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ON MULTIPLICITY OF EIGENVALUES AND SYMMETRY OF
EIGENFUNCTIONS OF THE p-LAPLACIAN

BENJAMIN AUDOUX, VLADIMIR BOBKOV, AND ENEA PARINI

ABSTRACT. We investigate multiplicity and symmetry properties of higher eigenvalues and
eigenfunctions of the p-Laplacian under homogeneous Dirichlet boundary conditions on certain
symmetric domains Q@ C RY. By means of topological arguments, we show how symmetries of
Q help to construct subsets of WO1 "P(Q2) with suitably high Krasnosel’skil genus. In particular,
if Q is a ball B C R, we obtain the following chain of inequalities:

A2(p; B) < --- < Avsa(p; B) < Ao (p; B).

Here \;(p; B) are variational eigenvalues of the p-Laplacian on B, and Ag(p; B) is the eigenvalue
which has an associated eigenfunction whose nodal set is an equatorial section of B. If A2 (p; B) =
As(p; B), as it holds true for p = 2, the result implies that the multiplicity of the second
eigenvalue is at least N. In the case N = 2, we can deduce that any third eigenfunction of the
p-Laplacian on a disc is nonradial. The case of other symmetric domains and the limit cases
p =1, p= o0 are also considered.

1. INTRODUCTION AND MAIN RESULTS

Let Q € RV, N > 2, be a bounded, open domain, and let p > 1. We say that u € Wol’p(Q)\{O}
is an eigenfunction of the p-Laplacian associated to the eigenvalue A € R if it is a weak solution

of

(1.1)

—Apu = Au[P?u in Q,
u = 0 on 0,

where Apu = div(|[VuP™2Vu). If p = 2, (1.1) is the well-known eigenvalue problem for the
Laplace operator. The first eigenvalue Aj(p; Q) of the p-Laplacian is defined as

(1.2) A(p; Q) = min/ |Vul? dz,
ueSy Jo

where
17
Sp = {u € WyP(Q) | |ull 1o (o) = 1}-
Besides the first eigenvalue, in the linear case p = 2, the standard Courant-Fisher minimax
formula
(1.3) Ak(2;) = min  max / \Vu|?dz, k€N,
X ueXENSa 0
provides a sequence of eigenvalues which exhausts the spectrum of the Laplacian, cf. [3, Theorem

8.4.2]. In (1.3), the minimum is taken over subspaces Xj C Wol’2(Q) of dimension k. However,
for p # 2 the problem is nonlinear, and it is necessary to make use of a different method. A
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sequence of wvariational eigenvalues can be obtained by means of the following minimax varia-
tional principle. Let A C Wol’p(Q) be a symmetric set, i.e., if u € A, then —u € A. Define the
Krasnosel’skii genus of A as

v(A) := inf{k € N |3 a continuous odd map f: A — Sh11

with the convention 7(A) = 4o if, for every & € N, no continuous odd map f : A — SF!
exists. Here S*~1is a (k — 1)-dimensional sphere. For & € N we define

Ti(p) :={ACS, ’ A symmetric and compact, v(A) > k}

and

14 Ae(p; Q) :=  inf VulPdz.
(1.4 i) = inf e [Vl da

It is known that each Ag(p;2) is an eigenvalue and
0 <A@ <X@Q) < < A(p; Q) = 400 as k — +oo,

see [13, §5]. However, it is not known if the sequence {A;(p; 2)}>] exhausts all possible eigen-
values, except for the case p = 2, where the eigenvalues in (1.4) coincide with the eigenvalues in
(1.3), see, e.g., [10, Proposition 4.7] or [9, Appendix A]. It has to be observed that the definitions
of A\i(p;2) by (1.2) and (1.4) are consistent. The associated first eigenfunction is unique mod-
ulo scaling and has a strict sign in Q (cf. [4,24]), while eigenfunctions associated to any other
eigenvalue must necessarily be sign-changing (see, e.g., [19, Lemma 2.1]). Therefore, it makes
sense to define the nodal domains of an eigenfunction u as the connected components of the set
{z € Q:u(x) # 0}, and the nodal set of u as {x € Q : u(z) = 0}. The version of the Courant
nodal domain theorem for the p-Laplacian obtained in [12] states that any eigenfunction associ-
ated to Ag(p; ) with k > 2 has at most 2k — 2 nodal domains. In particular, any eigenfunction
associated to A\o(p; Q) has exactly two nodal domains. Moreover, since there are no eigenvalues
between A1 (p; ) and A2(p; ) [1], the latter is indeed the second eigenvalue.

