) where z and x are given in (9) and (10) respectively with ĥ(t) = h I (t) + h O (t), and define

Υ(t) = ||x(t)|| 2 + ||e(t)|| 2 + sup s∈[t-2hmax,t] ||u(s)|| 2 + sup s∈[t-2hmax,t] || u(s)|| 2 (45) 
where e(t) = x(t) -x(t). Then, there exist δ * I , δ * O , ε, ς > 0 such that, provided that

δ I < δ * I and δ O < δ * O , (46) 
one has

Υ(t) ≤ ςΥ(0)e -εt , ∀t ≥ 0 ( 47 
)
and therefore lim t→+∞ ||x(t)|| = 0.

Proof. The proof is deduced from the proof of Theorem 1. Noting that if the delays are known then

D = max t≥0 |h O (t) + h I (t -h O (t)) -ĥ(t)| with ĥ(t) = h I (t) + h O (t) becomes D = max t≥0 |h I (t -h O (t)) - h I (t)|.
Remark that from the Taylor-Lagrange formula in [START_REF] Kline | Calculus: an intuitive and physical approach[END_REF], there exists ξ

∈ [t-h O (t), t] such that h I (t -h O (t)) = h I (t) -h O (t) ḣI (ξ)
then one deduces that D ≤ h max δ I . Choosing δ I sufficiently small guarantees that ( 14) is verified.

For the known delay case, condition (46) means that the closed-loop system is stable if the input and the output time-varying delays are sufficiently slow varying. In the next section, the qualitative behavior described in Section 3 is illustrated by simulation.

Simulation

Consider the second order system

ẋ(t) = Ax(t) + Bu(t -h I (t)) y(t) = Cx(t -h O (t)) (48) with A = 0 1 -1 1 , B = 0 1 , C = [1, 0] and x(0) = [2, 0] T .
The state feedback reads as

u(t) = Kz(t) (49) 
with K = [0.85, -1.8] and z defined by ( 10). The gain L of the observer ( 9) is equal to L = [-4, -5] T . Different values of h I , h O and ĥ are tested in order to illustrate the stability conditions of Theorem 1 and Corollary 1. These values are chosen such that Assumptions 2 and 4 are satisfied with h min = 0.2 and h max = 2. Note that the different values of the delay h i + h O have the same order of magnitude as the time constant of the open loop system (0.5 s). In addition, system ( 48) is open loop unstable so memoryless (non predictive) controllers would not be able to achieve a good level of performance for an arbitrarily large delay because they often require to have a small gain controller as in [START_REF] Choi | Stabilization of a chain of integrators with an unknown delay in the input by adaptive output feedback[END_REF].

Remark 4.1: The computation of z requires an integration. For open-loop stable system the integral term can be computed without discretizing the integral as in [START_REF] Watanabe | A process-model control for linear systems with delay[END_REF]. However, for open-loop unstable systems, the integral has to be discretized in a finite number of points. This step has to be done very carefully since it can destabilize the system as pointed out in Van Assche, [START_REF] Van Assche | Some problems arising in the implementation of distributed-delay control laws[END_REF]. Safe implementations of the prediction are given in [START_REF] Mondié | Finite spectrum assignment of unstable time-delay systems with a safe implementation[END_REF] and [START_REF] Zhong | Robust control of time-delay systems[END_REF]. In this article, a time-domain approximation with sampleand-hold is used and guarantees the accuracy of the prediction if the sample time is sufficiently small [START_REF] Zhong | Robust control of time-delay systems[END_REF].

Known delay

For the first simulation, the delays are defined as follows h I (t) = 0.5 + 0.25 sin(1.5t) for t ≤ 25 and h O (t) = 0.5 + 0.25 sin(1.5t) for t ≤ 25 0.5 + 0.25 sin(0.3t) for t > 25.

These delays are supposed to be known at time t so ĥ(t) = h I (t) + h O (t) is used to compute prediction (10). As displayed on Figure 1-Top, between t = 0 and t = 25 s, the delays are fast and the system is not stabilized by the predictive feedback. However, when the output delay h O becomes slower, after t = 25 s, the system is stabilized by the prediction-based feedback (49). This is in accordance with the existence of an upper-bound δ * O for the time-derivative of ḣO in Corollary 1. Note that the actual upper bound for | ḣO | is around 10 -2 for this example since the system is stable for | ḣO | < 0.05 and unstable for | ḣO | < 0.3.

For the second simulation, the delays are chosen as follows h I (t) = 0.5 + 0.25 sin(1.2t) for t ≤ 25 0.5 + 0.25 sin(0.2t) for t > 25 and h O (t) = 0.5 + 0.25 sin(1.2t) for t ≤ 25

In this configuration, the delay h I is slowed down after t = 25 s but the output delay is kept constant. It is clear that the system is unstable first and then becomes stable when the input delay slows down (Figure 2). This is in accordance with the existence of an upper-bound δ * I for the time-derivative of ḣI in Corollary 1. Note that the actual upper bound for | ḣI | is also around 10 -2 . 

