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Efficiency of the V -fold model selection for
localized bases

Fabien Navarro and Adrien Saumard

Abstract Many interesting functional bases, such as piecewise polynomials or
wavelets, are examples of localized bases. We investigate the optimality of V -fold
cross-validation and a variant called V -fold penalization in the context of the selec-
tion of linear models generated by localized bases in a heteroscedastic framework.
It appears that while V -fold cross-validation is not asymptotically optimal when V
is fixed, the V -fold penalization procedure is optimal. Simulation studies are also
presented.

Key words: V -fold cross-validation, V -fold penalization, model selection, non-
parametric regression, heteroscedastic noise, random design, wavelets

1 Introduction

V -fold cross-validation type procedures are extremely used in Statistics and machine
learning, with however a rather small set of theoretical results on it ([3]). This paper
aims at investigating from the theoretical point of view and on simulations, the ef-
ficiency of two V -fold strategies for model selection in a heteroscedastic regression
setting, with random design. From the one hand, we investigate the behaviour of the
classical V -fold cross-validation to select, among other examples, linear models of
wavelets. As pointed out in the case of histogram selection in [2], this procedure
is not asymptotically optimal when V is fixed, as it is the case in practice where
V is usually taken to be equal to 5 or 10. On the other hand, we study the V -fold
penalization proposed by Arlot [2] and show its efficiency in our general context.
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More precisely, the present paper is devoted to an extension of some results ob-
tained in [16] related to efficiency of cross-validation type procedures. Indeed, as
remarked in [16] (see Remark 5.1 therein) our results obtained for the selection of
linear models endowed with a strongly localized basis (see Definition (Aslb), Sec-
tion 2.1 of [16]) can be extended to more general and more classical localized bases,
at the price of considering only models with sufficiently small dimensions. Rigorous
proofs are given here and further simulation studies are explored.

The paper is organized as follows. In Section 2, we describe our model selection
setting. Then V -fold cross-validation is considered in Section 3, while the efficiency
of V -fold penalization is tackled in Section 4. A simulation study is reported in
Section 5. The proofs are exposed in Section 6.

2 Model selection setting

Assume that we observe n independent pairs of random variables ξi = (Xi,Yi) ∈
X ×R with common distribution P. For convenience, we also denote by ξ = (X ,Y )
a random pair, independent of the sample (ξ1, ...,ξn), following the same distribu-
tion P. The set X is called the feature space and we assume X ⊂ Rd , d ≥ 1. We
denote PX the marginal distribution of the design X . We assume that the following
regression relation is valid,

Y = s∗ (X)+σ (X)ε ,

with s∗ ∈ L2
(
PX
)

the regression function that we aim at estimating. Conditionally to
X , the residual ε is normalized, i.e. it has mean zero and variance one. The function
σ : X →R+ is a heteroscedastic noise level, assumed to be unknown.

To produce an estimator of s∗, we are given a finite collection of models Mn,
with cardinality depending on the amount n of data. Each model m ∈Mn is taken to
be a finite-dimensional vector space, of linear dimension Dm. We will further detail
in a few lines the analytical structure of the models.

We set ‖s‖2 =
(∫

X s2dPX
)1/2 the quadratic norm in L2

(
PX
)

and sm the orthog-
onal - with respect to the quadratic norm - projection of s∗ onto m. For a function
f ∈ L1 (P), we write P( f ) = P f = E [ f (ξ )]. We call the least squares contrast a
functional γ : L2

(
PX
)
→ L1 (P), defined by

γ (s) : (x,y) 7→ (y− s(x))2 , s ∈ L2
(
PX) .

Using these notations, the regression function s∗ is the unique minimizer of the risk,

s∗ = arg min
s∈L2(PX)

P(γ (s)) .

The projections sm are also characterized by
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sm = argmin
s∈m

P(γ (s)) .