For the sake of simplicity, in the following we will restrict our attention mainly to the case
where Q = BY is an open N-ball centred at the origin. In the linear case p = 2, the eigenfunctions
of the Laplace operator on B are given explicitly by means of Bessel functions and spherical
harmonics, and therefore it can be seen that the first eigenfunction is radially symmetric, while
the nodal set of any second eigenfunction is an equatorial section of the ball; moreover, the
following multiplicity result holds true:

(1.5) AM(2;BY) < M (2;BY) = -+ = Any1(2; BY) < Anya(2; BY),

see, for instance, the discussion in [15]. In contrast, in the nonlinear case p # 2 much less is
known. While it is relatively easy to show that the first eigenfunction is still radially symmetric
by means of Schwarz symmetrization, symmetry properties of second eigenfunctions, as well as
the multiplicity of the second eigenvalue, are not yet completely understood. For instance, it
is known only that second eigenfunctions can not be radially symmetric; this was shown in the
planar case in [21] for p close to 1, and later in [5] for general p > 1. The result was finally
generalized to any dimension in [2]. The notion of multiplicity itself needs to be clarified in the
nonlinear case. We say that the variational eigenvalue Ag(p; ) has multiplicity m if there exist
m variational eigenvalues A, ..., A\j1ym_1 with I < k <14 m — 1 such that

(1.6) A1 (P ) < NP Q) = - = (P Q) = -+ = N1 (03 Q) < A (95 €2).
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We point out that we are not aware of any multiplicity results for higher eigenvalues of the
p-Laplacian.

Despite the deficit of information about symmetry properties of variational eigenfunctions,
it is possible to consider eigenvalues (possibly non-variational) with associated eigenfunctions
which respect certain symmetries of BY. For instance, the existence of a sequence of eigenvalues

0 < pa(p; BY) < pa(p; BY) < -+ < pye(p; BY) = +o0  as k — +oo,

corresponding to radial eigenfunctions has been shown, for instance, in [11]. Each radial eigen-
function associated to yu(p; BY) is unique modulo scaling and possesses exactly k nodal domains.
The latter implies that A\g(p; BY) < ug(p; BY) for any k € N and p > 1 (see Lemma 2.7 below).
The above-mentioned results about radial properties of first and second eigenfunctions, together
with |6, Theorem 1.1|, can therefore be stated as

A1 (p; BN) = p1(p; BN) and  A\g(p; BN) < pr(p; BN) forall p > 1 and k > 2.
Another sequence of eigenvalues
0 <71 (p; BY) < 1a(p; BY) < -+ < i(p; BY) = 400 as k — 400,

was considered in [2, Theorem 1.2]. Here 74(p; BY) is constructed in such a way that it has an
associated symmetric eigenfunction' whose nodal domains are spherical wedges of angle T see
also Section 2.2 below, where a generalization of this sequence to other symmetric domains is
given. In particular, the nodal set of any symmetric eigenfunction associated to 71 (p; BY) is an
equatorial section of BY. By construction, a symmetric eigenfunction associated to 73 (p; BY)
has 2k nodal domains, which implies that

Xoi(p; BY) < 7i,(p; BY) for any k € Nand p > 1.

At the same time, in the linear case, one can easily use the Courant-Fisher variational principle
(1.3) to show (see Remark 3.2 below) that at least

(1.7) Mok (2; BY) < Agpy1(2; BY) < 7(2; BY)  for any k € N.

The generalization of even such simple facts as (1.5) and (1.7) to the nonlinear case p # 2
meets certain difficulties. The main obstruction consists in the following fairly common problem:

How to obtain a symmetric compact set A C S, with suitably high Krasnosel’skit genus, and, at
the same time, with suitably low value max Jo |VulP dz?
ue

In the linear case, the consideration of subspaces spanned by the first k eigenfunctions 1, ..., @i
directly solves this problem. Let us sketchily describe the approach supposing that we want to
prove the multiplicity in (1.5) using the definition (1.4) only. Let ¢1 and @2 be a first and a
second eigenfunction of the Laplacian on BY, respectively, such that |¢;| 2 (gvy = lfori=1,2.

Since BY and the Laplace operator are rotation invariant, we see that (o generates N linearly

L We use the adjective “symmetric” to distinguish this eigenfunction from the radial one, since py(p; BN) and
7k(p; BY) can be equal to each other and hence might have associated eigenfunctions with not appropriate nodal
structures, see [6, Corollary 1.3 and Theorem 1.4].
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independent second eigenfunctions ¢, . .., on4+1 whose nodal sets are equatorial sections of B
orthogonal to each other. Consider the set

N+1 N+1
i=1 =1

Evidently, By is symmetric and compact, and it is not hard to show that v(By) = N + 1.
Moreover, since all o1, ..., pn41 are mutually orthogonal with respect to L-inner product, we
get BQ C 8. Indeed,

N+1
(1.9) HUH%Q(BN) = Z o? HcpiHig(BN) =1 for any u € Bs.

i=1
Therefore, By € T'y11(2), and, using again the orthogonality, we obtain

N+1
Avi1(2; BY) < max/ |Vu|? de < max Z o? AQ(Q;BN)H@Z-HiQ(BN) = \o(2; BY),
u€By JpN a%+---+a?\,+1:1 P
which leads to the desired chain of equalities in (1.5).

