
HAL Id: hal-01505557
https://hal.science/hal-01505557

Submitted on 13 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameterized Complexity of Firefighting
Cristina Bazgan, Morgan Chopin, Marek Cygan, Michael R. Fellows, Fedor V.

Fomin, Erik Jan van Leeuwen

To cite this version:
Cristina Bazgan, Morgan Chopin, Marek Cygan, Michael R. Fellows, Fedor V. Fomin, et al.. Pa-
rameterized Complexity of Firefighting. Journal of Computer and System Sciences, 2014, 80 (7),
pp.1285-1297. �10.1016/j.jcss.2014.03.001�. �hal-01505557�

https://hal.science/hal-01505557
https://hal.archives-ouvertes.fr

Parameterized Complexity of Firefighting∗

Cristina Bazgan† ‡ Morgan Chopin∗ Marek Cygan§

Michael R. Fellows¶ Fedor V. Fomin‖ Erik Jan van Leeuwen¶

Abstract

The Firefighter problem is to place firefighters on the vertices of
a graph to prevent a fire with known starting point from lighting up
the entire graph. In each time step, a firefighter may be placed on an
unburned vertex, permanently protecting it, and the fire spreads to
all neighboring unprotected vertices of burning vertices. The goal is
to let as few vertices burn as possible. This problem is known to be
NP-complete, even when restricted to trees of maximum degree three.
Initial study showed the Firefighter problem to be fixed-parameter
tractable on trees in various parameterizations. In this paper, we con-
sider a generalization of this problem, where at each time step b ≥ 1
firefighters can be deployed. Our results answer several open questions
raised by Cai et al. [8]. We show that this problem is W[1]-hard when
parameterized by the number of saved vertices, protected vertices, and
burned vertices. We also investigate several combined parameteriza-
tions for which the problem is fixed-parameter tractable. Some of our
algorithms improve on previously known algorithms. We also establish
lower bounds to polynomial kernelization.

1 Introduction

The Firefighter problem concerns a deterministic model of fire spreading
through a graph via its edges. The problem has recently received consider-
able attention [13, 18]. In the model, we are given a graph G with a vertex
s ∈ V (G). At time t = 0, the fire breaks out at s and vertex s starts burn-
ing. At each step t ≥ 1, first the firefighter protects one vertex not yet on
fire—this vertex remains permanently protected—and the fire then spreads
from burning vertices to all unprotected neighbors of these vertices. The
process stops when the fire cannot spread anymore. The goal is to find a

∗The preliminary results of this publication were presented at IPEC 2011 [10] and
ISAAC 2011 [2].

†Université Paris-Dauphine, LAMSADE, France, bazgan|chopin@lamsade.dauphine.fr
‡Institut Universitaire de France
§Institute of Informatics, University of Warsaw, Poland, cygan@mimuw.edu.pl
¶Charles Darwin University, Australia, michael.fellows@cdu.edu.au
‖Department of Informatics, University of Bergen, Norway,

fedor.fomin|E.J.van.Leeuwen@ii.uib.no

1

strategy for the firefighter that minimizes the amount of burned vertices, or,
equivalently, maximizes the number of saved, i.e. not burned, vertices.

It is known that the Firefighter problem is NP-hard, even when re-
stricted to bipartite graphs [18] or trees of maximum degree three [14]. How-
ever, it is polynomial-time solvable on such trees if the root — the initially
burning vertex — has degree two [18]. We refer to the survey [15] for an
overview of further combinatorial results on the problem.

In this paper, we consider the parameterized complexity of the Fire-

fighter problem on general graphs and trees where, at each time step, b
firefighters can be deployed. Denote by b-Firefighter the generalization
of the Firefighter problem with b firefighters. For any fixed budget b ≥ 2,
b-Firefighter was proved NP-hard for trees of maximum degree b+3, and
polynomial-time solvable on trees of maximum degree b + 2 provided that
the fire breaks out at a vertex of degree at most b+ 1 [3].

The study of the problem from the perspective of parameterized com-
plexity was initiated by Cai, Verbin, and Yang [8] for the case b = 1. They
considered the following three parameterized versions of the problem and
obtained a number of parameterized algorithms on trees.

The first parameterization considered by Cai et al. in [8] is by the number
of saved vertices.

Saving k-Vertices Parameter: k
Input: An undirected graph G, a vertex s, and two integers k and b.
Question: Is there a strategy with respect to the budget b to save at
least k vertices when a fire breaks out at s?

Cai et al. proved that Saving k-Vertices on trees has a polynomial kernel.
They also gave a randomized algorithm solving Saving k-Vertices on
trees in time O(4k + n), which can be derandomized to a O(n+2O(k))-time
algorithm.

The second parameterization considered by Cai et al. is by the number
of burned vertices.

Saving All But k-Vertices Parameter: k
Input: An undirected graph G on n vertices, a vertex s, and two integers
k and b.
Question: Is there a strategy with respect to the budget b to save at
least n− k vertices when a fire breaks out at s?

For Saving All But k-Vertices on trees, Cai et al. gave a random-
ized algorithm of running time O(4kn), which can be derandomized to a
O(2O(k)n log n)-time algorithm. They left as an open problem whether Sav-
ing All But k-Vertices has a polynomial kernel on trees.

The third parameterization investigated by Cai et al. is by the num-
ber of protected vertices, that is, the total number of vertices occupied by
firefighters.

2

Maximum k-Vertex Protection Parameter: k
Input: An undirected graph G, a vertex s, and two integers k and b.
Question: A strategy with respect to the budget b that saves the maxi-
mum number of vertices by protecting a total of at most k vertices when
a fire breaks out at s?

For Maximum k-Vertex Protection on trees, Cai et al. gave a random-
ized algorithm of running time O(kO(k)n), which can be derandomized to a
O(kO(k)n log n)-time algorithm. They left open whether the problem has a
polynomial kernel on trees, and asked whether there is an algorithm solving
the problem on trees in time 2o(k log k)nO(1).

We will sometimes consider the decision variant of Maximum k-Vertex

Protection.

k-Vertex Protection Parameter: k
Input: An undirected graph G, a vertex s, and three integers k, b and
a.
Question: Is there a strategy with respect to the budget b that saves
at least a vertices by protecting a total of at most k vertices when a fire
breaks out at s?

The unparameterized version of this problem is obviously NP-hard on trees
of maximum degree three from the hardness of the Firefighter problem
with b = 1, and NP-hard on trees of maximum degree b + 3 for any fixed
b ≥ 2 from the hardness of the b-Firefighter problem.

Our results We resolve several open questions of Cai, Verbin, and Yang [8].
We also refine and extend some of the results of [8]. Figure 1 summarizes
our results.