To each model m ∈Mn, we associate a least squares estimator ŝm, defined by

ŝm ∈ argmin
s∈m
{Pn (γ (s))}

= argmin
s∈m

{
1
n

n

∑
i=1

(Yi− s(Xi))
2

}
,

where Pn = n−1
∑

n
i=1 δξi is the empirical measure associated to the sample.

The accuracy of estimation is tackled through the excess loss of the estimators,

`(s∗, ŝm) := P(γ (ŝm)− γ (s∗)) = ‖ŝm− s∗‖2
2 .

The following ”bias-variance” decomposition holds,

`(s∗, ŝm) = `(s∗,sm)+ `(sm, ŝm) ,

where

`(s∗,sm) := P(γ (sm)− γ (s∗)) = ‖sm− s∗‖2
2

`(sm, ŝm) := P(γ (ŝm)− γ (sm))≥ 0 .

The deterministic quantity `(s∗,sm) is called the bias of the model m, while the
random variable `(sm, ŝm) is called the excess loss of the least squares estimator ŝm
on the model m. By the Pythagorean Theorem, we have

`(sm, ŝm) = ‖ŝm− sm‖2
2 .

From the collection of models Mn, we aim at proposing an estimator that is as
close as possible in terms of excess loss to an oracle model m∗, defined by

m∗ ∈ arg min
m∈Mn

{`(s∗, ŝm)} .

We choose to select an estimator from the collection {ŝm ; m ∈Mn}. Hence, the se-
lected model is denoted m̂. The goal is to ensure that the selected estimator achieves
an oracle inequality of the form

`(s∗, ŝm̂)≤C× inf
m∈Mn

`(s∗, ŝm) ,

for a constant C ≥ 1 as close as possible to one and on an event of probability close
to one.



4 Fabien Navarro and Adrien Saumard

3 V-fold cross-validation

For convenience, let us denote in the following ŝm (Pn) the least squares estimator
built from the empirical distribution Pn = 1/n∑

n
i=1 δ(Xi,Yi). To perform the V -fold

cross-validation (VFCV) procedure, we consider a partition (B j)1≤ j≤V of the index
set {1, ...,n} and set,

P( j)
n =

1
Card(B j)

∑
i∈B j

δ(Xi,Yi) and P(− j)
n =

1
n−Card(B j)

∑
i/∈B j

δ(Xi,Yi) .

We assume that the partition (B j)1≤ j≤V is regular: for all j ∈ {1, ...,V}, Card(B j) =

n/V . It is worth noting that we can always define our partition such sup j
∣∣Card(B j)−n/V

∣∣<
1 so that the assumption of regular partition is only a slight approximation of the
general case. Let us write ŝ(− j)

m = ŝm

(
P(− j)

n

)
the estimators built from the data in

the block B j. Now, the selected model m̂VFCV is taken equal to any model optimizing
the V -fold criterion,

m̂VFCV ∈ arg min
n∈Mn

{critVFCV (m)} , (1)

where

critVFCV (m) =
1
V

V

∑
j=1

P( j)
n γ

(
ŝ(− j)

m

)
. (2)

Let us now detail the set of assumptions under which we will investigate the
accuracy of VFCV.
Set of assumptions: (SA)

(P1) Polynomial complexity of Mn: there exist some constants cM , αM > 0 such
that Card(Mn)≤ cM nαM .

(Alb) There exists a constant rM such that for each m ∈Mn one can find an
orthonormal basis (ϕk)

Dm
k=1 satisfying, for all (βk)

Dm
k=1 ∈ RDm ,

∥∥∥∥∥
Dm

∑
k=1

βkϕk

∥∥∥∥∥
∞

≤ rM

√
Dm |β |∞ , (3)

where |β |
∞
= max{|βk| ;k ∈ {1, ...,Dm}}.

(P2) Upper bound on dimensions of models in Mn: there exists a positive constant
AM ,+ such that for every m ∈Mn, Dm ≤ AM ,+n1/3 (lnn)−2.