However, this approach does not work well enough in the nonlinear case p # 2. First of all, we
do not know if a second eigenfunction has an equatorial section of BY as its nodal set. This can
be overcome by considering a symmetric eigenfunction ¥y associated to 7i(p; BY). Using the
first eigenfunction 1, symmetric eigenfunction ¥y, and noting that the p-Laplacian is rotation
invariant for p > 1, we can produce (N + 1) linearly independent eigenfunctions as above and
define a symmetric compact set 3, analogously to (1.8). Moreover, similarly to [16, Lemma 2.1] it
can be shown that v(B,) = N +1. However, the lack of the L?-orthogonality prevents to achieve
B, C Sy as in (1.9), and further normalization of B, increases the value max [~ [VulP dz.?

P

Another usual approach to obtain sets of higher Krasnosel’skil genus for general p > 1 is based
on the independent scaling of nodal components of a function, cf. Lemma 2.7 below. Assume
that some w € Wol’p(Q) can be represented as w = wy + - - + wy, where all w; € S, and they
are disjointly supported. Considering the set

k k
Ck = {Zaiwi ‘ Z|O&i|p = 1},
=1 i=1

we easily achieve that Ci € T'x(p). However, as before, the disadvantage of this approach is that
max Jo IVulP dz cannot be made, in general, appropriately small.
ueCy

In this article, we present a variation of the above-mentioned approaches. Namely, using the
symmetries of €2, we combine the scaling of nodal components of an eigenfunction with its rota-
tions, which allows us to find a set A € I'y(p) for appropriately big k& € N, while keeping control
of the value max Jo|VulPdz. By virtue of this fact, we obtain the following generalizations

of (1.5) and (1.7), which can be seen as a step towards exact multiplicity results for nonlinear
variational higher eigenvalues.

2 similar approach was used in [16, Section 2]. However, this approach also does not give a necessarily small
upper bound for n}xm(( )fQ |VulP dz due to a gap in the proof of [16, Lemma 2.3]. Namely, it is assumed that
uEAL(p

llul|Lr(q) = 1 for any u € Ax(p) which might not be correct.
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Theorem 1.1. Let Q C RN be a radially symmetric bounded domain, N > 2. Let p > 1, k> 1
and let Ti(p; Q) be defined as in (2.3). Then the following inequalities are satisfied:

(1.10) Ao(p; Q) <o < A () < T(p Q);
(1.11) Aok (p; ) < Aot (p; Q) < 71(p; Q).

Theorem 1.1 implies that, if Aa(p; Q) = 71(p; Q), then the second eigenvalue has multiplicity
at least N. It is also meaningful to emphasize that the inequalities (1.10) do not imply that
eigenfunctions associated to A3(p; BY),..., An11(p; BY) are nonradial. Indeed, to the best of
our knowledge, the inequality 7y (p; BN ) < pea(p; BN ) is not proved yet for general p > 1 and
N > 3. Nevertheless, in the planar case, the results of [5] and [6] allow us to characterize
Theorem 1.1 in a more precise way. For visual simplicity we denote

Ae(p) :=71(p; B?), Xa(p) :=7a(p; B?), No(p) := pa(p; B?).
Recall that if p = 2, then
A2(2; B?) = A3(2; B*) = As(p) < Ma(2;B%) = A5(2,B%) = Aa(p) < As(2B%) = Ao (p).

For p > 1 we have the following result.

Proposition 1.2. Let N = 2. Then for every p > 1 it holds
(1.12) Xa(p; B?) < As(p; B%) < As(p) < Xo(p),

that is, any third eigenfunction on the disc is not radially symmetric. Moreover, there exists
p1 > 1 such that

(1.13) M(p; B?) < As(p; B?) < Aa(92) < Ao(p;2)  for all p > pi,
that is, fourth and fifth eigenfunctions on the disc are also not radially symmetric for p > py.
Note that the last inequality in (1.13) is reversed for p close to 1, see [6, Theorem 1.3].

Consider now a bounded domain Q C RY which is invariant under rotation of N — [ variables
for some [ € {1,..., N — 1}, see the definition (2.1) below. Analogously to the case of N-ball, it
is possible to define symmetric eigenvalues 75(p; 2) of the p-Laplacian on Q for any k € N, see
Section 2.2 below. Similarly to Theorem 1.1, we have the following facts.