• In Section 2, we first observe that on general graphs the problem is
W[1]-hard for any budget b ≥ 1, which was independently observed by
Cai (private communication) for b = 1. The problem is shown to be in
FPT when parameterized by k and the treewidth of a graph. We also
give a deterministic algorithm solving Saving k-Vertices on trees
in time O((b + 1)k/b+3kn), improving the running time O(4k + n) of
the randomized algorithm from [8] for b = 1. We further derive that
Saving k-Vertices is in FPT on graphs of bounded local treewidth,
including planar graphs, graphs of bounded genus, apex-minor-free
graphs, and graphs of bounded maximum vertex degree.

• In Section 3, we first establish that on general graphs the problem
is W[1]-hard. We provide deterministic algorithms solving Saving

All But k-Vertices in time O((b + 1)kn) on trees, and in time
O((2b+1 − 1)k+b−1n) on general graphs. Consequently the problem
becomes FPT when parameterized by k + b. The algorithm on trees
improves the O(4kn) running time of the randomized algorithm from
[8] for b = 1. We also answer the open question of Cai et al. by showing

3

that Saving All But k-Vertices has no polynomial kernel on trees
of maximum vertex degree four for b = 1, and no polynomial kernel
on trees of maximum vertex degree b+ 4 for any b ≥ 2.

• For Maximum k-Vertex Protection, we answer two open ques-
tions of Cai et al.: We give a deterministic algorithm solving Maxi-

mum k-Vertex Protection on trees in time O((b + 1)k/b+1kn) in
Section 2, and show that the problem has no polynomial kernel on trees
in Section 3. The no-poly-kernel result was independently obtained
by Yang [20]. Based on the parameterized algorithm, we also give
an exact subexponential-time algorithm, solving the b-Firefighter

problem on an n-vertex tree in time O((b + 1)
√

2n/bn3/2), thus im-
proving on the 2O(

√
n logn) running time from [8, 16] for b = 1. On

general graphs, we show that the Maximum k-Vertex Protection

problem is W[1]-hard, but is in FPT when parameterized by k and the
treewidth of a graph.

Saving

k-Vertices

k-Vertex Pro-

tection

Saving All But

k-Vertices

• W[1]-hard • W[1]-hard • W[1]-hard
• XP • XP • XP

k • FPT for pla-
nar graphs

Poly Kernel? no no no

• W[1]-hard • W[1]-hard • FPT
k+ b • XP • XP

Poly Kernel? no no no

k+ tw • FPT • FPT • open

Poly Kernel? open no no

k+ τ • FPT • FPT • FPT

Poly Kernel? open open open

Figure 1: Summary of our results for general graphs. Results in bold font
are proved in this paper, and directly imply the results in italics. The vertex
cover number is denoted by τ , and the treewidth by tw. Recall that τ ≥ tw.

Graph terminology All graphs in this paper are undirected, connected,
finite, and simple. Let G = (V,E) be a graph. The open (resp. closed)
neighborhood of a vertex v ∈ V is the set N(v) = {u ∈ V : (u, v) ∈ E}
(resp. N [v] = N(v) ∪ {v}). Given a subset S ⊆ V , the open (resp. closed)

4

neighborhood of S is the set N(S) =
⋃

u∈S N(u)\S (resp. N [S] = N(S)∪S).
We denote by dG(u, v) the minimum length of a path in G with endpoints
u, v ∈ V . Finally, let G \X be the graph induced by V \X where X ⊆ V .
Throughout this paper, the vertex cover number of G will be denoted by
τ(G) or τ and the treewidth of G by tw(G) or tw.

Parameterized complexity Here we only give the basic notions on pa-
rameterized complexity; for more background the reader is referred to [11].
Parameterized complexity is a framework which provides a new way to ex-
press the computational complexity of problems. A problem parameterized
by k is called fixed-parameter tractable (fpt) if there exists an algorithm,
called an fpt-algorithm, that solves it in time f(k)nO(1) (fpt-time). The
function f is typically super-polynomial, and depends only on k. In other
words, the combinatorial explosion is confined into f . A parameterized prob-
lem P with parameter k will be denoted by (P, k). The class XP is the set
of parameterized problems (P, k) that can be solved in time ng(k) for a given
computable function g.

One of the main tools to design fpt-algorithms is kernelization. A ker-
nelization algorithm transforms in polynomial time an instance I of a given
problem parameterized by k into an equivalent instance I ′ of the same prob-
lem parameterized by k′ ≤ k such that |I ′| ≤ g(k) for some computable
function g. The instance I ′ is called a kernel of size g(k) — if g is a poly-
nomial then I ′ is a polynomial kernel. By applying any, even exponential,
algorithm to a kernel of a given problem, we can derive an fpt algorithm for
that problem.

We can also give evidence that an fpt-algorithm does not exist for a cer-
tain problem, i.e., indicating the parameterized intractability of a problem.
To this end, we need to introduce the notion of a parameterized reduction.
An fpt-reduction is an algorithm that reduces any instance I of a problem
with parameter k to an equivalent instance I ′ with parameter k′ = g(k) in
fpt-time for some function g. The basic class of parameterized intractability
is W[1] and there is a good reason to believe that W[1]-hard problems —
hard according to the fpt-reduction — are unlikely to be in FPT. We have
the following inclusions: FPT ⊆ W[1] ⊆ XP.

2 Saving and Protecting Vertices

In this section, we consider the complexity of Saving k-Vertices andMax-

imum k-Vertex Protection. These problems are known to be fixed-
parameter tractable on trees, but their complexity on general graphs was
hitherto unknown. We resolve this open problem by giving a W[1]-hardness
result for both problems. We also improve the algorithms known to ex-
ist for trees. At the other end of the spectrum, we extend the boundary
where Saving k-Vertices and Maximum k-Vertex Protection remain

5

fixed-parameter tractable by giving parameterized algorithms on graphs of
bounded treewidth.

2.1 W[1]-Hardness on Bipartite Graphs

We show that Saving k-Vertices and the decision variant of Maximum k-
Vertex Protection are W[1]-hard, even on bipartite graphs. We reduce
from the k-Clique problem, which is well known to be W[1]-hard [11].

Theorem 2.1 Saving k-Vertices is W[1]-hard even on bipartite graphs
for any budget b ≥ 1.

Proof: Let (G, k) be an instance of k-Clique. We construct the following
bipartite graph G′ (see Figure 2). For each edge (u, v) ∈ E(G), we add a
vertex suv; this set of vertices is denoted by E. Add b copies V 1, . . . , V b of
V (G), i.e., for each vertex v ∈ V (G), we add vertices s1v ∈ V 1, . . . , sbv ∈ V b.
Now add an edge from suv to both shu and shv for each (u, v) ∈ E(G) and each
h = 1, . . . , b. Add a root vertex s, and add vertices ai,j for all 1 ≤ i ≤ k − 1
and 1 ≤ j ≤ (k−1)b+1. Connect ai,j to ai′,j′ (i

′ = i+1) for all i, j, j′, connect
a1,j to s for all j, and connect ak−1,j to each vertex of V ′ =

⋃

1≤h≤b V
h for

all j. Finally, add b vertices c1, . . . , cb adjacent to all vertices of V ′. Now set
k′ = kb+

(k
2

)
+ b.

