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EFFICIENCY OF THE V-FOLD MODEL SELECTION
FOR LOCALIZED BASES

FABIEN NAVARRO AND ADRIEN SAUMARD

CREST-ENSAI, BRUZ, FRANCE

Abstract

Many interesting functional bases, such as piecewise polynomials or wavelets, are
examples of localized bases. We investigate the optimality of V-fold cross-validation
and a variant called V-fold penalization in the context of the selection of linear
models generated by localized bases in a heteroscedastic framework. It appears that
while V-fold cross-validation is not asymptotically optimal when V is fixed, the
V-fold penalization procedure is optimal. Simulation studies are also presented.

AMS 2000 subject classifications— 62G08, 62G09
Key words and phrases— V-fold cross-validation, V-fold penalization, model selection,
nonparametric regression, heteroscedastic noise, random design, wavelets

1 Introduction

V-fold cross-validation type procedures are extremely used in Statistics and machine
learning, with however a rather small set of theoretical results on it ([3]). This paper
aims at investigating from the theoretical point of view and on simulations, the efficiency
of two V-fold strategies for model selection in a heteroscedastic regression setting, with
random design. From the one hand, we investigate the behaviour of the classical V-fold
cross-validation to select, among other examples, linear models of wavelets. As pointed
out in the case of histogram selection in [2], this procedure is not asymptotically optimal
when V is fixed, as it is the case in practice where V' is usually taken to be equal to 5 or
10. On the other hand, we study the V-fold penalization proposed by Arlot [2] and show
its efficiency in our general context.

More precisely, the present paper is devoted to an extension of some results obtained
in [15] related to efficiency of cross-validation type procedures. Indeed, as remarked in [15]
(see Remark 5.1 therein) our results obtained for the selection of linear models endowed
with a strongly localized basis (see Definition (Aslb), Section 2.1 of [15]) can be extended
to more general and more classical localized bases, at the price of considering only models
with sufficiently small dimensions. Rigourous proofs are given here and further simulation
studies are explored.

The paper is organized as follows. In Section 2, we describe our model selection
setting. Then V-fold cross-validation is considered in Section 3, while the efficiency of
V-fold penalization is tackled in Section 4. A simulation study is reported in Section 5.
The proofs are exposed in Section 6.
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2 Model selection setting

Assume that we observe n independent pairs of random variables & = (X;,Y;) € xR
with common distribution P. For convenience, we also denote by £ = (X,Y) a random
pair, independent of the sample (&, ..., &,), following the same distribution P. The set X
is called the feature space and we assume X C R? d > 1. We denote P¥ the marginal
distribution of the design X. We assume that the following regression relation is valid,

Y=s,(X)+0(X)e,

with s, € Lo (PX ) the regression function that we aim at estimating. Conditionally to
X, the residual € is normalized, i.e. it has mean zero and variance one. The function
o : X —R, is a heteroscedastic noise level, assumed to be unknown.

To produce an estimator of s,, we are given a finite collection of models M,,, with
cardinality depending on the amount n of data. Each model m € M,, is taken to be a
finite-dimensional vector space, of linear dimension D,,. We will further detail in a few
lines the analytical structure of the models.

We set [|s], = ([ s2dPX)1/2 the quadratic norm in L, (P¥) and s,, the orthogonal -
with respect to the quadratic norm - projection of s, onto m. For a function f € L (P),
we write P(f) = Pf = E[f (§)]. We call the least squares contrast a functional v :
Ly (PX) — Ly (P), defined by

v() i (wy) = (y—s(2)*, sely(PY) .

Using these notations, the regression function s, is the unique minimizer of the risk,

s.=arg min P (v (s)) -

The projections s, are also characterized by

Sm = argmin P (v (s)) .

sem

To each model m € M,,, we associate a least squares estimator §,,, defined by
Sm € argmin {P, (7 (s))}
= arg min 1 i (V; — s (X;))°
gmin 4 — > i ;

where P, =n~'Y"" | d is the empirical measure associated to the sample.

The accuracy of estimation is tackled through the excess loss of the estimators,
C(80,3m) = P (7 (3m) =7 (5)) = [|3m = s:l5 -
The following "bias-variance" decomposition holds,
0 (S, 8m) = L (84, 8m) + € (Sm, Sm)
where

(7 (sm) =7 (5)) = llsm — s.l3
(v (3m) =7 (5m)) > 0.
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The deterministic quantity £ (s., s,,,) is called the bias of the model m, while the random
variable £ (s,,, §,,) is called the excess loss of the least squares estimator §,, on the model
m. By the Pythagorean Theorem, we have

C(8my8m) = [|8m — sm”g .