Proposition 1.3. Let Q C RY be a bounded domain of N — 1 revolutions defined by (2.1), where
N>2andle{l,...,N—1}. Letp > 1 and k > 1. Then the following inequalities are satisfied:

(1.14) Aa(p; Q) < -+ < A2 (3 Q) < 1(p; Q);
(1.15) Aok (D5 ) < Aoy (p; Q) < 71(p; Q).

The article is organized as follows. In Section 2.1, we recall some facts from Algebraic Topology
and prove necessary technical statements. Section 2.2 is mainly devoted to the construction of
symmetric eigenvalues on domains of revolution. Section 3 contains the proofs of the main
results. Finally, in Section 4, we discuss the limit cases p = 1 and p = oo and some naturally
appeared open problems.
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2. PRELIMINARIES

2.1. Some algebraic topological results. Recall first that a subset X of a topological vector
space is symmetric if it is invariant under the central symmetry map ¢ defined as ((z) = —z. A
map f between symmetric sets is called odd if for =10 f, and it will be called even if for = f.
In the following, we assume all maps to be continuous.

Let us denote by Hy(X) the k™ homology group (over Z) of a manifold X (cf. [14, Chapter 2]).
We say that a manifold is an n-manifold (with n € N) if it is an oriented closed n-dimensional
manifold. If X is an n-manifold, then it can be shown that H,(X) = Z [14, Theorem 3.26] with
a preferred generator given by the orientation of X. Moreover, by post-composition, any map
f: X — Y induces linear maps fi : Hp(X) — Hg(Y) for each k € N. When both X and Y are
n-manifolds, the degree of the map f is defined as the image by f, of the preferred generator
of Hy(X) in H,(Y) = Z and denoted as deg(f). It follows directly from the definitions that if
f:X =Y and g:Y — Z are two continuous maps between n-manifolds, then deg(go f) =
deg(g) deg(f). Moreover, two homotopic maps, that is two maps with a continuous path of maps
between them, have the same degree since they induce the same map on homology; see [14,
Theorem 2.10] and point (c) in [14, p.134].

The following result is known as Borsuk’s Theorem and it was proved in [8, Hilfssatz 6]. An
English written proof can found in [14, Proposition 2B.6|.

Theorem 2.1. Any odd map f: S™ — S™ has an odd degree.

Remark 2.2. Borsuk’s Theorem implies the classical Borsuk-Ulam Theorem which states that
there is no odd map from a sphere into a sphere of strictly lower dimension.

The following proposition is considered as well-known in the literature, see, e.g., [14, Exercice
14, p. 156].

Proposition 2.3. Any even map f : S™ — S™ has an even degree.

The following lemma, which will be crucial for our arguments, is a consequence of Borsuk’s
Theorem.

Lemma 2.4. Let X be a symmetric subset of a topological space. Suppose that there is a map
f:8"x[0,1] = X such that Jisnx{oy s odd, and either of the following conditions is satisfied:
(a) fisnxq1y is even;
(b) fisnxq1y is equal to figny oy © g, where g : S™ — S™ is a map such that deg(g) # 1.
Then there is no odd map from X to S* for k < n.

Proof. Assume, by contradiction, that there exists an odd map h : X — S* for some k < n. By
considering S* as an iterated equator of S™, f can be promoted as an odd map h : X — S™.
Since (t — hof|sn><{t}) is a continuous map from o figny (o1 to ho figny (1}, it follows that they
are homotopic and hence have the same degree d. Moreover, since h o figny oy : " — S" is an
odd map, it follows from Theorem 2.1 that d is odd. Now we distinguish the two cases:

(i) Under assumption (a), if figny {1} is even, then so is ho fign, 1y : S™ — S™ and hence d

is even by Proposition 2.3.
(ii) Under assumption (b), we use the multiplicativity of the degree to get

d=deg(ho fisnx{1y) = deg(h o fisnyfoy © g) = deg(h o fisnxioy) deg(g) = d - deg(g) # d,
since deg(g) # 1 by assumption, and d # 0 since it is odd.
In both cases, we get a contradiction, and hence the lemma follows. O
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Remark 2.5. It is possible to obtain a weaker result by using the classical Borsuk-Ulam Theo-
rem, without any assumptions on figny(1}. In this case, one can only prove nonexistence of odd

maps from X to S¥ for k <n — 1.

To be applied, Lemma 2.4 requires an evaluation of the degree of the map g. We address now a
very elementary example that will be useful to prove Proposition 3.1 below. For that purpose, we
consider the permutation map 7 : S — S™ defined by 7(x1, 22, ..., Tnt+1) = (Tnt1, T1,-- - Tn)-

Lemma 2.6. The map 7 has degree (—1)™.