We claim that Saving k-Vertices on (G′, s, k′, b) is a Yes-instance if
and only if k-Clique on (G, k) is a Yes-instance. Suppose that G has a
k-clique K. Then the strategy that protects the vertices s1v, . . . , s

b
v for all

v ∈ K saves the vertices suv for all u, v ∈ K. Since K is a clique, these
vertices suv are indeed present in G′. Additionally, we can protect (and
thus save) vertices c1, . . . , cb. It follows that this strategy saves at least k′

vertices.
Suppose that S = {p11, . . . , pb1, . . . , p1ℓ , . . . , pbℓ} is a strategy for (G′, s, k′, b)

that chooses vertices p1t , . . . , p
b
t at time t and saves at least k′ vertices. First

observe that if pht = ai,j for some i ,j, and h, then this vertex is not helpful,
as there is always a vertex ai,j′ that will be burned at time t and has the same
neighborhood as ai,j. Hence we can assume that no vertex ai,j is protected
by the strategy. This implies that all vertices of V ′ will be burned, except
those that are protected by the strategy. But then protecting vertices of E
does not save any further vertices. Since the fire will reach V ′ in k time
steps, and thus E in k+ 1 time steps, the vertices in S ∩ V ′ are responsible
for saving

(k
2

)
vertices, which is only possible if the vertices of S ∩V ′ induce

a k-clique in G.

Observe that essentially the same construction works for the decision variant
of Maximum k-Vertex Protection.

6

s

E
V

s11

s12

s13

s14

s15

s12

s23

s24

s34

s45

a1,1

a1,2

a1,3

a2,1

a2,2

a2,3

c1

1

2

3

4

5

Figure 2: An instance of k-Clique and the corresponding graph G′ con-
structed in the proof of Theorem 2.1 for k = 3 and b = 1.

Theorem 2.2 k-Vertex Protection is W[1]-hard even on bipartite graphs
for any budget b ≥ 1.

Proof: We again reduce from k-Clique and construct the same bipartite
graph as in the proof of Theorem 2.1. We set k′ = kb+ b, a′ = kb+

(k
2

)
+ b.

Correctness now follows straightforwardly from the arguments in the proof
of Theorem 2.1.

The above reduction is also an NP-hardness reduction, and simpler than the
original reduction for the Firefighter problem on bipartite graphs [18].

2.2 Algorithms on General Graphs

We show that Saving k-Vertices and the decision variant of Maximum

k-Vertex Protection are both in XP.
Before we present the algorithms, we need to consider a different version

of the b-Firefighter problem, where in each round an arbitrary number
of vertices may be protected under the following restrictions:

• each protected vertex must have a neighbor which is on fire,

• after i rounds of the process at most ib vertices are protected.

By Saving k-Vertices II we denote the Saving k-Vertices problem
where vertices are protected subject to the above rules. The problem k-
Vertex Protection II is defined equivalently.

7

Lemma 2.3 An instance (G, s, k, b) of the Saving k-Vertices problem is
a Yes-instance if and only if it is a Yes-instance of the Saving k-Vertices

II problem. This equivalence also holds for k-Vertex Protection and k-
Vertex Protection II.

Proof: We prove the result for Saving k-Vertices and Saving k-Vertices

II. Assume that (G, s, k, b) is a Yes-instance of the Saving k-Vertices

problem. Let P be the set of protected vertices of an optimum strategy S.
We construct a strategy S′, which in the i-th round of Saving k-Vertices

II protects exactly those vertices of P which have a neighbor which is on
fire. Clearly after i rounds at most ib vertices will be protected, since each
vertex of P is protected by the strategy S′ not earlier than by the strategy
S.

In the other direction, assume that (G, s, k, b) is a Yes-instance of the
Saving k-Vertices II problem and P is the set of protected vertices of an
optimum strategy S′. We construct a strategy S as follows. Let (v1, . . . , v|P |)
be a sequence of vertices of P sorted by the round in which a vertex is
protected by S′ (breaking ties arbitrarily). In the i-th round of strategy S we
protect the vertices v(i−1)b+1, . . . , vib. The vertex vj , j ∈ {(i−1)b+1, . . . , ib},
is not on fire in the i-th round, because in the strategy S′ it is protected not
earlier than in the i-th round.

The proof for showing the equivalence between k-Vertex Protection

and k-Vertex Protection II is similar.

Lemma 2.4 Let G = (V,E) be a graph with an initially burned vertex s ∈
V . Verifying if a subset S ⊆ (V \ {s}) is a valid strategy with respect to the
budget b for k-Vertex Protection II can be done in linear time.

Proof: Let Li = {v ∈ V : dG\
⋃

0≤j≤i−1
Lj∩S(s, v) = i} for any i > 0 and L0 =

{s}. The graphG\⋃0≤j≤i−1 Lj∩S is obtained fromG by removing protected
vertices from time step 1 through i − 1. Let ri = ib − |⋃0≤j<i Lj ∩ S| be
the number of available firefighters in round i. If there exists i ∈ {1, . . . , k}
such that |S ∩ Li| > ri or ri < 0, then this strategy is not valid.

Lemma 2.5 Maximum k-Vertex Protection II is solvable in time nO(k).

Proof: Let (G = (V,E), s, k, b) be an instance of Maximum k-Vertex

Protection II. Among all strategies S ⊆ V such that S is a valid strategy
and |S| ≤ k, the algorithm simply chooses the strategy that saves the largest
number of vertices. From Lemma 2.4, the running time is nO(k).

Lemma 2.6 Saving k-Vertices II is solvable in time nO(k).

Proof: Let (G, s, k, b) be an instance of Saving k-Vertices II. We run
the above algorithm for Maximum k-Vertex Protection II for all k′ =

8

1, . . . , k. Observe that it is possible to save k vertices of the graph if and
only if the algorithm saves at least k vertices for some value of k′. This
implies a running time of nO(k).

Using Lemmas 2.3, 2.5 and 2.6 we get the following two theorems.

Theorem 2.7 Saving k-Vertices is solvable in time nO(k).

Theorem 2.8 Maximum k-Vertex Protection is solvable in time nO(k).

Notice that the parameters in the reductions used in Theorem 2.1 and
Theorem 2.2 are quadratically related. Since k-Clique cannot be solved in
time no(k) unless FPT = M[1] [9], we obtain the following lower bounds.

Corollary 2.9 Saving k-Vertices cannot be solved in time no(
√
k), unless

FPT = M[1].

Corollary 2.10 Maximum k-Vertex Protection cannot be solved in

time no(
√
k), unless FPT = M[1].

2.3 Improved Algorithm on Trees

We show that Saving k-Vertices and Maximum k-Vertex Protection

have a deterministic O((b + 1)k/b+3kn) and O((b + 1)k/b+1kn) algorithm,
respectively, on trees. This resolves an open question of Cai et al. [8] for
b = 1. As a consequence, we also obtain a refined subexponential algorithm
for the Firefighter problem on trees, running in time O(2

√
2nn3/2).

