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Proper orthogonal decomposition preprocessing of infrared 
images to rapidly assess stress-induced heat source fields

Adil Benaarbia, André Chrysochoos

mechanics and Civil engineering laboratory, university of montpellier, montpellier, france

ABSTRACT
An image processing technique using the proper orthogonal decomposition (POD) of 
infrared thermal data was developed to improve the speed of assessment of 2D heat 
source fields accompanying mechanical transformation. This method involved the generation of a 
reduced orthonormal basis to approximate thermal fields prior to heat source estimation. The 
robustness of the method was first assessed using a penalising benchmark test. This test involved 
artificially setting several tricky situations that arise in practice (high diffusivity, low signal-to-noise 
ratio, complex heat source distribution, etc.). Application of the method to several experimental 
temperature fields obtained by an infrared focal plane array camera is then presented. The 
error between the POD approximated solution in terms of heat sources and a reference solution, 
computed via a local least squares fitting method, was found to be negligible, thus confirming the 
efficiency and advantages of the POD preprocessing technique – the method enabled us to obtain a 
reliable estimate of heat sources while drastically reducing the computation cost in terms of CPU 
time.

1. Introduction

Different types of heat source accompany material deformation. First, the so-called dissipa-
tive source is induced by irreversible deformation mechanisms such as plasticity, viscosity 
and damage. The second type is related to strong interactions that may occur between 
mechanical, thermal and microstructural states of the material. This is the so-called thermo-
mechanical coupling heat source induced by thermal dilatation, first-order phase change, 
rubber elasticity, etc. Strain-induced heat sources usually generate a temperature variation, 
which is consequently chosen as a state variable in thermomechanical modelling of the 
material behaviour [1]. However, this temperature variation is not exclusively related to the 
material deformation mechanisms insofar as it is affected by the heat source distribution, 
heat conduction transfers within the matter, and heat exchanges between the tested spec-
imen and the surroundings. Conversely, heat sources are directly connected to the consti-
tutive laws of the material behaviour, with coupling sources being related to state laws, while 
dissipative sources reflect the irreversibility associated with kinetic laws [2,3]. These 
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calorimetric data are essential for anyone wanting to develop behavioural models using 
thermomechanical formalism.

Over the last 20 years, with the incredible advances that have been achieved in quanti-
tative infrared techniques, numerous specialised experimental data processing techniques 
have been developed to get increasingly reliable heat source assessments [4–8]. Among 
these techniques, many are based on direct estimate of the heat source distribution using 
the local expression of the heat diffusion equation and thermal data provided by an IR 
camera. However, as temperature fields can only be monitored at the specimen surface, thin 
flat specimens have generally been used for 2D approximation of the heat diffusion problem. 
The heat sources are then estimated via direct estimate of the partial derivative operators 
present in the local form of the heat diffusion equation. Indeed, by averaging the 3D heat 
diffusion equation [4] over the sample thickness, a 2D thermal diffusion model can be 
obtained as follows: 

where ρ, C and kc represent the mass density, specific heat and thermal conductivity, respec-
tively. For simplicity, these material parameters are assumed to be physical constants and 
the velocity field v independent of the depth-wise coordinate. The terms � and s̄h in turn 
stand for the temperature variations and heat sources averaged over the sample thickness. 
Temperature variations are assessed with respect to a room temperature T0 that is taken to 
be spatially uniform and temporarily constant. The �2Dth  parameter represents the time con-
stant characterising perpendicular heat loss to the specimen surface. This constant depends 
on the thermophysical properties of the material under investigation, the geometry of the 
sample and the heat transfer coefficient h, while assuming that heat exchanges by conduc-
tion, radiation and convection between the sample and the surrounding air can be correctly 
approximated by a linear function of the thermal disequilibrium [4]. This time constant can 
then be formulated as:

where e stands for the sample thickness. Note that the convective terms in Equation (1), 
corresponding to the scalar product of the displacement velocity v and temperature gradi-
ents ∇𝜃̄ in the total time derivative of the temperature, are often assumed to be negligible. 
Its estimate is, however, possible if another quantitative imaging technique is used to get 
the displacement and velocity fields. In reference [9], digital image correlation and infrared 
thermography (IRT) techniques were combined to assess these convective terms. In some 
cases, they cannot be neglected (e.g. necking lips of polymers [10], narrow strain localisation 
zones [11]). We nevertheless ignored them since we intended to focus on the efficiency of 
proper orthogonal decomposition (POD) techniques in rapidly filtering thermal images 
before heat source computation. Note, however, that generalisation of the method should 
not be problematic. POD preprocessing could also be applied to kinematic full-field 
measurements.