Proof. As auxiliary maps, we define p; the reflexion along the first coordinate, and 6; the rotation
of angle Z in the oriented plane generated by the i*" and the (i41)™ coordinates. More explicitly,
we have p1(x1,22,...,Znt1) = (=21, 22,.. ., Tny1) and

Oi(X1, .o L1, Ty T 15, Tig2 -y Tpg1) = (150, Tim1y, =T 1, Tiy Tig2,s - - Tg1)-
It is then directly computed that

| O1o0---00, for n even,
| probyo---06, forn odd.

It is easily seen that deg(p1) = —1, cf. [14, Section 2.2, Property (e), p. 134]. Moreover, all
rotations are path-connected to the identity map and hence they have degree 1 by the same
codomain Z argument as in the proof of Lemma 2.4. Combined with the multiplicativity of the
degree, this proves the statement. O

2.2. The eigenvalue problem. First we give the following well-known fact.

Lemma 2.7. Let w € Wol’p(Q) be such that w = w1 + - - - + wy, where w; and w; have disjoint
supports for i # j and each w; € Sp. Then

k k
Cr = {Zaiwi ‘ Z | [P = 1} C S,
=1 =1

Cr. is symmetric and compact, and v(Cx) = k. Moreover,

max/ \Vu]pdxgmax{/ \Vw1|pdx,...,/ |Vwk\pd:p}.
uelr J Q Q

In particular, if w is an eigenfunction of the p-Laplacian on § associated to an eigenvalue A,
and w has at least k nodal domains, then

Ae(p; Q) < max/ |VulP dz < .
ueCy J

Proof. Since all the statements are trivial, we will prove, for the sake of completeness, only that

v(Cx) = k; see [22, Proposition 7.7]. Note first that there exists an odd homeomorphism f

between Cj, and S*~! given by

k
D_ p_
f(g aiwi> = (|a1|2 1041,...,|ak|2 1Oék>.
i=1

This implies that v(C) < k. If we suppose that v(Cx) = n < k, then there exists a continuous
odd map ¢ : C, — S™ 1. However, the composition g o f~! is odd and maps S*~! into S™~!
which contradicts the classical Borsuk-Ulam Theorem, cf. Remark 2.2. Thus, v(Cx) = k. ]
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Now we generalize the construction of eigenvalues 74 (p; BY) and corresponding symmetric
eigenfunctions given in [2| to domains of revolution. Let us introduce the usual spherical coor-
dinates in RY:

x1 = rcosf,

Lo = rsin by cos by,

TN_1 =rsinfisinfy...sinfy_scosOn_1,
ry =rsinf;sinfs...sinfy_9sinfy_1,
where r € [0, +00), (01,...,0n_2) € [0,7]¥ 2 and Ox_; € [0,27). We say that Q Cc RV, N > 2,

is a bounded domain of N — [ revolutions, if ) is a bounded domain and there exists a set
O C [0,400) x [0, 7]~ with I € {1,..., N — 1} such that

(2.1) Q= {1’ e RY ’ (r,01,...,6,-1) € O, (01,...,0N_2) € [O,W]N_l_l, On_1 € [0,27‘1’)}.

Note that the latter two constraints describe a unit sphere SN~ Moreover, if | = 1, then € is
radially symmetric.
For any k € N consider 2k wedges of €2 defined as (cf. Figure 1)

—)w

(2.2) Wi(k) = {:v €0 (i <On_1 < i_”}, ie{l,...,2k}.

k k

FIGURE 1. Partitioning of an ellipsoid 2 C R on eight wedges Wi (8), ..., Ws(8).
(The drawing is based on [23].)

Let v € Wol’p(Wl(k)) be a first eigenfunction of the p-Laplacian on W (k) and A\ (p; Wi (k))
be the associated first eigenvalue. Hereinafter, we assume that v is extended by zero outside of
its support. We define

(2.3) (s Q) == M1 (p; Wi ()).

Let R, (x) be the rotation of z € RY on the angle of measure w € R with respect to fx_1, that
is,

R,(z) = (x1,...,xN—2,7rsinf ...sinfy_scos(On_1 +w),rsinb ...sinOy_osin(y_1 +w)).
Denote by v, € VVO1 P(R,(Wi(k))) the corresponding rotation of v, that is,
(2.4) vy(x) =v(R_y(z)) for all z € R,OW1(k)).
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Consider the function ¥y € VVO1 P(Q) given by

2k
(2.5) U =v—vz + Vzp — o~ Vekour = ;(—1)’_10@_;”,.

