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Abstract
The Graph Motif problem was introduced in 2006 in the context of biological networks. It
consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a
vertex-colored graph. Graph Motif has been analyzed from the standpoint of parameterized
complexity. The main parameters which came into consideration were the size of the multiset
and the number of colors. Though, in the many applications of Graph Motif, the input
graph originates from real-life and has structure. Motivated by this prosaic observation, we
systematically study its complexity relatively to graph structural parameters. For a wide range
of parameters, we give new or improved FPT algorithms, or show that the problem remains
intractable. Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for
parameter max leaf number, which is, to the best of our knowledge, the first problem to behave
this way.
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1 Introduction

The Graph Motif problem has received a lot of attention during the last decade. Informally,
Graph Motif is defined as follows: given a graph with arbitrary colors on the nodes and a
multiset of colors called the motif, the goal is to decide if there exists a subset of vertices of
the graph such that (1) the subgraph induced by this subset is connected and (2) the colors
on the subset of vertices match the motif, i.e. each color appears the same number of times
as in the motif. Originally, this problem is motivated by applications in biological network
analysis [24]. However, it proves useful in social or technical networks [4] or in the context of
mass spectrometry [8].

Studying biological networks allows a better characterization of species, by determining
small recurring subnetworks, often called motifs. Such motifs can correspond to a set of
nodes realizing some function, which may have been evolutionary preserved. Thus, it is
crucial to determine these motifs to identify common elements between species and transfer
the biological knowledge. Graph Motif corresponds to topology-free queries and can be
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seen as a variant of a graph pattern matching problem with the sole topological requirement
of connectedness. Such queries were also studied extensively for sequences during the last
thirty years, and with the increase of knowledge about biological networks, it is relevant to
extend these queries to networks [30].

2 Preliminaries and previous work

For any two integers x < y, we set [x, y] := {x, x+1, . . . , y−1, y}, and for any positive integer
x, [x] := [1, x]. If G = (V,E) is a graph and S ⊆ V a subset of vertices, G[S] denotes the
subgraph of G induced by S. For a vertex v ∈ V , the set of neighbors of v in G is denoted by
NG(v), or simply N(v), and NG(S) := (

⋃
v∈S N(v)) \ S and will often be written just N(S).

We define N [v] := N(v) ∪ {v} and N [S] := N(S) ∪ S. We say that a vertex v dominates
a set of vertices S if S ⊆ N [v]. A set of vertices R dominates another set of vertices S if
S ⊆ N [R]. If G = (V,E) is a graph and V ′ ⊆ V , G − V ′ denotes the graph G[V \ V ′]. A
universal vertex v, in a graph G = (V,E), is such that NG[v] = V . A matching of a graph is
a mutually disjoint set of edges. In an explicitly bipartite graph G = (V1 ∪ V2, E), we call a
matching of size min(|V1|, |V2|) a perfect matching. A cluster graph (or simply, cluster) is
a disjoint union of cliques. A co-cluster graph (or, co-cluster) is the complement graph of
a cluster graph. If C is a class of graphs, the distance to C of a graph G is the minimum
number of vertices to remove from G to get a graph in C.

If f : A → B is a function and A′ ⊆ A, f|A′ denotes the restriction of f to A′, that is
f|A′ : A′ → B such that ∀x ∈ A′, f|A′(x) := f(x). Similarly, if E is a set of edges on vertices
of V and V ′ ⊆ V , E|V ′ is the subset of edges of E having both endpoints in V ′.

Graph Motif and multisets. Graph Motif is defined as follows:

Graph Motif

Input: A triple (G, c, M), where G = (V, E) is a graph, c : V → C gives some color of |C| to
the vertices, and M is a multiset of colors of C.

Output: A subset P ⊆ V such that (1) G[P ] is connected and (2) c(P ) = M .

We will refer to condition (1) as the connectivity constraint and to condition (2) as the
multiset constraint. For convenience, if S ⊆ V , c(S) will denote the multiset of colors of
vertices in S.