The following observation is a straightforward adaptation of the one by
MacGillivray and Wang [18, Sect. 4.1].

Lemma 2.11 For any optimum strategy for an instance of the b-Firefighter
problem on trees, there is an integer ℓ such that all protected vertices have
depth at most ℓ, exactly b vertices p1i , . . . , p

b
i at each depth 1 ≤ i ≤ ℓ− 1 are

protected, and b′ ≤ b vertices p1ℓ , . . . , p
b′
ℓ at depth ℓ are protected. Moreover,

all ancestors of each phi are burned.

We need the following notation. Let T be any rooted tree. Use a pre-
order traversal of T to number the vertices of T from 1 to n. We say that
u ∈ V (T) is to the left of v ∈ V (T) if the number assigned to u is not greater
than the number of v in the order. It is then easy to define what the leftmost
or rightmost vertex is.

Theorem 2.12 Maximum k-Vertex Protection on trees is solvable in
time O((b+ 1)(k/b)+1kn).

9

Proof: Let (T, s, k, b) be an instance of Maximum k-Vertex Protec-

tion on a tree T . Assume that T is rooted at s and let h = ⌈k/b⌉. By
Lemma 2.11, we can define a characteristic vector χv of length h for each
vertex v of the tree, which has value pi ∈ {0, . . . , b} at position i if and only if
the optimal strategy protects pi vertices at depth i in the part of the tree to
the left of v. We use these vectors as the basis for a dynamic programming
procedure. However, the vector cannot ensure that no ancestors of a pro-
tected vertex will be protected. To ensure this, we add another dimension
to our dynamic programming procedure. The pre-order numbering ensures
that no descendant is protected.

The dynamic programming algorithm is then as follows. Let L be the
set of vertices in T that are at depth at most h. For each v ∈ L, let Pv

denote the path in T between v and s. For each vector χ ∈ {0, . . . , b}h
and each integer 0 ≤ i ≤ h, we compute Av(χ, i), the maximum number of
vertices one can save when protecting at most χ(j) vertices at depth j, where
protected vertices must lie to the left of v but at depth greater than i when
lying on Pv, and no protected vertex is an ancestor of another. Observe that
s is the leftmost vertex of L. Now set As(χ, i) = 0 for any χ and i. Then

Av(χ, i) = max { Al(v)(χ,min{depth(v)− 1, i}),
[χ(depth(v)) ≥ 1 ∧ depth(v) > i] ·
(r(v) +Al(v)(χ

v,depth(v)− 1)) }

Here depth(v) is the depth of a vertex v, l(v) is the rightmost vertex in
L which has strictly smaller value in the pre-order than v, and r(x) is the
number of vertices saved when protecting only x. Moreover, χv is the vector
obtained from χ by reducing the number pdepth(v) by 1. In the formula we
use Iverson’s bracket notation, where [φ] is equal to one if φ is true and zero
otherwise.

To see that the above formula is correct, observe that we can either
protect the considered vertex v or not. If we do not protect v, then we must
ensure that the value for the second dimension of our dynamic programming
procedure does not exceed the length of Pv, yet still captures the same
forbidden part of Pv. Correctness then follows from the fact that the parent
of v is always on Pl(v). If we do protect v, we can protect v only if we are
allowed to do so, i.e. if χ(depth(v)) ≥ 1 and depth(v) > i. Furthermore, we
need to ensure that no ancestor of v is protected later. Therefore, we set
the value for the second dimension of our dynamic programming procedure
to depth(v) − 1.

To get the solution for the whole tree T , return Av∗(χ
∗, 0), where v∗ is

the rightmost vertex of L and χ∗ is a vector of length h with the h-th entry
set to k − (h − 1)b and the other entries set to b. To obtain the claimed
running time, first find L, and then l(v) for each vertex v ∈ L. This can
be done in linear time by a depth-first search. We can also compute r(x)

10

for each x ∈ V (T) in linear time, as r(x) equals one plus the number of
descendants of x. By traversing the vertices of L from left to right, the total
running time is O((b+ 1)hkn) = O((b+ 1)(k/b)+1kn).

Corollary 2.13 Saving k-Vertices on trees is solvable in O((b+1)(k/b)+3kn)
time.

Proof: Let (T, s, k, b) be an instance of Saving k-Vertices on a tree T .
Using the same argument from Lemma 2.6, we run the above algorithm for
Maximum k-Vertex Protection for all k′ = 1, . . . , k. Furthermore, we
note that

k∑

i=1

((b+ 1)(i/b)+1in) ≤ kn(b+ 1)
k∑

i=1

(b+ 1)i/b ≤ (b+ 1)k/b+3kn,

implying that the worst-case running time is O((b+ 1)k/b+3kn).

To obtain a good subexponential algorithm for the b-Firefighter prob-
lem, we use the following lemma. A similar idea for b = 1 appeared inde-
pendently in [16].

Lemma 2.14 If a vertex at depth d burns in an optimum strategy for an
instance of the b-Firefighter problem on trees, then at least b

2(d
2 + d)

vertices are saved.

Proof: Let (T, s, b) be an instance of the b-Firefighter problem on trees,
and let v be a vertex of depth d that burns in an optimum strategy. Then the
strategy protects b vertices at depth d, and by Lemma 2.11 it thus protects
b vertices p1i , . . . , p

b
i at each depth i for 1 ≤ i ≤ d. For any i, each of the

subtrees rooted at p1i , . . . , p
b
i should contain at least d− i+ 1 vertices, or it

would have been better to protect the vertex at depth i that is on the path
from v to s. But then the strategy saves at least b

∑d
i=1(d−i+1) = b

2(d
2+d)

vertices.

Theorem 2.15 b-Firefighter on trees is solvable in O((b+1)
√

2n/bn3/2)
time.

Proof: Let (T, s, b) be an instance of the b-Firefighter problem on trees.
Suppose that a vertex v at depth

√

2n/b burns in an optimum strategy.
Then, by Lemma 2.14, the strategy saves at least n +

√

bn/2 > n vertices,
which is not possible. It follows that all vertices at depth

√

2n/b are saved
in any optimum strategy. Since in any optimum strategy every protected
vertex has a burned ancestor by Lemma 2.11, all protected vertices are at
depth at most

√

2n/b. Hence there is an optimum strategy that protects at
most b

√

2n/b =
√
2bn vertices, and we can find the optimum strategy by

running the algorithm of Theorem 2.12 with k =
√
2bn.

This implies an O(2
√
2nn3/2)-time algorithm for Firefighter on trees.

11

2.4 Tractability on Graphs of Bounded Treewidth

We generalize the above results by showing thatMaximum k-Vertex Pro-

tection and Saving k-Vertices remain fixed-parameter tractable when
parameterized by k and the treewidth of the underlying graph. To this
end, we use Monadic Second Order Logic (MSOL). The syntax of MSOL of
graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices,
edges, sets of vertices, and sets of edges, the quantifiers ∀, ∃ that can be
applied to these variables, and the following four binary relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable.