From the collection of models M,,, we aim at proposing an estimator that is as close
as possible in terms of excess loss to an oracle model m,, defined by

* £ (54, 8m .
m Gargmlg/l&n{ (S4,8m)}

We choose to select an estimator from the collection {3, ; m € M, }. Hence, the selected
model is denoted m. The goal is to ensure that the selected estimator achieves an oracle
inequality of the form

5-) <
C(84,87) < C x mler}\f/lnﬁ(s*,sm) :

for a constant C' > 1 as close as possible to one and on an event of probability close to
one.

3 V-fold cross-validation

For convenience, let us denote in the following s, (P,) the least squares estimator built
from the empirical distribution P, = 1/n> " d(x,yv,). To perform the V-fold cross-
validation (VFCV) procedure, we consider a partition (B;), ;. of the index set {1,...,n}
and set, o

, 1
PU) = ) d p) = — - 0(x. v -
" Card Z (Xiyy) - an n n — Card (B )z%; (Ke¥i)

We assume that the partition (B;), ;. is regular: for all j € {1,...,V}, Card(B;) =
n/V. Tt is worth noting that in practice, we can always define our partition such

sup; |Card (B;) —n/V| < 1. Let us write s 357 =3, (PT(L_j)) the estimators built from
the data in the block B;. Now, the selected model mypcy optimizes the V-fold criterion,

T/T\LVFCV € arg nréljlvrll {critVFCV (m)} , (1)

where

v
Cl"ltVFCV Z . (2)

Let us now detail the set of assumptions under which we will investigate the accuracy
of VFCV.
Set of assumptions: (SA)

(P1) Polynomial complexity of M,,: there exist some constants cyq, apq > 0 such that
Card (M,,) < epyn™M
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(Alb) There exists a constant 4 such that for each m € M,, one can find an orthonormal

basis (gok)ijl satisfying, for all (ﬁk),?;"l € RPm,

Dy,
Z Brpr
k=1

where |3| = max {|5k|; k € {1,..., D, } }.

<7MmV Dm |8l (3)

(e 9]

(P2) Upper bound on dimensions of models in M,,: there exists a positive constant A, ¢
2

such that for every m € M,,, D,,, < Ay n'/3 (Inn) ™"

(Ab) A positive constant A exists, that bounds the data and the projections s,, of the
target s, over the models m of the collection M,,: |Y;| < A < oo, |[sm]l,, <A< o0
for all m € M,,.

(An) Uniform lower-bound on the noise level: o (X;) > owyin > 0 a.s.
(Ap.,) The bias decreases as a power of D,,: there exist 5, > 0 and C; > 0 such that

(84, 8m) < C D P+ .

Assumption (Alb) refers to the classical concept of localized basis (Birgé and Massart
[5]). It is proved in [4], Section 3.2.1, that linear models of piecewise polynomials with
bounded degree on a regular partition of a bounded domain of R? are endowed with a
localized basis. It is also proved that compactly supported wavelet expansions are also
fulfilled with a localized basis on R?. However, the Fourier basis is not a localized basis.
For some sharp concentration results related to the excess loss of least squares estimators
built from the Fourier basis, we refer to [17].

The assumption (Alb) is more general than the assumption of strongly localized basis
used in [15], but the price to pay for such generality is that, according to (P2) we can
only consider models with dimensions D,, << n'/3.

Assumption (P1) states that the collection as a polynomial cardinality with respect
to the sample size, allowing in particular to consider a collection of models built from a
basis expansion.

Then Assumption (Ab) is related to boundedness of the data and enables in particular
to use Talagrand’s type concentration inequalities for the empirical process. Assumption
(An) is essentially a technical assumption that allows to obtain sharp lower bounds for
the excess losses of the estimators.

Theorem 3.1 Assume that (SA) holds. Let r € (2,+00) and V € {2,...,n — 1} satisfy-
ing 1 <V <r. Define the V-fold cross-validation procedure as the model selection proce-
dure given by (1). Then, for alln > ng ((SA),r), with probability at least 1 — Ligay,n"2,

3

N Lisayr\ . _ (Inn)
(S Smypey) < ( + JInn mler}\/ln {£ (5 » S )} + L(sa), n

In Theorem 3.1, we prove an oracle inequality with principal constant tending to one
when the sample size goes to infinity. This inequality bounds from above the excess loss
of the selected estimator by the excess loss of the oracle learned with a fraction 1 — V1
of the original data. Ideally, one would, however, expect from an optimal procedure to
recover the oracle built from the entire data. The next section is devoted to this task.
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4 V-fold penalization