The multiplicity of element x in multiset M , denoted by mM (x) is the number of
occurences of x in M . The cardinality of a multiset M denoted by |M | is its number of
elements with their multiplicity: Σx∈MmM (x). If M and N are two multisets, M ∪N is the
multiset A such that ∀x, mA(x) = mM (x) +mN (x), and M \N is the multiset D such that
∀x ∈M , mD(x) = max(0,mM (x)−mN (x)) (and ∀x /∈M , mD(x) = 0). We writeM ⊆ N iff
M \N = ∅ and M ⊂ N iff M ⊆ N and M 6= N . For example, let M = {1, 2, 2, 4, 5, 5, 5} and
N = {1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 5}. Here, |M | = 7, |N | = 12,M \N = ∅, N \M = {1, 1, 3, 3, 5},
and M ⊆ N .

Parameterized Complexity and ETH. A parameterized problem (I, k) is said fixed-parameter
tractable (or in the class FPT) w.r.t. (with respect to) parameter k if it can be solved in
f(k) · |I|c time (in fpt-time), where f is any computable function and c is a constant (see
[28, 14] for more details about fixed-parameter tractability). The parameterized complexity
hierarchy is composed of the classes FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP. The class XP
contains problems solvable in time |I|f(k), where f is an unrestricted function.
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A powerful technique to design parameterized algorithms is kernelization. In short,
kernelization is a polynomial-time self-reduction algorithm that takes an instance (I, k) of a
parameterized problem P as input and computes an equivalent instance (I ′, k′) of P such
that |I ′| 6 h(k) for some computable function h and k′ 6 k. The instance (I ′, k′) is called a
kernel in this case. If the function h is polynomial, we say that (I ′, k′) is a polynomial kernel.

The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. [21]
asserting that there is no 2o(n)-time algorithm for 3-SAT on instances with n variables. The
so-called sparsification lemma, also proved in [21], shows that if ETH turns out to be true,
then there is no 2o(n+m)-time algorithm solving 3-SAT where m is the number of clauses.

Previous work. Many results about the complexity of Graph Motif are known. The
problem is NP-hard even with strong restrictions. For instance, it remains NP-hard for
bipartite graphs of maximum degree 4 and motifs containing two colors only [15], or for trees
of maximum degree 3 and when the motif is colorful (that is, no color occurs more than
once) [15], or for rooted trees of depth 2 [2]. However, the problem is solvable in polynomial
time when the graph is a caterpillar [2], or when both the number of colors in the motif and
the treewidth of the graph are bounded by a constant [15].

As Graph Motif is intractable even for very restricted classes of graphs, and considering
that, in practice, the motif is supposed to be small compared to the graph, the parameterized
complexity of Graph Motif relatively to the size of the motif has been tackled. It is
indeed in FPT when parameterized by the size of the motif. At least seven different papers
gave an FPT algorithm [15, 4, 20, 23, 5, 30, 29]. The best (randomized) algorithm runs in
time O∗(2k) where the O∗ notation suppresses polynomial factors [5, 30] and works well in
practice for small values of k, even with hundreds of millions of edges [6]. The current best
deterministic algorithm takes time O∗(5.22k) [29]. However, an algorithm running in time
O∗((2− ε)k) would break the 2n barrier in solving Set Cover instances with n elements [5].
Besides, it is unlikely that Graph Motif admits a polynomial kernel, even on a restricted
class of trees [2]. Ganian also proved that the problem is in FPT when the parameter is
the size of a minimum vertex cover of the graph [17]. Actually, his algorithm is given for a
smaller parameter called twin-cover. Ganian also show that Graph Motif can be solved in
O∗(2k) for graphs with neighborhood diversity k [18]. On the negative side, the problem is
W[1]-hard relatively to the number of colors, even for trees [15]. To deal with the huge rate of
noise in the biological data, many variants of the problem has been introduced. For example,
the approach of Dondi et al. requires a solution with a minimum number of connected
components [13], while the one of Betzler et al. asks for a 2-connected solution [4]. In other
variants stemming purely from bio-informatics, some colors can be added to, substituted or
subtracted from the solution [10, 13].

In light of the previous paragraphs, it is clear that the complexity of Graph Motif is
well known for different versions and constraints on the problem itself. However, only few
works take into account the structure of the input graph. We believe that this an interesting
direction since Graph Motif has applications in real-life problems, where the input is not
random. For example, some biological networks have been shown scale-free or with small
diameter [1]. We will therefore introduce a systematic study with respect to structural graph
parameters [22, 16]. We believe that this is also of theoretical interest, to understand how a
given parameter influences the complexity of the problem.