2. d ∈ D, where d is an edge variable and D is an edge set variable.

3. adj(u, v), where u, v are vertex variables, and the interpretation is that
u and v are adjacent.

4. Equality, =, of variables representing vertices, edges, sets of vertices,
and sets of edges.

For Maximum k-Vertex Protection, we actually need Linear Extended
MSOL [1], which allows the maximization over a linear combination of the
size of unbound set variables in the MSOL formula. (The definition of
LEMSOL in [1] is slightly more general, but this suffices for our purposes.)

Theorem 2.16 Maximum k-Vertex Protection is solvable in f(t, k)nO(1)

time, where t is the treewidth of the given graph.

Proof: Let (G, s, k, b) be an instance of Maximum k-Vertex Protec-

tion such that the treewidth of G is t. We may assume that b ≤ k. Use
Bodlaender’s Algorithm [4] to find a tree decomposition of G of width at
most t. Consider the following MSOL formulae.

NextBurn(Bi−1, Bi, p
1
1, . . . , p

b1
1 , . . . , p1i , . . . , p

bi
i) :=

∀v
((

v ∈ Bi−1 ∨ ∃u
(

u ∈ Bi−1 ∧ adj(u, v) ∧
(
∧

1≤j≤i
1≤h≤bj

v 6= phj

)))

⇔ v ∈ Bi

)

This expresses is that if the vertices of Bi−1 are burning by time step
i − 1, then the vertices of Bi burn by time step i, assuming that ver-
tices p11, . . . , p

b1
1 , . . . , p1i , . . . , p

bi
i have been protected so far, with bj ≤ b for

j = 1, . . . , i.

Saved(S,B, p11, . . . , p
b1
1 , . . . , p1m, . . . , pbmm) :=

∀u
(

u ∈ S ⇒
(

u 6∈ B ∧ ∀v
(

adj(u, v) ⇒ v ∈ S ∨
∨

1≤i≤m

1≤h≤bi

phi = u
)))

12

This expresses that S is a set of saved vertices when B is a set of burned
vertices and vertices p11, . . . , p

b1
1 , . . . , p1m, . . . , pbmm are protected, with bj ≤ b

for j = 1, . . . ,m.

Protect(S, b1, . . . , bℓ) := ∃p11, . . . , pb11 , . . . , p1ℓ , . . . , p
bℓ
ℓ ∃B,B0, . . . , Bℓ−1

∀u (u ∈ B0 ⇔ u = s) (1)

∧
∧

1≤i≤ℓ−1

NextBurn(Bi−1, Bi, p
1
1, . . . , p

b1
1 , . . . , p1i , . . . , p

bi
i)(2)

∧
∧

1≤i≤ℓ
1≤h≤bi

phi 6∈ Bi−1 (3)

∧ ∀u
((∨

0≤i≤ℓ−1

u ∈ Bi

)

⇒ u ∈ B
)

(4)

∧ Saved(S,B, p11, . . . , p
b1
1 , . . . , p1ℓ , . . . , p

bℓ
ℓ) (5)

This expresses that S can be saved by protecting bi vertices in round i.
The sets Bi contain all vertices that are burned by time step i, which is
ensured by the formulas in lines 1 and 2. The set B contains vertices that
are not saved (line 5) and all vertices of the sets Bi (line 4). The vertices
p11, . . . , p

b1
1 , . . . , p1ℓ , . . . , p

bℓ
ℓ are the vertices that are protected. Line 3 ensures

that the vertices we want to protect are not burned by the time we pick
them. Then we want to find the largest set S such that

Protectk(S) :=
∨

1≤ℓ≤⌈k/b⌉

∨

1≤d≤b

b(ℓ−1)+d≤k

Protect(S,

ℓ−1
︷ ︸︸ ︷

b, . . . , b, d)

is true. Following a result of Arnborg, Lagergren, and Seese [1], this can be
done in f(k, t) · nO(1) time using the above formula.

In the same way as Corollary 2.13, we then obtain the following.

Corollary 2.17 Saving k-Vertices is in FPT when parameterized by k
and the treewidth of the graph.

Observe that this algorithm also works on graphs of bounded local treewidth,
because if the graph has a vertex at distance more than k from the root,
then any strategy that protects a vertex at distance i from the root in time
step i will save at least k vertices, and we can answer Yes immediately.

Corollary 2.18 Saving k-Vertices is in FPT on graphs of bounded local
treewidth.

The class of graphs having bounded local treewidth coincides with the class
of apex-minor-free graphs [12], which includes the class of planar graphs.

Corollary 2.19 Saving k-Vertices is in FPT on planar graphs.

13

2.5 Kernelization feasability

In this section, we provide a kernelization for Saving k-Vertices when
parameterized by τ and k.

Theorem 2.20 Saving k-Vertices admits a kernel of size at most O(2τk).

Proof: Let (G, s, k, b) be an instance of Saving k-Vertices. A set T ⊆ V
is called a twins set if for every v, u ∈ T , v 6= u, we have N(u) = N(v) and
(u, v) /∈ E. Consider the following reduction rule.

Rule: If there exists a twins set T such that |T | ≥ k + 1, then delete
|T | − k vertices of T .

Let G′ = (V ′, E′) be the graph obtained by iteratively applying the above
rule to every twins set in G. Notice that the procedure runs in polynomial
time. Let C ⊆ V ′ be a minimum vertex cover and let D = V ′ \ C be an
independent set. The number of distinct twins sets in D is at most 2τ (one
for each subset of C). Moreover, each twins set in G′ has at most k vertices.
Therefore, the size of the reduced instance is at most O(2τk).

Correctness of the rule. We have the following observation.

Observation: Let G = (V,E) be a graph, T ⊆ V be a twins set, and
S be a strategy that saves at least k vertices. If S protects a subset T1 ⊆ T
then protecting any subset T2 ⊆ T instead of T1 such that |T2| = |T1| leads
to another strategy S′ that saves exactly the same number of vertices.

Suppose that there exists a strategy S that saves at least k vertices in
G. It follows from the above observation that if S protects a vertex in a
twins set that has been deleted by the reduction rule then we can protect any
other non-deleted vertex in the same twins set instead, without changing the
solution value. Correctness follows from the fact that it is always possible to
apply the previous observation to obtain a strategy S′ that saves at least k
vertices in G′. Conversely, if a strategy saves at least k vertices in G′, then
this strategy clearly saves at least k vertices in G.

3 Burning Vertices

In this section, we consider the b-Firefighter problem when parameterized
by the number of burned vertices, which we call the Saving All But k-
Vertices problem. We first establish that this problem is W[1]-hard even
on bipartite graphs. We improve on results of Cai et al. [8] by showing an
O((b+1)kn)-time deterministic algorithm for trees and an O((2b+1 − 1)kn)-
time deterministic algorithm for general graphs. Furthermore, we prove
that the Saving All But k-Vertices problem has no polynomial kernel
for trees, resolving an open problem from [8].