Uncertain delay

In this subsection the delays are defined as follows h I (t) = h O (t) = 0.5 + 0.25 sin(2t) for t ≥ 0

Since the delays are unknown in this part, the delay estimator presented in [START_REF] Léchappé | Delay estimation and predictive control of uncertain systems with input delay: Application to a dc motor[END_REF] is used to obtain an approximation of the delay. The dynamics of the delay estimator is given by ḣ where ρ h = 0.05 and h(t) = h I (t)+h O (t). Then this estimation is used to compute the estimation x in (9) and the prediction (10). The result of this simulation is displayed on Figure 3. Three phases can be observed on this figure.

(t) = ρ h [u(t -ĥ(t)) -u(t -h(t))] u(t -ĥ(t)). (50) 
• From t = 0 to t = 20 s, the delay estimation error is large so the system diverges.

• Between t = 20 s and t = 40 s, the delay estimation error is reduced and the system converges to the origin. From Figure 4, one can see that, when h O (t) + h I (t -h O (t)) -ĥ(t) becomes sufficiently small, the system becomes stable. • From t = 40 s to t = 100 s, the system is stabilized to zero and the input is constant so its time derivative tends to zero. As a consequence, the delay estimator cannot track the delay variations anymore because the delay estimation dynamics ḣ depends on u in (50).

This simulation confirms that the delay estimation error should be sufficiently small (existence of D * in Theorem 1) to guarantee the stability of the closed-loop system. From Figure 4, one can see that the order of magnitude of the actual value of D * is 10 -1 . As mentioned in Remark 3.1, estimations of the theoretical bounds δ * O , δ * and D * defined in ( 13)-( 14) can be computed thanks to equation (42). For this simulation example, the order of magnitude of the theoretical bounds is 10 -9 that is much smaller than the actual bounds δ * I ≈ δ * O ≈ 10 -2 and D * ≈ 10 -1 .

Conclusion

In this article, a stability analysis of a prediction-based controller is proposed when both the input and the output are affected by uncertain time-varying delays. The partial state knowledge case is also treated by designing a state-observer that reconstruct the delayed state. The reduction method and a Lyapunov-Razumikhin analysis are used to prove the closed-loop stability. The results are illustrated by simulation. The extension to uncertain linear systems and nonlinear systems is considered for future developments. From (B14) and since

x(t) = e -A ĥz(t) -t t-ĥ e A(t-ĥ-s) Bu(s)ds -e(t) Finally, from (B6), (B9), (B10), (B14) and (B16), one can guarantee that there exists ς > 0 such that Υ(t) ≤ ςΥ(0)e -εt (B17) for all t ≥ 0. This ends the proof.

  p and h I (t) and h O (t) are uncertain time-varying delays. The matrices A, B and C are known and of appropriate dimensions. Throughout this paper, the following assumption holds.

  ), one gets V (z(t), e(t)) ≤ -c u -δc 21 ||z(t)|| 2 -δc 22 (α) + c 4 + αδ O c 23 + c 19 αD ||e(t)|| ||z(t)|| -α c l -δ O c 24 (α) -c 25 (α)D ||e(t)|| 2 (41) with c 21 = c 1 + c 10 + c 11 , c 22 (α) = (c 10 + c 11 ) √ α, c 23 = c 6 + c 12 + c 13 and c 24 (α) = c 5 + (c 12 + c 13 ) √ α and c 25 (α) = c 20 (c 18 √ α + c 16

Figure 1 .

 1 Figure 1. Top: Norm of the state -Bottom: Known Delays h I (t) and ho(t) used to compute the prediction

Figure 2 .

 2 Figure 2. Top: Norm of the state -Bottom: Exact delay h(t) with different dynamics.

Figure 3 .

 3 Figure3. Top: Norm of the state -Bottom: Round trip delay h(t) = h I (t)+ h O (t) and its estimation ĥ(t) from delay estimator in[START_REF] Léchappé | Delay estimation and predictive control of uncertain systems with input delay: Application to a dc motor[END_REF].