Organization. In Section 3, we improve the known FPT algorithms with parameter distance
to clique, vertex cover number, and edge clique cover number. We also give a parameterized
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NP-hard
with constant parameter values

FPT but no polynomial-size kernel
unless
NP ⊆ coNP/poly

W[1]-hard, in W[P]FPT
Distance

to clique • Vertex Cover • Cluster Editing ∗ Max leaf # ♦

Min Edge
Clique Cover •

Distance to
co-cluster ♦

Distance to
cluster ♦

Distance to
disjoint paths ♦

Feedback
edge set # ∗ Bandwidth ♦

Min Vertex
Clique Cover ♦
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to co-graphs

Distance
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Feedback
Vertex Set # Pathwidth Max Degree

Min Dominating
Set ♦

Distance
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Distance
to bipartite Treewidth h-index
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Distance
to perfect Degeneracy

Chromatic # Average Degree

Figure 1 Hasse diagram of the relationship between different parameters ([22]). Two parameters
are connected by a line if the parameter below can be polynomially upper-bounded in the parameter
above. For example, vertex cover is above distance to disjoint paths since deleting a vertex cover
produces an independent set, hence a set of disjoint paths. Therefore, positive results propagate
upwards, while negative results propagate downwards. Results marked by ♦ are obtained in this
paper, those marked with • are improvement of existing results, and those marked with ∗ are
corollaries of existing results.

algorithm for the parameter distance to co-cluster which nicely reuses the FPT algorithms
for both vertex cover number and distance to clique and another algorithm for parameter
vertex clique cover number. These last two algorithms are noteworthy since a bounded
distance to co-cluster or a bounded vertex clique cover number do not imply a bounded
neighborhood diversity, a parameter for which Graph Motif was already known to be in
FPT. We also show that a polynomial kernel for the aforementioned parameters is unlikely.
In Section 4, we show that Graph Motif remains hard on graphs of constant distance to
disjoint paths, or constant bandwidth, or constant distance to cluster, or constant dominating
set number. More surprisingly, we establish that Graph Motif is W[1]-hard (but in W[P])
for the parameter max leaf number. To the best of our knowledge, there is no previously
known problem behaving similarly when parameterized by max leaf number. Indeed, graphs
with bounded max leaf number are really simple and, for instance, all the problems studied
in [16] are FPT for this parameter. These positive and negative results draw a tight line
between tractability and intractability (see Figure 1). Due to space constraints, some proofs
(marked with F) are deferred to the full version of the paper.

3 FTP algorithms and lower bound in the size of kernels

In this section, we improve or establish new FPT algorithms for several parameters. We also
give a lower bound on the size of the kernel for all those parameters except cluster editing
number. Figure 1 summarizes those results.

3.1 Cluster editing and linear neighborhood diversity
The cluster editing number of a graph is the number of edge deletions or additions required
to get a cluster graph. It can be computed in time O∗(1.62k) [7]. We will use a known result
involving another parameter called neighborhood diversity introduced by Lampis [25]. A
graph has neighborhood diversity k if there is a partition of its vertices into at most k sets
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such that all the vertices in each set have the same type. And, two vertices u and v have
the same type iff N(v) \ {u} = N(u) \ {v}. We say that a graph parameter κ has linear
(resp. exponential) neighborhood diversity if, for every positive integer k, all the graphs G
such that κ(G) 6 k have neighborhood diversity ck (resp. ck) for some constant c. We say
that a parameter κ has unbounded neighborhood diversity, if there is no function f such that
all graphs G with κ(G) 6 k have neighborhood diversity f(k).

I Theorem 1 ([18]). Graph Motif can be solved in O∗(2k) on graphs with neighborhood
diversity k.

The following result is a direct consequence of the fact that, restricted to connected
graphs, cluster editing has linear neighborhood diversity.

I Corollary 2. Graph Motif can be solved in O∗(8k), where k is the cluster editing number.