14

3.1 W[1]-Hardness on Bipartite Graphs

We show that Saving All But k-Vertices is W[1]-hard, even on bipartite
graphs. We reduce from the following W[1]-hard problem [7].

Regular k-Clique Parameter: k
Input: A d-regular graph G = (V,E) and an integer k.
Question: Is there a k-clique in G?

Theorem 3.1 Saving All But k-Vertices is W[1]-hard even on bipar-
tite graphs.

Proof: In this reduction, a busy gadget denotes a (b+ k)-star with center c
(i.e. , a tree with one internal vertex c and b+ k leaves). Attaching a busy
gadget to a vertex v means to create a copy of a (b+ k)-star and to make c
adjacent to v. Thus, if v is burning at a given time step, then c has to be
protected; otherwise more than k vertices would burn.

Let (G, k) be an instance of Regular k-Clique. We construct the
following bipartite graph G′ from the d-regular graph G. Add a new vertex
s adjacent to all vertices of G. Attach b1 + b2 − (n − k) busy gadgets to
s where b1 = k(n − k) and b2 = kd − (k

2

)
. Attach n − k busy gadgets to

every vertex in V . Remove every edge (u, v) ∈ E and add an edge-vertex
xuv adjacent to u and v (see Figure 3). Now set k′ = k + 1 and b = b1 + b2.
Notice that, at time step 1, there are only n − k firefighters that can be
placed freely because of the busy gadgets.

s

n − k

b1 + b2 − (n − k)

Figure 3: The construction of G′ from G in the proof of Theorem 3.1. Added
vertices are black and a triangle represents a busy gadget.

We claim that Saving All But k-Vertices on (G′, s, k′, b) is a Yes-
instance if and only if Regular k-Clique on (G, k) is a Yes-instance.
Suppose that we have a k-clique K and consider the following strategy. At
time step one, the strategy uses the n − k remaining firefighters to protect
all the original vertices V in G′ except those in K. At time step two, all
the k vertices of K are burned. Since there are n− k busy gadgets attached
to each vertex in K, we need to protect b1 = k(n − k) vertices. Moreover,

15

there are kd−(k2
)
edge-vertices adjacent to the vertices in the k-clique. Since

there remain b2 = b− b1 firefighters, we can protect all of them. Hence, no
more than k vertices are burned at the end of the process.

Conversely, suppose that there is no k-clique in G. At time step 1, any
valid strategy has to place the n− k remaining firefighters on vertices that
are not edge-vertices; otherwise at least k′ + 1 vertices will burn. At time
step two, since there is no k-clique, there will be at least kd− (k2

)
+ 1 edge-

vertices adjacent to the k burned vertices. For the same reason as before,
there remains b2 = b − b1 firefighters which is not enough to protect these
edge-vertices. Therefore, given any valid strategy there will be at least k′

burned vertices.

3.2 Algorithms on General Graphs

In this subsection, we first show that Saving All But k-Vertices can
be solved in nO(k). We also show that this algorithm is essentially optimal,
unless FPT = M[1]. Next, we show an O((2b+1 − 1)kn)-time algorithm on
general graphs for any b ≥ 1.

We first define, as in Section 2.2, the Saving All But k-Vertices II

problem that can be proved equivalent to Saving All But k-Vertices as
in Lemma 2.3. Next, we introduce the notion of valid burning set. Given an
instance (G = (V,E), s, k, b) of Saving All But k-Vertices II, a valid
burning set is a subset B ⊆ V with s ∈ B such that there exists a strategy
for which, at the end of the process, the burned vertices are exactly those
in B.

Lemma 3.2 Let G = (V,E) be a graph with an initially burned vertex s ∈
V . Verifying if a subset B ⊆ V is a valid burning set can be done in linear
time.

Proof: Observe that the set of protected vertices must be exactly N(B).
For any v ∈ N(B), let d(v) be the length of a shortest s-v path in G whose
internal vertices are all in B. Then v has to be protected before or at time
step d(v). It follows that B is a valid burning set if and only if the number of
vertices v for which d(v) ≤ t is at most bt for every t = 1, . . . , k. Finally, we
note that d(v) can be easily computed using a breadth-first search. Hence
we can determine whether B is a valid burning set in linear time.

Theorem 3.3 Saving All But k-Vertices is solvable in time nO(k).

Proof: Exhaustively consider all subsets B ⊆ V with |B| ≤ k. If B is a
valid burning set, then the answer is Yes. If no valid burning set is found,
then the answer is No. It follows from Lemma 3.2 that the running time is
nO(k).

16

Notice that the parameters in the reduction used in Theorem 3.1 are
linearly related. Since Regular k-Clique cannot be solved in time no(k)

unless FPT = M[1] [19], we obtain the following lower bound that shows
that the algorithm given in Theorem 3.3 is optimal.

Corollary 3.4 Saving All But k-Vertices cannot be solved in time
no(k), unless FPT = M[1].

Theorem 3.5 Saving All But k-Vertices II on general graphs is solv-
able in O((2b+1 − 1)k+b−1n) time and polynomial space.

Proof: We present a simple branching algorithm. Assume that we are in
the i-th time step and let B be the set of vertices which are currently on
fire. Moreover, let P be the set of already protected vertices (in the first
round we have B = {s} and P = ∅). Let a = ib− |P | and r = |N(B) \ P |.
The algorithm does the following:

1. If |B| > k, then we immediately answer No.

2. Observe that in the i-th round we are allowed to protect at most
min(a, r) vertices. If a ≥ r, then we can greedily protect the whole set
N(B) \ P . Hence in this case we answer Yes.

3. In the last case, when a < r, we branch on all subsets of N(B) \ P
of size at most a. Observe that the number of branches is equal to
∑a

j=0

(r
j

) ≤ 2r − 1, since we have a < r.

The running time of the algorithm is as follows. We introduce a measure
α = (k−|B|)+ (ib−|P |) which we use in our time bound. At the beginning
of the first round of the burning process, we have α = (k − 1) + (b − 0) =
k+ b− 1. By T (α) we denote the upper bound on the number of steps that
our algorithm requires for a graph with measure value α. Observe that for
α ≤ 0, we have T (α) = O(n). Let us assume that the algorithm did not
stop in step 1 nor 2, and it branches into at most 2r − 1 choices of protected
vertices. Observe that no matter how many vertices the algorithm decides to
protect, the value of the measure decreases by exactly r − b. Consequently,
we have the inequality T (α) ≤ (2r − 1)T (α − r + b) + O(n). Since the
algorithm did not stop in steps 1 or 2, we infer that r ≥ b + 1. The time
bound follows from the fact that the worst case for the inequality occurs
when r = b+ 1.

Using Lemmas 2.3 and 3.5 we deduce the following result.

Corollary 3.6 Saving All But k-Vertices on general graphs is solvable
in O((2b+1 − 1)k+b−1n) time and polynomial space.

17

3.3 Algorithm on Trees

In this subsection, we show an O((b+ 1)kn)-time algorithm for the Saving

All But k-Vertices problem on trees.