In fact, one of the main difficulties associated with heat source assessment concerns the 
thermal data, which are discrete and noisy by nature. This drastically complicates estimation 
of the partial derivative terms in the heat diffusion equation. The signal-to-noise ratio and 
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spatiotemporal sampling rates are often not high enough to compute relevant heat source 
distributions. In particular, the 2D Laplacian operator is a heavy noise amplifier.

It is therefore essential to have specific filtering or fitting techniques able to compute 
such derivative terms. Several processing techniques have been described in the literature: 
(i) projection of thermosignals onto eigenfunctions associated with the spatial differential
operator of the heat equation [12], Fourier techniques involving periodic expansion of images
and convolutive filtering [4], and local least-squares approximations [8]. Most of these tech-
niques were used to investigate thermomechanical phenomena such as strain localisation
in steels and polymers [4,13,14], thermoelastic effects accompanying deformation, [1] phase 
transformation in shape memory alloys [15–19], dissipated and stored energy in elastoplastic 
materials [20,21], etc.

POD was recently applied to process thermoprofiles in order to assess 1D heat source 
distributions in an ultrasonic cycle fatigue framework [22]. POD preprocessing was compared 
to previous techniques (convolutive filtering, local least-squares fitting, use of analytical 
eigenfunctions). A comparative study highlighted the promising features of POD techniques 
not only in terms of heat source assessment efficiency but also of data processing speed.

The current study deals with the use of POD to estimate 2D heat source fields involved 
during mechanical tests. The first part of the study consists of theoretical validation of the 
POD technique. The influence of thermal noise on the heat assessment, which is a key issue 
here, is widely discussed. The second part of the study presents an application of POD to 
several experimental temperature fields obtained by IRT during a fatigue test on a composite 
material. The experimental identification of fatigue lifespan criteria is particularly time con-
suming and a great effort is currently being made to develop new rapid methods for char-
acterisation of fatigue strength properties of materials and structures [23].

2. Fundamentals of POD

POD techniques have been widely used in model order reduction, which aims to lower the 
computational complexity of large-sized problems, e.g. in simulation of large-scale dynamical 
systems and control systems. By a reduction of the model’s associated state space dimension 
or degrees of freedom, an approximation of the original model is computed. Numerous 
examples have been provided in many image processing domains [24], signal analysis and 
data compression [25], turbulence models and coherent structures in fluids [26,27], model-
ling and control of chemical reaction systems [28–31], etc.

The principle of POD techniques consists of taking a given collection of experimental (let 
us say thermal) data and creating an orthonormal basis constituted by functions estimated 
as solutions of an integral eigenvalue Fredholm problem [32–38]. These eigenfunctions are, 
by definition, characteristics of the most probable outcomes of experimental thermal data. 
In practice, it has been pointed out that the noise reduction obtained by truncating the POD 
solution was better than convolutive filtering and/or local least-squares fitting [22,39]. For 
the POD technique, the CPU times necessary to project the thermal data were almost neg-
ligible compared to those of other preprocessing techniques.