Now we investigate the behaviour of a penalization procedure proposed by Arlot [2| and
called V-fold penalization,

mpenVF € arg nlél,/l\il {CritpenVF (m)} )
n

where
critpenve (M) = P, (7 (5m)) + penyg (m)
with
V1< , , ,
penyp (m) = —— > [By (3,7) = By (507)] (4)
j=1

The property underlying the V-fold penalization is that the V-fold penalty penyy is an
unbiased estimate of the ideal penalty pen,y, the latter allowing to identify the oracle mi,

m, € argmné%ln{P(V(Sm))}

= arg min {B, (7 (5n)) + peng (M)} ,

where
pen (m) = P (v (5m)) — Pu (v (5m)) -

The following theorem states the asymptotic optimality of the V-fold penalization
procedure for a fixed V.

Theorem 4.1 Assume that (SA) holds. Let r € (2,400) and V € {2,...,n — 1} sat-
isfying 1 <V < r. Define the V-fold cross-validation procedure as the model selection
procedure given by,

Mpenvr € arg nfél/{/rll {P, (v (8m)) +penyp(m)} .

Then, for all n > ng ((SA),r), with probability at least 1 — L(ga),n"?,

R Lisa)r R Inn)?
ﬁ(s*,smpenw) < (1 + ﬂ) inf {é (S*,Sm)} + L(SA),T‘< nn)

Vinn /) meMn

5 Simulation study

In order to assess the numerical performances of the model selection procedures we have
discussed, a short simulation study was conducted. Particularly, to illustrate the theory
developed above for the selection of linear estimators using the V-fold cross-validation
and V-fold penalization, linear wavelet models were considered.

Despite the fact that a linear wavelet estimator is not as flexible, or potentially as
powerful, as a nonlinear one, it still preserves the computational efficiency of wavelet
methods and can provide comparative results to thresholding estimator, particularly when
the unknown function is sufficiently smooth (see [1]).

The simulations were carried out using Matlab and the wavelet toolbox Wavelab850
[9]. The codes used to replicate the numerical results presented here will be available at
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Figure 1: (a)—(c): The three test functions used in the simulation study.

https://github.com/fabnavarro. For more details on the numerical simulations and
comparisons with other model selection procedures, we refer the reader to [17].

The simulated data were generated according to Y; = s.(X;)+0(X;)e;, i=1,...,n,
where n = 4096, X;’s are uniformly distributed on [0,1], &;’s are independent N(0,1)
variables and independent of X;’s. The heteroscedastic noise level o(z) = | cos(10z)|/10.
Daubechies’ compactly-supported wavelet with 8 vanishing moments were used. Three
standard regression functions with different degrees of smoothness (Angle, Corner and
Parabolas, see |13, 6]) were considered. They are plotted in Figure 1 and a visual idea of
the noise level is given in Figures 2(b).

The computation of wavelet-based estimators is straightforward and fast in the fixed
design case, thanks to Mallat’s pyramidal algorithm ([12]). In the case of random design,
the implementation requires some changes and several strategies have been developed in
the literature (see e.g. |7, 10]). In the regression with uniform design [8] have examined
convergence rates when the unknown function is in a Holder class. They showed that the
standard equispaced wavelet method with universal thresholding can be directly applied to
the nonequispaced data (without a loss in the rate of convergence). We have followed this
approach since it preserves the computational simplicity and efficiency of the equispaced
algorithm. In the context of wavelet regression in random design with heteroscedastic
dependent errors [11] have also adopted this approach. Thus, the wavelet coefficients of
the collection of models is computed by a simple application of Mallat’s algorithm using
the ordered Y;’s as input variables. The collection is then constructed by successively
adding whole resolution levels of wavelet coefficients. Thus, the considered dimensions
are {D,,,m € M,} = {27, =1,...,J — 1}, where J = log2(n) (the finest resolution
level). Finally, the selected model are obtained by minimizing (2) and (4) over the set
m € M,,. Note that these linear models operate in a global fashion since whole levels of
coefficients are suppressed as opposed to thresholding methods.

For choosing the threshold parameter in wavelet shrinkage Nason [14] adjusted the
usual 2FCV method—which cannot be applied directly to wavelet estimation. In order
to implement its strategy in a linear context, we test, for every model of the collection,
an interpolated wavelet estimator learned from the (ordered) even-indexed data against
the odd-indexed data and vice versa. More precisely, considering the data X; are ordered,
the selected model Mmopcy (resp. Mpenor) is obtained by minimizing (2) (resp. (4)) with
V=2 B ={2,4,...,n} and B, ={1,3,...,n— 1}.