  Figure 4. Delay estimation error

  δc 1 ||z(t)|| 2 + δc 2 ||z(t)|| ||u(t -ĥ)|| + δc 3 ||z(t)|| ||v(t)|| + c 4 ||z(t)|| ||e(t)|| (27) with c 1 = 2 ||P A||, c 2 = 2e 2||A||hmax ||B|| ||P ||, c 3 = 2e 2||A||hmax ||P A|| ||B||, c 4 = 2e 2||A||hmax ||P || ||LC|| and

			t	
	||v(t)|| =	t-	ĥ ||u(s)||ds.	(28)

  11 = c 3 c 9 ||K||h max . Similarly for the term in V2 , one has δ O c 7 ||e(t)|| ||v(t)|| ≤ δ O c 12 ||e(t)|| ||z(t)|| + ||A + BK|| + δ||A||, c 15 = e 2||A||hmax ||BK||c 9 and c 16 = e 2||A||hmax ||LC|| so

	0, 2h max ] ∀s ∈ [0, 2h max ] with c 9 = κ max(λ max (P ), λ max (Q))/λ min (P ). Using (32), we get holds. Then it follows that ||z(t -s)|| ≤ c 9 ||z(t)|| + √ α||e(t)|| δc 2 ||z(t)|| ||u(t -ĥ)|| ≤ δc 10 ||z(t)|| ||z(t)|| + √ α||e(t)|| with c 10 = c 2 c 9 ||K|| and α||e(t)|| with c 12 = c 7 c 9 ||K||h max and δ O c 8 ||e(t)|| ||u(φ(t))|| ≤ δ O c 13 ||e(t)|| ||z(t)|| + √ α||e(t)|| with c 13 = c 7 c 9 ||K||. From (20), one can derive the following maximization || ż(t)|| ≤ c 14 ||z(t)|| + c 15 (||z(t)|| + √ α||e(t)||) + h max c 15 (||z(t)|| + √ α||e(t)||) + c 16 ||e(t)|| (31) (32) (33) (35) (36) (37) δc √ with c 14 = || ż(t)|| ≤ c 17 ||z(t)|| + (c 18 √ α + c 16 )||e(t)|| (38)

e(t -s)) ≤ κV (z(t), e(t)) ∀s ∈ [3 ||z(t)|| ||v(t)|| ≤ δc 11 ||z(t)|| ||z(t)|| + √ α||e(t)|| (34) with c with c 17 = c 14 + c 15 (1 + h max ) and c 18 = c 15 (1 + h max ). Then, using (38), one obtains c 8 ||e(t)|| ||w(t)|| ≤ c 19 D||e(t)|| ||z(t)|| + c 20 D(c 18 √ α + c 16 )||e(t)|| 2 (39) with c 19 = c 8 c 17 ||K|| and c 20 = c 8 ||K|| and

This prediction has been presented in Bresch-Pietri and[START_REF] Krstic | Lyapunov stability of linear predictor feedback for time-varying input delay[END_REF] for an uncertain input delay. In Bresch-Pietri and Krstic (2010), the analysis is carried out only for a constant uncertain delay and when the full state is known.

Appendix A.

Lyapunov-Razumikhin theorem [START_REF] Hale | Introduction to functional differential equations[END_REF]] is reminded here. Consider the system

where f : R × C[-h, 0] → R n is continuous in both arguments and is locally Lipschitz in the second argument and x t (θ) = x(t + θ) for θ ∈ [-h, 0]. It is also assumed that f (t, 0) = 0. Consider also the differentiable function V : R × R n → R + and define the derivative of V along the solution of (A1) as

Theorem 2 (Lyapunov-Razumikhin theorem):

) into bounded sets of R n and that u, v, w: R + → R + are continuous non decreasing functions, u(s) and v(s) are positive for s > 0 and u(0) = v(0) = 0, v is strictly increasing. The trivial solution of (A1) is uniformly stable if there exists a differentiable function

such that the derivative of V along the solution of (A1) satisfies

If, in addition, w(s) > 0 for s > 0, and there exists a continuous non decreasing function κ(s) > s for s > 0 such that condition (A3) is strengthened to

then the trivial solution of (A1) is uniformly asymptotically stable. If in addition, lim s→+∞ u(s) = +∞, then it is globally uniformly asymptotically stable.

Appendix B.

Lemma 1: Consider the Lyapunov-Razumikhin function V defined in ( 22). The time-derivative of V along the trajectories of (20)-( 21) verifies (44) then inequality (15) is verified.

Proof. It follows from (44) that

Furthermore, since ||z(t)|| 2 ≤ 1 λmin(P ) z T (t)P z(t) with λ min (P ) denoting the smallest eigenvalue of P then ||z(t)|| 2 ≤ 1 λmin(P ) V (t) so one gets

From the definition of V (t), one has

In addition, from (10), Hölder's inequality, Jensen's inequality, the following maximization can be deduced

From (B3) and (B4), it can be deduced that there exists c ′ 3 > 0 such that

Then, from (B2) and (B5), one deduces

for all t ≥ 0 and with c ′ 4 = c3 λmin(P ) . Since u(t) = Kz(t) for all t ≥ 0, one has sup