=
Lemma 2.8. VU, is an eigenfunction of the p-Laplacian on € associated to the eigenvalue
7 (p; Q).
Proof. Note that Rix (Wj(k)) = Wi, (k), wherei € N, j,m € {1,...,2k} and m = j+i (mod 2k).
Moreover, if we denote by om,(W;j(k)) the reflection of W;(k) with respect to the hyperplane
H; = {z € RN |y_1 = T}, then it is not hard to see that og,(W;(k)) = Ws(k), where i € N,
j,s € {1,...,2k} and s = 2i — 5+ 1 (mod 2k). At the same time, since the p-Laplacian is
invariant under orthogonal changes of variables, we obtain that the rotation vz of v is a first
eigenfunction of the p-Laplacian on Wh(k). Analogously, if w is a reflection of v with respect
to the hyperplane Hp, then w is also a first eigenfunction on Ws(k). Since the first eigenvalue
is simple, we conclude that w = vz, Now, the proof of [2, Theorem 1.2] based on reflection
arguments can be applied with no changes to conclude the desired fact. O

Remark 2.9. Let (Uy),, be obtained by rotating ¥y on the angle of measure w € R with respect
to On_1, see (2.4). Since the p-Laplacian and €2 are invariant under such rotation, we see that
(Uk)w is also an eigenfunction associated to 7 (p; ).

3. PROOFS OF THE MAIN RESULTS

The proofs of Theorem 1.1 and Propositions 1.2 and 1.3 will be achieved in several steps. First,
in Proposition 3.1, we prove the inequalities (1.15) of Proposition 1.3. The inequalities (1.11) of
Theorem 1.1, being a partial case of (1.15), will be hence covered. Second, in Proposition 3.5, we
prove the inequalities (1.10) of Theorem 1.1. The method of proof carries over to the inequalities
(1.14) of Proposition 1.3, see Proposition 3.7. Finally, we give the proof of Proposition 1.2.

Proposition 3.1. Let Q C RY be a bounded domain of N — 1 revolutions defined by (2.1), where
N>2andle{l,...,N—1}. For anyp > 1 and k € N it holds

(3.1) Aok+1(p; ©2) < 7i(p; ).

Proof. Denote by v a first eigenfunction of the p-Laplacian on the wedge W, (k) defined by (2.2)
and assume that v is normalized such that [[v||z»w,(x)) = 1. Then v generates the eigenfunc-
tion Uy of the p-Laplacian on €, as defined by (2.5), associated to the eigenvalue 71 (p; 2), see
Lemma 2.8. Note that W has exactly 2k nodal domains. Consider the set

2k 2k
A= {Z (e % UW_"_(F]:)W | Z |Ozi’p =1,~ve R},
=1 =1

where v,, is obtained by rotating v on the angle of measure ¢ € R with respect to Oy_1, see (2.4).
It is not hard to see that A is symmetric, compact and A C S,. Consider the continuous map
f:8%=1x0,1] — A defined by

2k 2k
f (<|a1|§_1a1, ce |a2k|§_1a2k) ,t) = Zai Utz G where Z |a; [P = 1.
i=1 i=1

Then, f clearly satisfies figat-1,70) 0t = t 0 flgav-1,40) and, in view of (2.5), figzs-1,01y =
fis2s-1x 0y © T, where v and 7 are defined in Section 2.1. Therefore, it follows from assertion (b)
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of Lemma 2.4 and Lemma 2.6 that there is no odd map from A to S™ for any n < 2k — 1, which
implies that v(A) > 2k + 1. Thus, A € T'y;11(p).
Noting now that for any u € A it holds

2k
p — |P .
/Q\w dx_z;m /Q]vuw(z_kl)w
1=

we conclude the desired inequality:

Aok41(p; Q) < maX/ |VulP de = 11,(p; ).
ueA Jqo

2k
P
dr = |ail’ 7(p; Q) = i (p; ),
i=1

O

Remark 3.2. In the linear case p = 2, the inequality (3.1) can be easily obtained using the
Courant-Fisher variational principle (1.3). Indeed, since the Laplacian is rotation invariant
and € is a domain of revolution, for any ¢ > 1 we can find at least two linearly independent
symmetric eigenfunctions associated to 7;(2;€2), one is a rotation of another. Therefore, taking
a first eigenfunction and also two linearly independent eigenfunctions for every i € {1,...,k},
we produce a (2k + 1)-dimensional subspace of VVO1 () which leads to the desired inequality
via (1.3). Let us also remark that, in view of Pleijel’s Theorem, the inequality (3.1) is strict for
sufficiently large k € N, see, e.g., [15].

Remark 3.3. Let, for simplicity, N = 2, Q = B? and k = 1. Assume that there exists a second
eigenfunction ¢ of the p-Laplacian on € which is antisymmetric with respect to the rotation of
the angle 7, that is, ¢ = —¢. (This happens, for instance, when the nodal set is a diameter or a
“yin-yang’-type curve.) Then the proof of Proposition 3.1 works with no changes considering ¢
or ¢~ instead of v, which yields Ao (p; B%) = A3(p; B?). Therefore, the knowledge about structure
of the nodal set of higher eigenfunctions plays an important role for our arguments.