For one Monte Carlo simulation with a sample size n = 4096, we display the estimation
results in Figure 2(b). Plots of the excess risk ¢(s,,Ss,,) against the dimension D,, are
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Figure 2: (a): Noisy observations. (b):Typical reconstructions from a single simulation
with n = 4096. Dashed line indicates the true function s,, solid line corresponds to the
estimates Sy, and dashed-dotted line to 5g_ ... (c): Graph of the excess risk £(s., 5,,)
(black) against the dimension D,, and (rescaled) critopcy(m) (gray) and critpenor(m)
(light-gray) (in a log-log scale). The gray circle represents the global minimizer mapcy
of critepcyv(m), the light-gray diamond corresponds to the global minimizer mopcy of
Critpenor(m) and the black star the oracle model m,.

plotted in Figure 2(c). The curve critapeyv(m) and critpenor(m) are also displayed in
Figure 2(c). It can be observed that critopcy(m) and critpenor(m) give very reliable
estimate for the risk ¢(s,,5,,), and in turn, also a high-quality estimate of the optimal
model. Indeed, in this case, both methods consistently select the oracle model m,.

6 Proofs

As a preliminary result, let us first prove the consistency in sup-norm of our least squares
estimators. This is in fact the main change compared to the strongly localized case treated
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n [15].

Theorem 6.1 Let « > 0. Assume that m is a linear vector space satisfying Assump-
tion (Alb) and use the notations given in the statement of (Alb). Assume also that
Assumption (Ab) holds. If there exists A, > 0 such that

nl/3

D, <A
- +(lnn)2

)

then there exists a positive constant La, ., o such that, for all n > ng (ra, @),

R D, Inn B
P <H3m - SmHOO > LA,TM,a mn ) <n “

Proof of Theorem 6.1. Let C > 0. Set
Fi={sem;|ls—snl, < C}

and
Flo={sem;|s—sml,,>C}=m\FZ .

Take an orthonormal basis (gpk)k’”l of (m,||-||,) satisfying (Alb). By Lemma 19 of [15],
we get that there exists Lgy)rm’a > (0 such that, by setting

Inn
le{ max |(Pn_P)(wm90k)|§LE4l,)rm,oc T} ?

we have for all n > ng (Ay), P(21) > 1 —n=*. Moreover, we set

Inn
QF{(M) max (P, — P) (¢r - )| < LG, min{|lexl . leill o} - } ,

k] 6{1 7777 Dm}2

where L), is defined in Lemma 18 of [15]. By Lemma 18 of [15], we have that for all
n>mng(Ay), P(Qy) >1—n"*and so, for all n > ny (A),

P(legg) Z 1—2n7%.
We thus have for all n > ng (44),
P(l[sn = smllos > C)

inf P, (v(s) —7(sm)) < inf P, (v(s) —7(sm))

s€EFy SEFE

=P ( sup P, (7 (sm) — 7 (8)) > sup P, (7 (Sm) _7<5))>

56.7-';00 SEFF

<P { sup P, (7 (sm) =7 (8)) > sup P, (v (sm) —7(3))} ﬂﬂlng) +2n~

S€EFT SG.FC/2

(5)
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Now, for any s € m such that

s—Sm=_ Buor B= (B € RV,

we have

P (v (sm) =7 (s))
= (Pn_P)(¢m'(3m_ )>_(P _P)((3_3m>2)_P(V(S)_V(Sm))

D
= 3 B (Pu— P) (W - 1) — Zﬁkﬁz Py = P) (g1 ) Zﬁk-
k=1

ke l=1
We set for any (k,1) € {1, ...,Dm}2,

R\, = (Py—P)(Wn-¢r) and RE) = (P.—P) (@) -
Moreover, we set a function h,,, defined as follows,
Dm Dm Dm
ho = B = (Bp)em »—>ZB R ZﬂkﬁlREs;g7l_Zﬁz :
k=1 k=1
We thus have for any s € m such that s — s,, = ZkD:ml Brr, B = (ﬁk)k € RPm,
Po (v (sm) =7 (s)) = ha (B) - (6)

In addition we set for any 3 = (Bk)kD’"l € RPm,

5|m,oo:TmVDm|B|oo

It is straightforward to see that |-| __is a norm on R”" proportional to the sup-norm.
We also set for a real D,, x D,, matrix B, its operator norm ||Al|,, associated to the norm
on the D,,-dimensional vectors. More explicitly, we set for any B € RPm*Pm,