Proof. Let (G = (V,E), c,M) be any instance of Graph Motif. We can assume that G
is connected, otherwise we run the algorithm in each connected component of G. Let X
be the set of vertices which are an endpoint of an edited edge (deleted or added) and let
G′ be the cluster graph obtained by the k edge editions. We may observe that |X| 6 2k
and that the number of maximal cliques C1, . . . , Cl in G′ is bounded by k (otherwise, G
could not be connected). For each i ∈ [l], and for each vertex v ∈ Ci \X, N [x] = Ci. Thus
the neighborhood diversity of G is bounded by |X|+ l 6 2k + k = 3k. So, we can run the
algorithm for bounded neighborhood diversity [18] and it takes time O∗(23k). J

3.2 Parameters with exponential neighborhood diversity
The next three parameters that we consider are distance to clique, size of a minimum vertex
cover, and size of a minimum edge clique cover. For the first two, a value of k entails that
the neighborhood diversity is at most k+ 2k; and neighborhood diversity 2k for the third one.
Therefore, Ganian has already given an algorithm running in double exponential time for
these parameters (O∗(2k+2k ) or O∗(22k ), see Theorem 1, [17, 18]). We improve this bound to
single exponential time 2O(k) (more precisely O∗(8k)) for distance to clique and to 2O(k log k)

for the vertex cover and edge clique cover numbers. The latter running time is sometimes
called slightly superexponential FPT time [26]. Then, we prove that for each of those three
parameters, a polynomial kernel is unlikely.

As a preparatory lemma for the algorithm parameterized by distance to clique, we show
that a variant of Set Cover with thresholds is solvable in time O∗(2n), where n is the size
of the universe. In the problem that we call here Colored Set Cover with Thresholds,
one is given a triple (U ,S = C1 ] . . . ] Cl, (a1, . . . , al)) where U is a ground set of n elements,
S is a set of subsets of U partitioned into l classes called colors and (a1, . . . , al) is a tuple of l
positive integers called threshold vector. The goal is to find a set cover T ⊆ S (not necessarily
minimum) such that for each i ∈ [l], the number of sets with color i (that is, in Ci) in T is at
most ai.

I Lemma 3. Colored Set Cover with Thresholds with n elements and m sets can be
solved in time O(nm2n + nm).

Proof. We order the sets of S such that sets of the same color appear consecutively, say, first
the sets of C1, then the sets of C2, and so on. The order within the sets of a same color is not
important and is chosen arbitrarily. We denote the sets resultantly ordered by S1, . . . , Sm

and function c maps the index of a set to its color. Therefore, c(j) = i means that set Sj has
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324 The Graph Motif Problem Parameterized by the Structure of the Input Graph

color i (Sj ∈ Ci). We fill by dynamic programming the table T , where T [U, j] is meant to
contain the minimum number of sets in Cc(j) among any subset of {S1, . . . , Sj} that covers
U ⊆ U and respects the threshold vector.

As an initialization step, for each U ⊆ U , we set T [U, 1] = 1 if U ⊆ S1, and T [U, 1] =∞
otherwise. For each j ∈ [2,m], assuming that T [U ′, j− 1] was already filled for every U ′ ⊆ U ,
we distinguish two cases to fill T [U, j]. If Sj is the first set of the color class Cc(j) then:

T [U, j] =


0 if T [U, j − 1] <∞ (* discard Sj *)
1 if T [U, j − 1] =∞ and T [U \ Sj , j − 1] <∞ (* add Sj *)
∞ otherwise

Otherwise Sj is not the first set in Cc(j) and:

T [U, j] = min
{
T [U, j − 1] (* discard Sj *)
v + 1 if v < ac(j) and ∞ otherwise (* add Sj *)

with v = T [U \ Sj , j − 1].
A standard induction shows that the instance is positive iff T [U ,m] 6=∞. The only costly

operation in filling one entry of table T is the set difference which can be done in O(n). If we
want to produce an actual solution (and not solely decide the problem), we can add one bit
in each entry T [U, j] signaling whether or not Sj should be taken. Should the instance be
positive, it then takes time O(nm) to reconstruct a solution from a filled table T . Therefore,
the running time is O(n|T |+ nm) = O(nm2n + nm). J

I Theorem 4. Graph Motif can be solved in O∗(8k), where k is the distance to clique.