Theorem 3.7 Saving All But k-Vertices on trees is solvable in time
O((b+ 1)kn) and polynomial space.

Proof: If the root s has at most b children, then we immediately answer
Yes. We may assume that the root has exactly a ≥ b + 1 children, and
k ≥ a − b since otherwise we simply answer No. We use Lemma 2.11 and
branch on every subset of b children of the root s. In each branch, we cut the
subtree rooted at the protected vertex, identify all the vertices that are on
fire after the first round, and decrease the parameter by a− b. In this way,
we obtain a new instance of the Saving All But k-Vertices problem
with parameter value equal to k− (a− b). The time bound follows from the
inequality

T (k) ≤
(

a

b

)

T (k − (a− b)) +O(n)

which is worst when a = b+ 1.

3.4 Kernelization feasability

In this section, we provide an O(2τkτ) kernel for Saving All But k-
Vertices.

Theorem 3.8 Saving All But k-Vertices admits a kernel of size at
most O(2τkτ).

Proof: First, we compute in polynomial-time a 2-approximate vertex cover
C ′ ⊆ V where |C ′| = τ ′ ≤ 2τ . We may assume that b < τ ′, since otherwise
the answer is Yes. Indeed, suppose to the contrary that b ≥ τ ′. We may
assume that |N(s)| < b+ k, because otherwise the answer is clearly No. If
s /∈ C ′, then it is enough to protect all the vertices in C ′ at the first round to
stop the fire. If s ∈ C ′, then let N1(s) = N(s) ∩ C ′ and N2(s) = N(s) \ C ′.
If |N2(s)| < k, then the strategy that protects all the vertices in C ′ at
the first round burns at most k vertices. If |N2(s)| ≥ k, then consider the
following strategy. At the first time step, protect all the vertices in N1(s),
and b − |N1(s)| vertices of N2(s) (notice that |N1(s)| < b). At the second
time step, protect all the vertices in C ′\N1[s]. Hence, the number of burned
vertices using this strategy is at most k.

The reduction is the same as the one describes in Theorem 2.20, but we
use the following slightly different reduction rule.

Rule: Let T ⊆ V be a twins set. If |T | ≥ kb, then delete |T |−kb vertices
of T .

18

Using similar arguments as in Theorem 2.20, we get a kernel of sizeO(2τkb) =
O(2τkτ ′) = O(2τkτ).

3.5 No Polynomial-Size Kernel for Trees

In this section, we show that both Saving All But k-Vertices and k-
Vertex Protection have no polynomial kernel for budget b = 1, unless
NP ⊆ coNP/poly. Next, we provide a generalization of these results to any
fixed budget b ≥ 2.

Theorem 3.9 Unless NP ⊆ coNP/poly, there is no polynomial kernel for
the Saving All But k-Vertices problem, even if the input graph is a tree
of maximum degree four.

Before we prove Theorem 3.9 we describe the necessary tools. We use the
cross-composition technique introduced by Bodlaender et al. [6], which is
based on the previous results of Bodlaender et al. [5] and Fortnow and
Santhanam [17]. We recall the crucial definitions.

Definition 3.10 (Polynomial equivalence relation [6]) An equivalence
relation R on Σ∗ is called a polynomial equivalence relation if (1) there is
an algorithm that given two strings x, y ∈ Σ∗ decides whether R(x, y) in
(|x|+ |y|)O(1) time; (2) for any finite set S ⊆ Σ∗ the equivalence relation R
partitions the elements of S into at most (maxx∈S |x|)O(1) classes.

Definition 3.11 (Cross-composition [6]) Let L ⊆ Σ∗, and let Q ⊆ Σ∗×
N be a parameterized problem. We say that L cross-composes into Q if
there is a polynomial equivalence relation R and an algorithm which, given t
strings x1, x2, . . . xt belonging to the same equivalence class of R, computes
an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that (1)

(x∗, k∗) ∈ Q iff xi ∈ L for some 1 ≤ i ≤ t; (2) k∗ is bounded polynomially
in maxti=1 |xi|+ log t.

Theorem 3.12 ([6], Theorem 9) If L ⊆ Σ∗ is NP-hard under Karp re-
ductions and L cross-composes into the parameterized problem Q that has a
polynomial kernel, then NP ⊆ coNP/poly.

We apply Theorem 3.12, where as the language L we use Saving All But

k-Vertices in trees of maximum degree three, which is NP-complete [14].
To finish the proof of Theorem 3.9, we present a cross-composition algorithm.

Lemma 3.13 The unparameterized version of the Saving All But k-
Vertices problem on trees with maximum degree three cross-composes to
Saving All But k-Vertices on trees with maximum degree four.

19

Proof: Observe that any polynomial equivalence relation is defined on all
words over the alphabet Σ and for this reason we should also define how the
relation behaves on words that do not represent instances of the problem.
For the equivalence relation R we take a relation that puts all malformed
instances into one equivalence class and all well-formed instances are grouped
according to the number of vertices we are allowed to burn.

If we are given malformed instances, we simply output a trivial No-
instance. Thus in the rest of the proof we assume we are given a sequence
of instances (Ti, si, k)

t
i=1 of the unparameterized version of Saving All

But k-Vertices, where each Ti is of maximum degree three. Observe that
in all instances we have the same value of the parameter k. W.l.o.g. we
assume that t = 2h for some integer h ≥ 1. Otherwise we can duplicate an
appropriate number of instances (Ti, si, k).

We create a new tree T ′ as follows. Let T ′ be a full binary tree with
exactly t leaves rooted at a vertex s′. Now for each i = 1, . . . , t, we replace
the i-th leaf of the tree by tree Ti rooted at si. Finally, we set k′ = k+ h =
k + log2 t. Observe that since each tree Ti is of maximum degree three, the
tree T ′ is of maximum degree four. To prove correctness, it is enough to show
that any strategy that minimizes the number of burned vertices protects
exactly one vertex at each depth 1, . . . , h, which follows from Lemma 2.11.
Hence in any strategy that minimizes the number of burned vertices, there
will be exactly one vertex si which is on fire after h rounds.

We can obtain a similar result for the decision variant of Maximum k-
Vertex Protection.

Theorem 3.14 Unless NP ⊆ coNP/poly, there is no polynomial kernel for
the k-Vertex Protection problem, even if the input graph is a tree of
maximum degree four.

Proof: There are only two differences compared to the proof for Saving

All But k-Vertices.

• For the equivalence relation R, we take a relation that puts all mal-
formed instances into one equivalence class, and all well-formed in-
stances are grouped according to the number of vertices of the tree,
the parameter value k, and the value a.

• The value of k′ for the tree T ′ is k + h, and the value of a′ is equal to
a + (t − 1)n + (t − h − 1), where n is the number of vertices in each
of the trees Ti. The additional summands are derived from the fact
that any optimal strategy will ensure that after h rounds exactly one
vertex si will be on fire and hence we save t− 1 subtrees rooted at si,
each containing n vertices, and t−h−1 vertices of the full binary tree.