(Ab) A positive constant A exists, that bounds the data and the projections sm of
the target s∗ over the models m of the collection Mn: |Yi| ≤ A < ∞, ‖sm‖∞

≤ A <
∞ for all m ∈Mn.

(An) Uniform lower-bound on the noise level: σ (Xi)≥ σmin > 0 a.s.
(Apu) The bias decreases as a power of Dm: there exist β+ > 0 and C+ > 0 such

that
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`(s∗,sm)≤C+D−β+
m .

Assumption (Alb) refers to the classical concept of localized basis (Birgé and
Massart [6]). It is proved in [5], Section 3.2.1, that linear models of piecewise poly-
nomials with bounded degree on a regular partition of a bounded domain of Rd are
endowed with a localized basis. It is also proved that compactly supported wavelet
expansions are also fulfilled with a localized basis on Rd . However, the Fourier basis
is not a localized basis. For some sharp concentration results related to the excess
loss of least squares estimators built from the Fourier basis, we refer to [19].

The assumption (Alb) is more general than the assumption of strongly localized
basis used in [16], but the price to pay for such generality is that, according to (P2)
we can only consider models with dimensions Dm << n1/3.

Assumption (P1) states that the collection as a polynomial cardinality with re-
spect to the sample size, allowing in particular to consider a collection of models
built from a basis expansion.

Then Assumption (Ab) is related to boundedness of the data and enables in par-
ticular to use Talagrand’s type concentration inequalities for the empirical process.
Going beyond the bounded setting would in particular bring much more technicali-
ties that might darken our work. For an example of results in an unbounded setting,
see for instance [4], dealing with optimal selection of regressograms (histograms
being a very particular case of our general framework). Assumption (An) is essen-
tially a technical assumption that allows to obtain sharp lower bounds for the excess
losses of the estimators. Condition (Apu) is a very classical assumption in the model
selection literature, specifying a rate of decay for the biases of the models. This
assumption is classically satisfied for piecewise polynomials when the regression
function belongs to a Sobolew space and for wavelet models whenever the target
belongs to some Besov space (see for instance [5] for more details). The specific
value of β+ parameter will only affect the value of the constants in the derived ora-
cle inequalities.

Theorem 1. Assume that (SA) holds. Let r ∈ (2,+∞) and V ∈ {2, ...,n−1} satis-
fying 1 < V ≤ r. Define the V -fold cross-validation procedure as the model selec-
tion procedure given by (1). Then, for all n≥ n0 ((SA) ,r), with probability at least
1−L(SA),rn−2,

`
(
s∗, ŝm̂VFCV

)
≤
(

1+
L(SA),r√

lnn

)
inf

m∈Mn

{
`
(

s∗, ŝ
(−1)
m

)}
+L(SA),r

(lnn)3

n
.

In Theorem 1, we prove an oracle inequality with principal constant tending to
one when the sample size goes to infinity. This inequality bounds from above the
excess loss of the selected estimator by the excess loss of the oracle learned with a
fraction 1−V−1 of the original data. Ideally, one would, however, expect from an
optimal procedure to recover the oracle built from the entire data. The next section
is devoted to this task.

Parameter V (or r) is considered in Theorem 1 as a constant, essentially for ease
of presentation. Actually, the value of V may be allowed to depend on n but also on
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the dimensions Dm, meaning that we may take different values of V according to the
different models of the collection. More precisely, it can be seen from the arguments
in the proofs (especially from Theorem 8 in [18]) that for each model m ∈Mn, it
suffices to have V ≤max{Dm(lnn)−τ ;2} where τ is any number in (1,3) to ensure
an oracle inequality with leading constant tending to one when the amount of data
tends to infinity. In this case, r can not be considered as a parameter independent
from the sample size anymore, but it can be checked that for the latter constraints
on V , the constants n0 ((SA) ,r) and L(SA),r do not explode but are still uniformly
bounded with respect to n and thus can be still considered as independent from n.