Proof. Let (G = (V,E), c : V → C,M) be any instance of Graph Motif and assume R is
a solution, that is G[R] is connected and c(R) = M . If there is no solution, our algorithm
will detect it eventually. We first compute a set S ⊆ V of size k such that C := V \ S is a
clique. This can be done in time O∗(2k) by branching over the two endpoints of a non-edge,
or even in O∗(1.2738k) by applying the state-of-the-art algorithm for Vertex Cover on
the complementary graph [11]. Running through all the 2k subsets of S, one can guess
the subset S′ = R ∩ S of S which is in the solution R, and S1, S2, . . . , Sk′ be the k′ 6 k

connected components of G[S′]. It must hold that c(S′) ⊆M , otherwise R would not be a
solution. Now, the problem boils down to finding a non-empty (an empty subset would mean
that S′ = R which can be easily checked) subset C ′ ⊆ C such that G[S′ ∪ C ′] is connected
and c(C ′) ⊆ M \ c(S′). Then, the set S′ ∪ C ′ can be extended into a solution by adding
vertices of C \C ′ with the right colors. The graph G[S′ ∪C ′] is connected iff each connected
component Sj of G[S′] has at least one neighbor in N(C ′). We build an equivalent instance
of Colored Set Cover with Thresholds in the following way. The ground set U is of
size k′ with one element xj per connected component Sj of G[S′]. For each vertex v in C
colored by i, there is a set Sv colored by i such that xj ∈ Sv iff N(v)∩Sj 6= ∅. For each color
i, the threshold ai is set to the multiplicity of i in M \ c(S′). If there are more than one set
with the same color and the same elements, we keep only one copy of this colored set. The
number of sets is therefore at most 2k′ |C|. So, it takes time O(k′2k′ |C|(2k′ + 1)) = O∗(4k′) to
solve this instance, hence an overall worst case running time of O∗(2k + 2k4k) = O∗(8k). J

I Theorem 5. Graph Motif can be solved in O∗(22k log k) on graphs with a vertex cover
of size k.

Proof. We start similarly to the previous algorithm. We compute a minimum vertex cover
S of G in time O∗(2k) (or O∗(1.2738k) [11]), and then guess in time O∗(2k) the subset
S′ = S ∩R, where R is a fixed solution. Again, we denote by S1, S2, . . . , Sk′ the connected
components of G[S′]. We remove c(S′) from the motif and we remove from V the set I ′
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of the vertices of the independent set I := V \ C which have no neighbor in S′. Now, by
the transformation presented in the algorithm parameterized by distance to clique, the
problem could be made equivalent to a constrained version of Colored Set Cover with
Thresholds where the intersection graph (with an edge between two sets if they have a
non-empty intersection) of the solution has to be connected. Unfortunately, it is not clear
whether or not this variant can be solved in time 2O(n). Thus, at this point, we have to do
something different.

Let Rd = {r1, r2, . . . , rl} ⊆ R \ S′ be a minimal (inclusion-wise) set of vertices such that
G[S′ ∪Rd] is connected. We can observe that l 6 k′ 6 k. We guess in time O∗(l!Bl) (where
Bl is the l-th Bell number, i.e., the number of partitions of a set of size l) an ordered partition
P := 〈A1, A2, . . . , Al〉 of the connected components {S1, . . . , Sk′} such that, for each i ∈ [l],
(1) ri has at least one neighbor in each connected component of Ai and (2) if i > 2, ri has
at least one neighbor in a connected component of

⋃
16j<i Aj . Note that such an ordered

partition always exists since G[S′ ∪ Rd] is connected. Now, we build the bipartite graph
B = (P ∪M ′, F ), where M ′ = M \ c(S′) and there is an edge between Ai ∈ P and each
copy of color c ∈ M ′ iff there is a vertex v ∈ I colored by c in the original graph G and
such that (1) v has at least one neighbor in each connected component of Ai and (2) if
i > 2, v has at least one neighbor in a connected component of

⋃
16j<i Aj . By construction,

{{Ai, c(ri)} | i ∈ [l]} is a maximum matching of size |P | = l in graph B. Thus, we compute
in polynomial time a maximum matching {{Ai, ci} | i ∈ [l]} in B. Then, we obtain a solution
to the Graph Motif instance by taking, for each i ∈ |l] any vertex vi colored by ci and
having (1) at least one neighbor in each connected component of Ai and (2) if i > 2, at least
one neighbor in a connected component of

⋃
16j<i Aj . This can also be done in polynomial

time and the existence of such a vi is guaranteed by the construction of graph B. Then, we
complete set S′ ∪

⋃
i∈[l]{vi} into a solution by taking any vertices in I \ I ′ with the right

colors. As l! 6 ll, Bl 6 ( l
2 )l (even Bl < ( 0.792l

ln (l+1) )l [3]), and l 6 k the overall running time is
O∗(2k + 2kk!Bk) = O∗(kkkk) = O∗(22k log k). J