This completes the proof.

20

We may generalize the previous results using the fact that the unparam-
eterized version of Saving All But k-Vertices is NP-complete for trees
of maximum degree b+ 3 where b ≥ 2 is fixed [3].

Theorem 3.15 For any fixed budget b ≥ 2, there is no polynomial kernel
for the Saving All But k-Vertices problem, even if the input graph is a
tree of maximum degree b+ 4, unless NP ⊆ coNP/poly.

Proof: Let b ≥ 2 be any fixed constant. We use Theorem 3.12, where L
is the unparameterized version of Saving All But k-Vertices on trees
of maximum degree b+ 3. To give the cross-composition, we use the same
proof from Lemma 3.13 with the following differences.

• For the equivalence relation R, we take a relation that puts all mal-
formed instances into one equivalence class, and all well-formed in-
stances are grouped according to the parameter value k and the budget
b.

• We assume that t = (b+ 1)h for some integer h ≥ 1.

• The tree T ′ is now a full (b+ 1)-ary tree with exactly t leaves, rooted
at a vertex s′ — that is, a tree in which every vertex other than the
leaves has b + 1 children and all leaves are at the same distance from
the root. Finally, we set k′ = k + logb+1 t.

This completes the proof.

Theorem 3.16 For any fixed budget b ≥ 2, there is no polynomial kernel
for the k-Vertex Protection problem, even if the input graph is a tree
of maximum degree b+ 4, unless NP ⊆ coNP/poly.

Proof: Using the construction from Theorem 3.15 and modifications from
Theorem 3.14, the result follows.

4 Open Problems

In this paper, we refined and extended several parameterized algorithmic and
complexity results about different parameterizations of the b-Firefighter
problem. We conclude with the following open problems.

• We have shown that Saving k-Vertices is in FPT on graphs of
bounded local treewidth, and thus on planar graphs, by showing that
the problem is in FPT parameterized by k and the treewidth of a
graph. While Maximum k-Vertex Protection is also in FPT pa-
rameterized by k and the treewidth, we do not know if the problem is
in FPT on planar graphs, and leave it as an open problem.

21

• Furthermore, we do not know if Saving All But k-Vertices is fixed-
parameter tractable when parameterized by tw and k. One could try
to adapt the MSOL formula for Maximum k-Vertex Protection,
but in its current form the size of the formula depends on k and b.
This is not a problem for Maximum k-Vertex Protection, as we
can assume that b ≤ k. However, it is not clear whether a similar
assumption can be made for Saving All But k-Vertices.

• The b-Firefighter problem is solvable in subexponential time on
trees. Is it solvable in time 2o(n) on n-vertex planar graphs? Even the
case of outerplanar graphs is open.

• It is unknown if Saving k-Vertices, Saving All But k-Vertices,
and k-Vertex Protection admit a polynomial kernel for parame-
ters τ and k. While we have shown that k-Vertex Protection and
Saving All But k-Vertices do not admit a polynomial kernel for
parameters k and tw, we do not know if it also the case for Saving

k-Vertices.

• We have proved that Saving k-Vertices and Maximum k-Vertex

Protection can be solved in time nO(k). We also showed that there is
no no(

√
k) algorithm for these problems unless FPT = M[1]. However,

the existence of an no(k)-time algorithm is an open problem.

• Finally, we do not know if any of the three parameterized versions of
the problem is solvable in parameterized subexponential time 2o(k)nO(1)

on trees.

Acknowledgement We thank Leizhen Cai for pointing us to [20] and for
sending us the full version of [8]. We also acknowledge the support of Schloss
Dagstuhl for Seminar 11071 (GRASTA 2011 - Theory and Applications of
Graph Searching Problems). Research of Fedor Fomin was supported by the
European Research Council (ERC) grant “Rigorous Theory of Preprocess-
ing”, reference 267959. Research of Michael R. Fellows was supported by
the Australasian Research Council. Research of Marek Cygan was partially
supported by grant no. N206 567140 of the National Science Centre and
Foundation for Polish Science.

References

[1] Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-
decomposable graphs. J. Algorithms 12, 308–340 (1991)

[2] Bazgan, C., Chopin, M., Fellows, M.: Parameterized complexity of the
firefighter problem. In: ISAAC. pp. 643–652. LNCS 7074 (2011)

22

[3] Bazgan, C., Chopin, M., Ries, B.: The firefighter problem with more
than one firefighter on trees. Discrete Applied Mathematics 161(7-8),
899–908 (2013)

[4] Bodlaender, H.L.: A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Computing 25(6), 1305–
1317 (1996)

[5] Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On
problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–
434 (2009)

[6] Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition:
A new technique for kernelization lower bounds. In: STACS. LIPIcs,
vol. 9, pp. 165–176 (2011)

[7] Cai, L.: Parameterized complexity of cardinality constrained optimiza-
tion problems. Comput. J. 51(1), 102–121 (2008)

[8] Cai, L., Verbin, E., Yang, L.: Firefighting on trees: (1-1/e)-
approximation, fixed parameter tractability and a subexponential al-
gorithm. In: ISAAC. pp. 258–269. LNCS 5369 (2008)

[9] Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower
bounds via parameterized complexity. Journal of Computer and System
Sciences 72(8), 1346 – 1367 (2006)

[10] Cygan, M., Fomin, F., van Leeuwen, E.J.: Parameterized complexity
of firefighting revisited. In: IPEC. pp. 13–26. LNCS 7112 (2011)

[11] Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer-
Verlag, New York (1999)

[12] Eppstein, D.: Diameter and treewidth in minor-closed graph families.
Algorithmica 27(3), 275–291 (2000)

[13] Finbow, S., Hartnell, B., Li, Q., Schmeisser, K.: On minimizing the ef-
fects of fire or a virus on a network. J. Combin. Math. Combin. Comput.
33, 311–322 (2000)

[14] Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter prob-
lem for graphs of maximum degree three. Discrete Math. 307(16), 2094–
2105 (2007)

[15] Finbow, S., MacGillivray, G.: The firefighter problem: a survey of
results, directions and questions. Australas. J. Combin. 43, 57–77 (2009)

[16] Floderus, P., Lingas, A., Persson, M.: Towards more efficient infection
and fire fighting. Int. J. Found. Comput. Sci. 24(1), 3–14 (2013)

23

[17] Fortnow, L., Santhanam, R.: Infeasibility of instance compression and
succinct PCPs for NP. In: STOC 2008: Proceedings of the 40th Annual
ACM Symposium on Theory of Computing. pp. 133–142. ACM (2008)

[18] MacGillivray, G., Wang, P.: On the firefighter problem. J. Combin.
Math. Combin. Comput. 47, 83–96 (2003)

[19] Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints:
A parameterized approach. J. Comput. Syst. Sci. 78(1), 179–191 (2012)

[20] Yang, L.: Efficient Algorithms on Trees. M. Phil thesis, Department
of Computer Science and Engineering, The Chinese University of Hong
Kong (2009)

24