It is of independent interest to prove the inequalities (1.10) of Theorem 1.1 up to An(p;2),
since the proof uses only rotations of ¥; to increase the Krasnosel’skil genus.

Proposition 3.4. Let Q C RN be a bounded radially symmetric domain, N > 2. Then for any
p > 1 it holds

AN(p; Q) < 71(p; Q).
Proof. For any x € S™V~! we define
Q, :={z€Q|(z,2) > 0}.

Denote as v, the first eigenfunction on 2, such that v, > 0 in Q, and HUQ;HL;U(QI) = 1, and

extend it by zero outside of €,. Arguing as in Lemma 2.8, it can be deduced that ””;fiz is an

eigenfunction associated to 71 (p; Q) for any 2 € S¥=1. Consider the set
Vy — U_
Aem {Bm b )
V2 |

It is not hard to see that A is compact. Moreover, A is evidently symmetric and A C §,.

Vg —V_g

Note that z is uniquely determined by the choice of since x corresponds to the unique

unit normal vector of the nodal set which points to the nodal domain €2,. Therefore, taking
h: A — SN=1 defined by h (v“’%‘z) = 1z, we deduce that h is an odd homeomorphism, and
hence y(A) < N. If we suppose that v(A) < N, then we get a contradiction as in the proof
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of Lemma 2.7. Therefore, v(A) = N and A € I'y(p), and we conclude as in the proof of
Proposition 3.1. O

To prove the whole chain of inequalities (1.10) of Theorem 1.1, we combine rotations of ¥y
with the scaling of its nodal components.

Proposition 3.5. Let Q C RY be a bounded radially symmetric domain, N > 2. Then for any
p > 1 4t holds

AN+1(p; Q) < 71 (p; Q).
Proof. Using the notation v, from Proposition 3.4, we define the set
A= {oq Vg + Qo Vg ‘ laq|P + Jas|P =1, x € SN_I}.

As before, A C S, and A is symmetric and compact. Let v: [0,1] — {z € R? : |z1|P + |2|P = 1}
be a path from (%, —%) to (%, %) and denote by v1(t) and 75(t) the first and the second
component of (t), respectively. The continuous map f : S¥=1 x [0,1] — A defined by f(z,t) =
Y1(t) vz +72(t)v—y clearly satisfies flgnv-1, (910t =10 flgnv-1,qoy and figv-1, 130t = flgv-1q13,
where ¢ is defined in Section 2.1. Then, it follows from assertion (a) of Lemma 2.4 that there is
no odd map from A to S"~! for any n < N, and hence y(A) > N + 1. Thus A € Ty, 1(p), and
we conclude as in the proof of Proposition 3.1. (]

Corollary 3.6. If X2(p; Q) = 11(p; ), then the second eigenvalue has multiplicity at least N .

The inequalities (1.14) of Proposition 1.3 can be proved in much the same way as Proposi-
tion 3.5. Let us briefly sketch the proof.

Proposition 3.7. Let Q ¢ RN be a bounded domain of N — 1 revolutions, where N > 2 and
le{l,...,N —1}. Then for any p > 1 it holds

AN—142(p; €2) < T1(p; ©2)
Proof. Take any = € SV~ and define a hemisphere
SN=l.— [y e SN | (z,y) > 0}.
We parametrize S ! in spherical coordinates by angles (6;,...,0x_1) and define
Qi={z€Q|(O,....0n-1) € SN}

Denote as v, the first eigenfunction on €2, such that v, > 0 in £, and Hva;HLp(QI) = 1. In view
of the symmetries of © (see (2.1)) it is not hard to obtain that v, is associated to the eigenvalue
A = 11(p; Q) for any = € SV=!. Consider the set

A={ovp +aovg ||’ + |l =1, 2 € S¥1}

The rest of the proof goes along the same lines as in Proposition 3.5. O

Proof of Proposition 1.2. 1) In view of (1.10) with N = 2, to justify (1.12) it is sufficient to
show that
Ae(p) < Ao(p) for any p > 1.
This fact was fully proved in [5], although the case p € (1,1.01) is not explicitly stated in the
text. For the sake of completeness, we collect the arguments from [5] to explain the proof.
Denote by B* a half-disc of a unit disc B2. By definition we have A (p) = A1 (p; BT). Trans-
lation invariance of the p-Laplacian and the strict domain monotonicity of its first eigenvalue
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(cf. [5, Proposition 4]) imply that Ag(p) < A1 (p; B%/Q), where B%/Q is a disc of radius 1/2. On

the other hand, it is known that Ag(p) = M\ (p; B§1 (p) /o (p)), where Bgl (p) /v is a disc of radius

p)
v1(p)/va(p), and v1(p), v2(p) are the first two positive roots of a (unique) solution of the Cauchy

problem

52 { ~ (Y =l i (0, oc),

u(0) =1 /(0) =0,
see [11, Lemmas 5.2 and 5.3]. Therefore, if the inequality
(3.3) 211(p) < 12(p)

holds for all p > 1, then the strict domain monotonicity yields the desired conclusion:

Aa(p) < A1(p; B%/g) <A (p; le(p)/w(p)) = Ao (p)-

The inequality (3.3) is, in fact, the main objective of [5]. In the interval p € [1.01,226], (3.3)
was proved in |5, Proposition 7| via a self-validated numerical integration of (3.2). For p > 226,
(3.3) was proved in [5, Proposition 13| by obtaining analytical bounds for vi(p) and v2(p). In
the rest case p € (1,1.01) it was shown that Ag(p) < 3.5, see the proof of |5, Proposition 6].
This fact was enough to apply the proof of [21, Theorem 6.1] and get nonradiality of the second
eigenfunction. However, as a byproduct of the proof of [21, Theorem 6.1|, we know also that
Xa(p) > 3.5 for p € (1,1.1), which yields As(p) < Ag(p) for p € (1,1.01). Thus, summarizing
the above facts, we conclude that Ag(p) < Ag(p) for all p > 1.

2) The first two inequalities in (1.13) follow from (1.11) by taking k& = 2. The last inequality
in (1.13) was proved in [6, Theorem 1.2]. O

4. FINAL REMARKS AND OPEN QUESTIONS

The results of this paper can be applied also to the singular case p = 1, which must be treated
separately. In [20] the authors defined a sequence of variational eigenvalues and proved that they
can be approximated by the corresponding eigenvalues of the p-Laplacian as p — 1. The second
variational eigenvalue of the 1-Laplacian can be characterized geometrically, as a consequence
of [20, Theorem 2.4] and [21, Theorem 5.5] (see also [7]). In particular, if Q = B? is a disc, it
holds A2(1; B?) = Ao (1; B?), and therefore

Xa2(1; B?) = A3(1; B?) = Ao (1; B?)

by reasoning as in Proposition 3.1. That is, the second eigenvalue of the 1-Laplacian on a disc
has multiplicity (in the sense of (1.6)) at least 2.

The limit case p = oo can be also considered in terms of a geometric characterization of the
corresponding first and second eigenvalues. It is known from [18]| and [17] that

1
Ry’
where R is the radius of a maximal ball inscribed in 2, and Ry is the maximal radius of two

equiradial disjoint balls inscribed in Q. Let BY be a ball of radius R. Then we deduce from
(1.10) that

B =

1 1
lim A\ (p;Q)r = i and pli_)rgo A2 (p; Q); =

p—o0 1

Ny N+ Ny L 1
lim \o(p; BV )p =+ = 1i_>rn Ant1(p; BY)r = lim 71(p; BY)r = lim A (p; Wi (2))r =
p—ro0

2
P—+00 P—+00 P—+00 R

We are left with several open problems.
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(1) By analogy with the linear case, it would be interesting to show the optimality of (1.10),
namely whether the inequality

T1(P; Q) < An2(p; ),

where € is a radially symmetric bounded domain, holds true.

(2) To prove (1.11) we used the scaling of nodal components of symmetric eigenfunctions
corresponding to 7x(p; Q) together with their rotation with respect to the angle Oy _1.
However, it is not hard to see that for N > 3, symmetric eigenfunctions can be also
rotated with respect to all the angles 6;, where ¢ € {1,..., N — 1} if Q is radial, and
i€42,...,N —1}if Q is a general domain of revolution. This observation leads to the
conjecture that for every £ > 1 there exists j > 2 such that

Aok(p; Q) < -+ < Ao (05 Q) < (3 Q).

The proof might be achieved by showing the nonexistence of maps S™ x S"2 — S§™,
for suitable n1, ny, m € N, which are odd in the first variable (corresponding to the
normalization constraint) and satisfy some additional conditions given by symmetries of
eigenfunctions.

(3) In the spirit of the previous question, it is natural to study a generalization of (1.11) where
the upper bound is given by eigenvalues whose associated eigenfunctions are invariant
under the action of other symmetry groups.

(4) Is it possible to obtain multiplicity results for domains 2 which satisfy different symmetry
properties, for instance if €2 is a square? In this case, on the one hand, numerical
evidence [25] supports the conjecture that Aa(p; Q) < Az(p; Q) if p # 2, unlike the linear
case where equality trivially holds. On the other hand, if the nodal set of a second
eigenfunction ¢, is a middle line or a diagonal of the square, as indicated again in [25],
then there is another second eigenfunction linearly independent with ¢, obtained by
rotating o2, by an angle of 7.
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