4 V-fold penalization

Now we investigate the behaviour of a penalization procedure proposed by Arlot [2]
and called V -fold penalization,

m̂penVF ∈ arg min
n∈Mn

{
critpenVF (m)

}
,

where
critpenVF (m) = Pn (γ (ŝm))+penVF (m) ,

with

penVF (m) =
V −1

V

V

∑
j=1

[
Pnγ

(
ŝ(− j)

m

)
−P(− j)

n γ

(
ŝ(− j)

m

)]
. (4)

The property underlying the V -fold penalization is that the V -fold penalty penVF is
an unbiased estimate of the ideal penalty penid, the latter allowing to identify the
oracle m∗,

m∗ ∈ arg min
m∈Mn

{P(γ (ŝm))}

= arg min
m∈Mn

{Pn (γ (ŝm))+penid (m)} ,

where
penid (m) = P(γ (ŝm))−Pn (γ (ŝm)) .

The following theorem states the asymptotic optimality of the V -fold penaliza-
tion procedure for a fixed V .

Theorem 2. Assume that (SA) holds. Let r ∈ (2,+∞) and V ∈ {2, ...,n−1} satisfy-
ing 1 <V ≤ r. Define the V -fold cross-validation procedure as the model selection
procedure given by,

m̂penVF ∈ arg min
n∈Mn

{Pn (γ (ŝm))+penVF (m)} .

Then, for all n≥ n0 ((SA) ,r), with probability at least 1−L(SA),rn−2,



Efficiency of the V -fold model selection for localized bases 7

`
(

s∗, ŝm̂penVF

)
≤
(

1+
L(SA),r√

lnn

)
inf

m∈Mn
{`(s∗, ŝm)}+L(SA),r

(lnn)3

n
.

As for Theorem 1 above, parameter V (or r) is considered in Theorem 2 as a
constant but in fact, the value of V may be allowed to depend on n and even on
the dimensions Dm, this case corresponding to possibly different choices V ac-
cording to the models of the collection. As for Theorem 1, it is allowed to have
V ≤ max{Dm(lnn)−τ ;2} where τ is any number in (1,3) to ensure an oracle in-
equality with leading constant tending to one when the amount of data tends to
infinity.

5 Simulation study

In order to assess the numerical performances of the model selection procedures we
have discussed, a short simulation study was conducted. Particularly, to illustrate
the theory developed above for the selection of linear estimators using the V -fold
cross-validation and V -fold penalization, linear wavelet models were considered.

Despite the fact that a linear wavelet estimator is not as flexible, or potentially
as powerful, as a nonlinear one, it still preserves the computational efficiency of
wavelet methods and can provide comparative results to thresholding estimator, par-
ticularly when the unknown function is sufficiently smooth (see [1]).

The simulations were carried out using Matlab and the wavelet toolbox Wave-
lab850 [10]. The codes used to replicate the numerical results presented here will be
available at https://github.com/fabnavarro. For more details on the numerical simu-
lations and comparisons with other model selection procedures, we refer the reader
to [19].

The simulated data were generated according to Yi = s∗(Xi) + σ(Xi)εi, i =
1, . . . ,n, where n = 4096, Xi’s are uniformly distributed on [0,1], εi’s are indepen-
dent N (0,1) variables and independent of Xi’s. The heteroscedastic noise level
σ(x) = |cos(10x)|/10. Daubechies’ compactly-supported wavelet with 8 vanishing
moments were used. Three standard regression functions with different degrees of
smoothness (Angle, Corner and Parabolas, see [14, 7]) were considered. They are
plotted in Figure 1 and a visual idea of the noise level is given in Figures 2(b).