In the Edge Clique Cover problem, one asks, given a graph G = (V,E) and an integer
k, for k subsets C1, . . . , Ck ⊆ V , such that ∀i ∈ [k], G[Ci] is a clique, and ∀e ∈ E, e lies in
a clique Ci for some i ∈ [k]. The set {C1, . . . , Ck} is called an edge clique cover of G. The
edge clique cover number of a graph G is the smallest k such that G has an edge clique cover
of size k. Edge Clique Cover admits a kernel of size 2k [19] and, as observed in [12], it
can be solved by dynamic programming in time 2O(n+m). Therefore, it can be solved in time
2O(2k+22k), that is 22O(k) . On the negative side, Edge Clique Cover cannot be solved
in time 22o(k) under ETH [12]. Thus, the algorithm of Ganian [18] is essentially optimal if
the edge clique cover is not given. But, we may imagine that the instance comes with an
optimal or close to optimal edge clique cover, or that we have a good heuristic to compute it
(a polynomial time approximation with sufficiently good ratio is unlikely [27]).

I Theorem 6. Graph Motif can be solved in time 22O(k) , where k is the edge clique cover
number, and in time O∗(22k log k+k) if an edge clique cover of size k is given as part of the
input.

Proof. Let (G = (V,E), c,M) be any instance of Graph Motif. If not given, we first
compute an edge clique cover {C1, . . . , Ck} of size k in G, in time 22O(k) [19]. We guess in
time O∗(2k) the exact subset {C ′1, . . . , C ′k′} ⊆ {C1, . . . , Ck} of cliques Ci such that Ci ∩R is
non-empty, for a fixed solution R. Now, we turn the instance into an equivalent instance
where the motif has size |M |+k′ and the graph has at most |V |+k′ vertices and a vertex cover
of size k′. The new graph is a bipartite graph B = (A∪W,F ) such that A contains one vertex
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Color 1

Color 2

Color 3

r1 r2
. . . rt

s1,2,3 s1,2,4 . . . s1,2,3q s1,3,4 . . . s3q−2,3q−1,3q

x1 x2 . . . x3q

risx,y,z ∈ E(G)⇔ {x, y, z} ∈ Si

xsx,y,z, ysx,y,z, zsx,y,z ∈ E(G),∀1 6 x < y < z 6 3q

Figure 2 Illustration of the construction of G. The motif consists of 1 occurrence of color 1, q of
color 2 and 3q of color 3.

v(C ′i) per clique C ′i (so, A is a vertex cover of graph B of size k′ 6 k),W = C ′1∪ . . .∪C ′k′ ⊆ V ,
and there is an edge in F between v(C ′i) ∈ A and w ∈W iff w ∈ C ′i. Each vertex in W keeps
the color it had in G. A fresh color c is given to the k′ vertices of A, and color c is added to
the motif M with multiplicity k′. Then, we run the algorithm parameterized by the vertex
cover number of Theorem 5. This algorithm has an overall running time of O∗(2k22k log k), if
the edge clique cover is given, and 22O(k) otherwise. J

Ganian [17], Theorem 5 and Theorem 4 prove that Graph Motif is in FPT if the
parameter is the vertex cover number or the distance to clique. Therefore, the problem
has a kernel [28]. Though, the size of this kernel is a priori not known. We show that the
corresponding kernels cannot be polynomial unless NP ⊆ coNP/poly.

I Theorem 7. Unless NP ⊆ coNP/poly, Graph Motif has no polynomial kernel when
parameterized by the vertex cover number or the distance to clique, even for (i) motifs with
only 3 colors and (ii) when the motif is colorful.

Proof. We only give the proof for (i). The second item (ii) can be proven similarly following
the ideas of [5].