B B
1Bl = sup POmee g 1B
,BERDW B#£0 |/6|moo ﬁERDm,ﬂ;éO |/B|oo

[*ln,0

We have, for any B = (B, l) b, € RPm*Pm the following classical formula

Notice that by inequality (3) of (Alb), it holds

Dm
fCC{sem;s—sm:Zﬁmpk & \ﬁ\mmZC} (7)
k=1
and

D,
85}23{36771; s—sm:Zﬂkgok & ]ﬁ|m700§6’/2} . (8)

k=1
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Hence, from (5), (6) (8) and (7) we deduce that if we find on Q; (s a value of C' such
that

sup hn (B) < sup hn (B)

BERDm., |B],,  >C BERPm., |8, ,<C/2

then we will get
P(||5m — smlloo > C) <2n7°.

Taking the partial derivatives of h, with respect to the coordinates of its arguments, it

then holds for any (k1) € {1,..., D,,}* and 8 = (8;)2" € RP»,

O (3 = RY) - 2 % BiRE., — 2B (9)
aﬁk n,k p 15 ki
We look now at the set of solutions [ of the following system,
oh,
— () =0,Vke{l,..,D,} . (10)
o

We define the D,, x D,, matrix R,(f) to be

RY = (RY,)
n n,k,l kd=1,... Dy

77777

and by (9), the system given in (10) can be written
2 (Ip,, + R?) 5 = R )
where Rg) is a D,,-dimensional vector defined by

1
R = (RY)

k=1,...Dm

, in order to show that the matrix

Let us give an upper bound of the norm HR%Q) ‘

Ip,, + RY is nonsingular. On {2, we have,
R® — P,— P .
182, = max 9] 2 Pa=P)(en)
1e{1,....Dm}
Inn
< L?® max min ; m—
el 1, 2 il
3
S Y (11)
m n

Hence, from (11) and the fact that D,, < A+(1’;1—;;, we get that for all n > ng (r,,, @), it
holds on €25,

1
RA| <=
&), < 2
-1 u
and the matrix (Id + Rg)) is nonsingular, of inverse (Id + Rff)) = :fa (—RSLQ)) )
Hence, the system (S) admits a unique solution 3™, given by

B™ = % (I + R?) "' RW .
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Now, on §2; we have,
(1) (1) D,,Inn
B3], o < TV D max (P = P) (o 1)l STl | —
m,00 ke{l,...Dm} e n
and we deduce that for all ng (r,,, @), it holds on Q5 (24,

D, Inn
- .

80, < 5||(a+ B2 (12)

‘Rfml)|m7oo S TmL,(Al,)rm,a

Moreover, by the formula (6) we have

ho (B) = P (7 (8m)) — P (Y - iﬁk%pk)

and we thus see that h, is concave. Hence, for all ng (7,,, ), we get that on Qy, 3™ is
the unique maximum of h,, and on Qs ()4, by (12), concavity of h, and uniqueness of
B we get

h, (6(@) _ sup hn (B) > sup hi (B)
BERPm |8, <C/2 BERPm  |B],,, o >C

m,00 =

with C' = 27"mL(Al,)Tm,a\ / %, which concludes the proof. m
From Theorem 2 of [16] and Theorem 6.1 above, we deduce the following excess risks

bounds.

Theorem 6.2 Let Ay, A_,a > 0. Assume that m is a linear vector space of finite di-
mension D,, satisfying (Alb(m)) and use notations of (Alb(m)). Assume, moreover,
that the following assumption holds:

(Ab(m)) There exists a constant A > 0, such that ||s,,|| < A and [Y]| < A a.s.

If it holds
1/3

n
(nn)*’

then a positive constant Aq exists, only depending on o, A_ and on the constants A, omin
and r,, such that by setting

{(lnn>1/4 (Dmlnn)1/4}
ey, = Apmax — ) ;
D,, n

we have for alln > ng (A_, Ay, A, Ty Omin, @),

A_(lnn)*< D, < A,

P {(1—%)%” < (8m,Sm) < (1+¢n) %’”] >1—10n"",
2 Cm i~ 2 Cm -
P (1—571)7gzm(&n,sm)g(1+gn)7 >1—-5n"",

where Cp, = S0 Var (Y — s, (X)) - ¢r (X)),

Having at hand Theorem 6.2, the proofs of Theorems 3.1 and 4 follow from the exact
same lines as the proofs of Theorems 6 and 7 of [15].
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