The computation of wavelet-based estimators is straightforward and fast in the
fixed design case, thanks to Mallat’s pyramidal algorithm ([13]). In the case of ran-
dom design, the implementation requires some changes and several strategies have
been developed in the literature (see e.g. [8, 11]). In the regression with uniform
design [9] have examined convergence rates when the unknown function is in a
Hölder class. They showed that the standard equispaced wavelet method with uni-
versal thresholding can be directly applied to the nonequispaced data (without a loss
in the rate of convergence). We have followed this approach since it preserves the
computational simplicity and efficiency of the equispaced algorithm. In the context
of wavelet regression in random design with heteroscedastic dependent errors [12]
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Fig. 1 (a)–(c): The three test functions used in the simulation study.

have also adopted this approach. Thus, the wavelet coefficients of the collection of
models is computed by a simple application of Mallat’s algorithm using the ordered
Yi’s as input variables. The collection is then constructed by successively adding
whole resolution levels of wavelet coefficients. Thus, the considered dimensions are
{Dm,m ∈Mn} = {2 j, j = 1, . . . ,J− 1}, where J = log2(n) (the finest resolution
level). Finally, the selected model are obtained by minimizing (2) and (4) over the
set m ∈Mn. Note that these linear models operate in a global fashion since whole
levels of coefficients are suppressed as opposed to thresholding methods.

For choosing the threshold parameter in wavelet shrinkage Nason [15] adjusted
the usual 2FCV method—which cannot be applied directly to wavelet estimation.
In order to implement its strategy in a linear context, we test, for every model of
the collection, an interpolated wavelet estimator learned from the (ordered) even-
indexed data against the odd-indexed data and vice versa. More precisely, consider-
ing the data Xi are ordered, the selected model m̂2FCV (resp. m̂pen2F) is obtained by
minimizing (2) (resp. (4)) with V = 2, B1 = {2,4, . . . ,n} and B2 = {1,3, . . . ,n−1}.

For one Monte Carlo simulation with a sample size n= 4096, we display the esti-
mation results in Figure 2(b). Plots of the excess risk `(s∗, ŝm) against the dimension
Dm are plotted in Figure 2(c). The curve crit2FCV(m) and critpen2F(m) are also dis-
played in Figure 2(c). It can be observed that crit2FCV(m) and critpen2F(m) give very
reliable estimate for the risk `(s∗, ŝm), and in turn, also a high-quality estimate of
the optimal model. Indeed, in this case, both methods consistently select the oracle
model m∗.

6 Proofs

As a preliminary result, let us first prove the consistency in sup-norm of our least
squares estimators. This is in fact the main change compared to the strongly local-
ized case treated in [16].

Theorem 3. Let α > 0. Assume that m is a linear vector space satisfying Assump-
tion (Alb) and use the notations given in the statement of (Alb). Assume also that
Assumption (Ab) holds. If there exists A+ > 0 such that
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Fig. 2 (a): Noisy observations. (b):Typical reconstructions from a single simulation with n= 4096.
Dashed line indicates the true function s∗, solid line corresponds to the estimates ŝm̂2FCV and dashed-
dotted line to ŝm̂pen2F . (c): Graph of the excess risk `(s∗, ŝm) (black) against the dimension Dm and
(rescaled) crit2FCV(m) (gray) and critpen2F(m) (light-gray) (in a log-log scale). The gray circle
represents the global minimizer m̂2FCV of crit2FCV(m), the light-gray diamond corresponds to the
global minimizer m̂2FCV of critpen2F(m) and the black star the oracle model m∗.

Dm ≤ A+
n1/3

(lnn)2 ,

then there exists a positive constant LA,rM ,α such that, for all n≥ n0 (rM ,α),

P

(
‖ŝm− sm‖∞

≥ LA,rM ,α

√
Dm lnn

n

)
≤ n−α .

Proof (Proof of Theorem 3). Let C > 0. Set

F ∞
C := {s ∈ m ;‖s− sm‖∞

≤C}
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and
F ∞

>C := {s ∈ m ;‖s− sm‖∞
>C}= m\F ∞

C .