We will define an OR-cross-composition [9] from the NP-complete X3C problem, stated as
follows: given and integer q, a set X = {x1, x2, . . . , x3q} and a collection S = {S1, . . . , S|S|}
of 3-elements subsets of X, the goal is to decide if S contains a subcollection T ⊆ S
such that |T | = q and each element of X occurs in exactly one element of T . Given t

instances, (X1,S1), (X2,S2), . . . , (Xt,St), of X3C, we define our equivalence relation R such
that any strings that are not encoding valid instances are equivalent, and (Xi,Si), (Xj ,Sj)
are equivalent iff |Xi| = |Xj | and |Si| = |Sj |. Hereafter, we assume that Xi = [3q] and
Si = {S1, . . . , S|Si|}, for any i ∈ [t]. We will build an instance (G, c,M) of Graph Motif
parameterized by the vertex cover or the distance to clique, where G is the input graph, c the
coloring function and M the motif, such that there is a solution for Graph Motif iff there
is an i ∈ [t] such that there is a solution for (Xi,Si). We will now describe how to build such
instance of Graph Motif. The graph G consists of t nodes r1, r2, · · · , rt forming a clique.
There are also O((3q)3) nodes sx,y,z, 1 6 x < y < z 6 3q, with an edge between ri and
sx,y,z iff the 3-element subset {x, y, z} exists in Si. Finally, there are 3q nodes xi, 1 6 i 6 3q,
and there is an edge between xi and every subset sx,y,z where xi occurs (see also Figure 2).
The coloration is c(ri) = 1, for all 1 6 i 6 t, c(sx,y,z) = 2 for all 1 6 x < y < z 6 3q, and
c(xi) = 3, 1 6 i 6 3q. The multiset M consists of 1 occurrence of the color 1, q occurrences
of color 2 and 3q occurrences of color 3.
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It is easy to see that {sx,y,z|1 6 x < y < z 6 3q} ∪ {xi|1 6 i 6 3q} is a vertex cover for
G and that its removal leaves only a clique, and that its size is polynomial in 3q and hence
in the size of the largest instance.

Let us show that there is a solution for our instance of Graph Motif iff at least one of
the (Xi,Si)’s has a solution of size q.

(⇐) Suppose that (Xi,Si) has a solution Ti of size q. We set P = {ri} ∪ {sx,y,z |
{x, y, z} ∈ Ti} ∪ {xi|1 6 i 6 3q}. One can easily check that G[P ] is connected and that
c(P ) = M .

(⇒) Suppose that there is a solution P ⊆ V such that G[P ] is connected and c(P ) = M .
Due to the motif, only one of the nodes ri is in P and all nodes xi are in P . We claim that
there is then a solution Ti in (Xi,Si), where i is the index of the only node ri in P . We add
in Ti the q sets {x, y, z} such that sx,y,z ∈ P . By the connectivity constraint, these sets all
occurs in the instance i s.t. ri ∈ P . Let us now prove that Ti covers exactly all the elements
of Xi. Since P is a solution, the nodes sx,y,z in P correspond to a partition of X. Otherwise,
one of the node xi will not be connected. J

3.3 Parameters with unbounded neighborhood diversity
This section disproves the idea that Graph Motif is only tractable for classes with bounded
neighborhood diversity. Indeed, we show that Graph Motif is in FPT parameterized by the
size of a vertex clique cover or by the distance to co-cluster. The former algorithm creates
a win/win based on König’s theorem applied to a bounded number of auxiliary bipartite
graphs. The latter is simpler and use as subroutines the algorithms parameterized by vertex
cover number and distance to clique.

In the Vertex Clique Cover problem (also known as Clique Partition), one asks,
given a graph G = (V,E) and an integer k, for a partition of the vertices into k subsets
C1, . . . , Ck ⊆ V , such that ∀i ∈ [k], G[Ci] is a clique. The set {C1, . . . , Ck} is called an vertex
clique cover of G. The vertex clique cover number of a graph G is the smallest k such that G
has an vertex clique cover of size k. This problem is equivalent to the Graph Coloring
problem since a graph as a vertex clique cover of size k iff its complement is k-colorable.
Therefore, Vertex Clique Cover is unlikely to be in XP. However, if a vertex clique cover
comes with the input, we show that Graph Motif is in FPT for parameter vertex clique
cover number. One can notice that Graph Motif is NP-hard in 2-colorable graphs. This is
a striking example of how easier can Graph Motif be on the denser counterpart of two
complementary classes.

To realize that vertex clique cover number has unbounded neighborhood diversity, think of
the complement of a bipartite graph. The vertex clique cover is of size 2 but the neighborhood
diversity could be arbitrary; for parameter distance to co-cluster, think of the complementary
of a cluster graph with an unbounded number of cliques.