Take an orthonormal basis (ϕk)
Dm
k=1 of (m,‖·‖2) satisfying (Alb). By Lemma 19 of

[16], we get that there exists L(1)
A,rm,α

> 0 such that, by setting

Ω1 =

{
max

k∈{1,...,Dm}
|(Pn−P)(ψm ·ϕk)| ≤ L(1)

A,rm,α

√
lnn
n

}
,

we have for all n≥ n0 (A+), P(Ω1)≥ 1−n−α . Moreover, we set

Ω2 =

{
max

(k,l)∈{1,...,Dm}2
|(Pn−P)(ϕk ·ϕl)| ≤ L(2)

α,rm min{‖ϕk‖∞
;‖ϕl‖∞

}
√

lnn
n

}
,

where L(2)
α,rm is defined in Lemma 18 of [16]. By Lemma 18 of [16], we have that for

all n≥ n0 (A+), P(Ω2)≥ 1−n−α and so, for all n≥ n0 (A+),

P
(

Ω1
⋂

Ω2

)
≥ 1−2n−α .

We thus have for all n≥ n0 (A+),

P(‖sn− sm‖∞
>C)

≤P
(

inf
s∈F ∞

>C

Pn (γ (s)− γ (sm))≤ inf
s∈F ∞

C

Pn (γ (s)− γ (sm))

)

=P

(
sup

s∈F ∞
>C

Pn (γ (sm)− γ (s))≥ sup
s∈F ∞

C

Pn (γ (sm)− γ (s))

)

≤P





 sup

s∈F ∞
>C

Pn (γ (sm)− γ (s))≥ sup
s∈F ∞

C/2

Pn (γ (sm)− γ (s))




⋂

Ω1
⋂

Ω2


+2n−α .

(5)

Now, for any s ∈ m such that

s− sm =
Dm

∑
k=1

βkϕk, β = (βk)
Dm
k=1 ∈ RDm ,

we have

Pn (γ (sm)− γ (s))

= (Pn−P)(ψm · (sm− s))− (Pn−P)
(
(s− sm)

2
)
−P(γ (s)− γ (sm))

=
Dm

∑
k=1

βk (Pn−P)(ψm ·ϕk)−
Dm

∑
k,l=1

βkβl (Pn−P)(ϕk ·ϕl)−
Dm

∑
k=1

β
2
k .
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We set for any (k, l) ∈ {1, ...,Dm}2,

R(1)
n,k = (Pn−P)(ψm ·ϕk) and R(2)

n,k,l = (Pn−P)(ϕk ·ϕl) .

Moreover, we set a function hn, defined as follows,

hn : β = (βk)
Dm
k=1 7−→

Dm

∑
k=1

βkR(1)
n,k−

Dm

∑
k,l=1

βkβlR
(2)
n,k,l−

Dm

∑
k=1

β
2
k .

We thus have for any s ∈ m such that s− sm = ∑
Dm
k=1 βkϕk, β = (βk)

Dm
k=1 ∈ RDm ,

Pn (γ (sm)− γ (s)) = hn (β ) . (6)

In addition we set for any β = (βk)
Dm
k=1 ∈ RDm ,

|β |m,∞ = rm
√

Dm |β |∞ .

It is straightforward to see that |·|m,∞ is a norm on RDm , proportional to the sup-
norm. We also set for a real Dm×Dm matrix B, its operator norm ‖A‖m associated
to the norm |·|m,∞ on the Dm-dimensional vectors. More explicitly, we set for any
B ∈ RDm×Dm ,

‖B‖m := sup
β∈RDm , β 6=0

|Bβ |m,∞

|β |m,∞

= sup
β∈RDm , β 6=0

|Bβ |
∞

|β |
∞

.

We have, for any B =
(
Bk,l
)

k,l=1,...,Dm
∈ RDm×Dm , the following classical formula

‖B‖m = max
k∈{1,...,Dm}

{{
∑

l∈{1,...,Dm}

∣∣Bk,l
∣∣
}}

.

Notice that by inequality (3) of (Alb), it holds

F ∞
>C ⊂

{
s ∈ m ; s− sm =

Dm

∑
k=1

βkϕk & |β |m,∞ ≥C

}
(7)

and

F ∞

C/2 ⊃

{
s ∈ m ; s− sm =

Dm

∑
k=1

βkϕk & |β |m,∞ ≤C/2

}
. (8)

Hence, from (5), (6) (8) and (7) we deduce that if we find on Ω1
⋂

Ω2 a value of C
such that

sup
β∈RDm , |β |m,∞≥C

hn (β )< sup
β∈RDm , |β |m,∞≤C/2

hn (β ) ,

then we will get
P(‖ŝm− sm‖∞

>C)≤ 2n−α .
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Taking the partial derivatives of hn with respect to the coordinates of its arguments,
it then holds for any (k, l) ∈ {1, ...,Dm}2 and β = (βi)

Dm
i=1 ∈ RDm ,

∂hn

∂βk
(β ) = R(1)

n,k−2
Dm

∑
i=1

βiR
(2)
n,k,i−2βk (9)

We look now at the set of solutions β of the following system,

∂hn

∂βk
(β ) = 0 , ∀k ∈ {1, ...,Dm} . (10)

We define the Dm×Dm matrix R(2)
n to be

R(2)
n :=

(
R(2)

n,k,l

)
k,l=1,...,Dm

and by (9), the system given in (10) can be written

2
(

IDm +R(2)
n

)
β = R(1)

n , (S)

where R(1)
n is a Dm-dimensional vector defined by

R(1)
n =

(
R(1)

n,k

)
k=1,...,Dm

.

Let us give an upper bound of the norm
∥∥∥R(2)

n

∥∥∥
m

, in order to show that the matrix

IDm +R(2)
n is nonsingular. On Ω2 we have,

∥∥∥R(2)
n

∥∥∥
m
= max

k∈{1,...,Dm}

{{
∑

l∈{1,...,Dm}
|(Pn−P)(ϕk ·ϕl)|

}}

≤ L(2)
α,rm max

k∈{1,...,Dm}

{{
∑

l∈{1,...,Dm}
min{‖ϕk‖∞

;‖ϕl‖∞
}
√

lnn
n

}}

≤ rmL(2)
α,rm

√
D3

m lnn
n

(11)

Hence, from (11) and the fact that Dm ≤ A+
n1/3

(lnn)2 , we get that for all n≥ n0 (rm,α),

it holds on Ω2, ∥∥∥R(2)
n

∥∥∥
m
≤ 1

2

and the matrix
(

Id +R(2)
n

)
is nonsingular, of inverse

(
Id +R(2)

n

)−1
=∑

+∞

u=0

(
−R(2)

n

)u
.

Hence, the system (S) admits a unique solution β (n), given by
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β
(n) =

1
2

(
Id +R(2)

n

)−1
R(1)

n .

Now, on Ω1 we have,

∣∣∣R(1)
n

∣∣∣
m,∞
≤ rm
√

Dm max
k∈{1,...,Dm}

|(Pn−P)(ψm ·ϕk)| ≤ rmL(1)
A,rm,α

√
Dm lnn

n

and we deduce that for all n0 (rm,α), it holds on Ω2
⋂

Ω1,

∣∣∣β (n)
∣∣∣
m,∞
≤ 1

2

∥∥∥∥
(

Id +R(2)
n

)−1
∥∥∥∥

m

∣∣∣R(1)
n

∣∣∣
m,∞
≤ rmL(1)

A,rm,α

√
Dm lnn

n
. (12)

Moreover, by the formula (6) we have

hn (β ) = Pn (γ (sm))−Pn

(
Y −

Dm

∑
k=1

βkϕk

)2

and we thus see that hn is concave. Hence, for all n0 (rm,α), we get that on Ω2,
β (n) is the unique maximum of hn and on Ω2

⋂
Ω1, by (12), concavity of hn and

uniqueness of β (n), we get

hn

(
β
(n)
)
= sup

β∈RDm , |β |m,∞≤C/2
hn (β )> sup

β∈RDm , |β |m,∞≥C
hn (β ) ,

with C = 2rmL(1)
A,rm,α

√
Dm lnn

n , which concludes the proof.