I Theorem 8 (F). Graph Motif can be solved in time O∗(24k log(2k)) where k is the vertex
clique cover number, provided that the vertex clique cover is given as part of the input.

I Theorem 9 (F). Graph Motif can be solved in O∗(22k log k), where k is the distance to
co-cluster.

4 Parameters for which Graph Motif is hard

In this section, we provide several parameters for which Graph Motif is not in XP, unless
P = NP. In other words, the problem is NP-hard even for fixed values of the parameter. We
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also prove that the problem remains W[1]-hard for parameter max leaf number. Figure 1
summarizes these results.

4.1 Deletion set numbers
We study parameters which correspond to the minimum number of vertices to remove to
make the graph belong to a restricted class. We will show that Graph Motif remains
NP-hard for constant values of those parameters. More precisely, the colorful restriction of
Graph Motif is hard even if we can obtain a set of disjoint paths by removing 1 vertex, a
cluster graph by removing 1 vertex, and an acyclic graph by removing 0 edge.

I Theorem 10 ([15]). Graph Motif is NP-hard even when G is a tree of maximum degree
3 and the motif is colorful.

I Corollary 11. Graph Motif is NP-hard even for graphs with feedback edge set 0 and
when the motif is colorful.

I Theorem 12 (F). Graph Motif is NP-hard even (i) for graphs with distance 1 to disjoint
paths and when the motif is colorful and (ii) for graphs with bandwidth 4 and when the motif
is colorful.

I Theorem 13 (F). Graph Motif is NP-hard even for graphs with distance 1 to cluster
and when the motif is colorful.

4.2 Dominating set number
Being given a small dominating set of the graph cannot help in solving Graph Motif. For
any instance (G = (V,E), c,M), one may add a universal new vertex v to G, and color it
with a color which does not appear in motif M . The minimum dominating set {v} is of size 1.
Vertex v cannot be part of the solution due to its color, so answering the new problem is as
hard as solving the original instance. Though, this could be considered as cheating since a
vertex whose color is not in M can immediately be discarded from the graph. We show that
even when ∀v ∈ V , c(v) ∈M , graphs with dominating set of size 2 can be hard to solve.

I Theorem 14 (F). Graph Motif is NP-hard even for graphs with a minimum dominating
set of size 2 and when the motif is colorful.

4.3 Max leaf number
The max leaf number of a graph G, denoted ml(G) is the maximum number of leaves (i.e.,
vertices of degree 1) in a spanning tree of G. Therefore, if G is itself a tree, then ml(G) is
simply the number of leaves of G. We will show that Graph Motif is in XP (even in W[P])
and is W[1]-hard with parameter max leaf number. In fact, we will even prove that it is
W[1]-hard on trees with parameter number of leaves in the tree plus number of distinct colors
in the motif. This strenghtens the previously known result that the problem is W[1]-hard on
trees with parameter number of distinct colors in the motif [15].

I Theorem 15 (F). Graph Motif can be solved in time O∗(16kn10k) = nO(k), where
k = ml(G) and is even in W[P] with respect to that parameter.

I Theorem 16 (F). Graph Motif is W[1]-hard with respect to the max leaf number plus
the number of colors, even on trees.
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5 Conclusion and open problems

Figure 1 sums up the parameterized complexity landscape of Graph Motif with respect to
structural parameters. For parameter maximum independent set the complexity status of
Graph Motif remains unknown. Even when the problem is in FPT, polynomial kernels
tend to be unlikely; be it for the natural parameter even on comb graphs or for the vertex
cover number or the distance to clique. Is it the case for parameter cluster editing number?

The sparsification lemma [21] together with a straightforward reduction from 3-SAT
shows that, under ETH, Graph Motif cannot be solved in time 2o(n) on graphs with n
vertices. Thus, for every parameter k bounded by n, an algorithm solving Graph Motif in
2o(k) would disprove ETH. This is the case of four out of six parameters for which we have
given an FPT algorithm; cluster editing and edge clique cover numbers are only bounded by
n2. On the one hand, it says that our algorithm running in 2O(k) for parameter distance to
clique is probably close to optimal. On the other hand, for parameter vertex cover number,
for instance, we have still some room for improvement between the 2O(k log k)-upper bound
and the 2o(k)-lower bound under ETH. Can we improve the algorithm to time 2O(k), or, on
the contrary, show a stronger lower bound of 2o(k log k) (potentially using [26])?
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