From Theorem 2 of [17] and Theorem 3 above, we deduce the following excess
risks bounds.

Theorem 4. Let A+,A−,α > 0. Assume that m is a linear vector space of finite
dimension Dm satisfying (Alb(m)) and use notations of (Alb(m)). Assume, moreover,
that the following assumption holds:

(Ab(m)) There exists a constant A > 0, such that ‖sm‖∞
≤ A and |Y | ≤ A a.s.

If it holds

A− (lnn)2 ≤ Dm ≤ A+
n1/3

(lnn)2 ,

then a positive constant A0 exists, only depending on α,A− and on the constants
A,σmin and rm such that by setting

εn = A0 max

{(
lnn
Dm

)1/4

,

(
Dm lnn

n

)1/4
}

,

we have for all n≥ n0 (A−,A+,A,rm,σmin,α),
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P
[
(1− εn)

Cm

n
≤ `(sm, ŝm)≤ (1+ εn)

Cm

n

]
≥ 1−10n−α ,

P
[(

1− ε
2
n
) Cm

n
≤ `emp (ŝm,sm)≤

(
1+ ε

2
n
) Cm

n

]
≥ 1−5n−α ,

where Cm = ∑
Dm
k=1 Var((Y − sm (X)) ·ϕk (X)).

Having at hand Theorem 4, the proofs of Theorems 1 and 4 follow from the exact
same lines as the proofs of Theorems 6 and 7 of [16]. To give a more precise view
of the ideas involved, let us detail the essential arguments of the proof of Theorem
1.

We set

crit0VFCV (m) = critVFCV (m)− 1
V

V

∑
j=1

P( j)
n (γ (s∗)) .

The difference between crit0VFCV (m) and critVFCV (m) being a quantity independent
of m ∈Mn, the procedure defined by crit0VFCV gives the same result as the VFCV
procedure defined by critVFCV.

We get for all m ∈Mn,

crit0VFCV (m) =
1
V

V

∑
j=1

P( j)
n

(
γ

(
ŝ(− j)

m

)
− γ (s∗)

)

=
1
V

V

∑
j=1

[
P( j)

n

(
γ

(
ŝ(− j)

m

)
− γ (sm)

)

+
(

P( j)
n −P

)
(γ (sm)− γ (s∗))+P(γ (sm)− γ (s∗))

]

= `
(

s∗, ŝ
(−1)
m

)
+∆V (m)+ δ̄ (m) (13)

where

∆V (m) =
1
V

V

∑
j=1

P( j)
n

(
γ

(
ŝ(− j)

m

)
− γ (sm)

)
−P

(
γ

(
ŝ(−1)

m

)
− γ (sm)

)
,

and

δ̄ (m) =
1
V

V

∑
j=1

(
P( j)

n −P
)
(γ (sm)− γ (s∗))

Now, we have to show that ∆V (m) and δ̄ (m) are negligeable in front of `
(

s∗, ŝ
(−1)
m

)
.

For δ̄ (m), this is done by using Bernstein’s concentration inequality (see Lemma 7.5
of [16]). To control ∆V (m), we also make use of Bernstein’s concentration inequal-
ity, but by conditioning successively on the data used to learn the estimators ŝ(− j)

m ,
j = 1, ...,V (see Lemma 7.3 and Corollary 7.4 of [16]).
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