Simply from a mathematical standpoint, POD techniques allow us to consider a scalar 
function �(x, y, t) (hereafter depicting the time course of the 2D temperature field) as a finite 
sum in the separated-variables form:



where (x, y) can be viewed as spatial coordinates, t as a temporal coordinate, ap as of POD 
approximation coefficients and (Φp, p = 1,… P) as a set of orthogonal functions subse-
quently called proper orthogonal modes (POMs). Equation (3) indicates that the approxi-
mation converges towards the � fields when P approaches infinity. From a more physical 
standpoint, the POD technique thus involves extracting the most energetic modes that 
capture most of the energy of � fields. This implicitly supposes that the thermal noise signal 
energy remains low compared to the thermosignal induced by the material transformation. 
The calculation of POD approximation coefficients ap closely depends on the nature of the 
basis functions Φp. These POMs are only spatial functions and can be used to approximate 
� fields when combined with the set of coefficient ap. So, for a given orthonormal set of basis 
functions Φp 

where �pq is Kronecker’s delta symbol and the notation 
⟨
Φp,Φq

⟩
= ∬ ΦpΦqdxdy gives the 

inner product, while the coefficients ap can be obtained from

For selecting the function Φp, it is convenient to use the orthonormality condition as ap 
depends only on Φp and not on the other Φq, q ≠ p.

Assume now that � fields can be experimentally available on a spatial grid of size 
�x × �y × �t, i.e. with αx gridpoints in the x direction, αy gridpoints in the y direction and αt 
gridpoints in time. Let us also introduce the Euclidean space ℝ�x×�y. The reduced basis rep-
resentation (see Equation (3)) can thus be equivalent to finding the orthonormal basis func-
tion {Φp}p=1,…,P solutions of the following minimisation problem

where ∥ ⋅ ∥
ℝ
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√⟨., .⟩

ℝ
�x×�y  defines the norm associated with the canonical inner product 

in ℝ�x×�y, and i = 1, 2, .., �x, j = 1, 2, .., �y, k = 1, 2, .., �t [40,41].
A practical way to solve the minimisation problem (Equation (6)) is to arrange the data-set 

in a matrix Θ ∈ ℝ
�Z×�t, with �Z = �x × �y, the so-called snapshot data matrix. The data arrange-

ment was used here to reduce the size of the tridimensional array � into a bi-dimensional 
array Θ. The solutions of the minimisation problem (i.e. {Φp}p=1,…,P) are thus given by the 
truncated singular value decomposition (SVD) of length �Z of the matrix Θ. The SVD guar-
antees the existence of real numbers �1 ≥ �2 ≥ … ≥ �r > 0, where r = min(�Z , �t) and orthog-
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where (.)T stands for the transpose of the matrix (.). The zeros in Equation (7) denote matrices 
of appropriate dimensions. Moreover, the vectors {Ri}

r
i=1 and {Si}

r
i=1 satisfy

These are the eigenvectors of C right = ΘΘT and C left = ΘTΘ respectively associated with the 
eigenvalues 𝜔i = 𝜚2i > 0, i = 1,… , r. Matrix C right is the so-called correlation matrix. By con-
struction, this matrix is symmetrical, positive and semidefinite.

From Equations (7) and (8), we can deduce that

It follows that Θ can be expressed as

where the matrices Rr ∈ ℝ
�Z×r and Sr ∈ ℝ

�t×r are given by

for i ∈ [1,… , �Z ], j ∈ [1,… , r] and k ∈ [1,… , �t].
Now, noting that Mr = L(Sr)T ∈ ℝ

r×�t, we can formulate Equation (10) as

Thus, the column space of Θ can be represented in terms of the r linearly independent col-
umns of Rr. The coefficients for the columns Θk , k = 1,… , �t, in the basis {Rj}

r
j=1 are given by 

the kth column of Mr. Since R is orthogonal, we can prove that

It follows from SVD that the necessary optimality conditions for Equation (6) are given by 
the symmetric �Z × �Z eigenvalue problem

The POMs {Φp}p=1,…,P can then be determined by computing the eigenvectors (which 
become matrices after the data-set rearrangement) of the correlation matrix. Note that for 
applications involving a large number of degrees of freedom, the correlation matrix ΘΘT 
may become very large and the computation of POMs may rapidly require substantial com-
putational resource.

3. Penalising benchmark test

3.1.  Definition of the test

We considered a penalising case to illustrate a potential POD preprocessing application and 
check the quality of the heat source estimates. We constructed a heat diffusion problem, 
which superimposed numerous difficulties, all inspired by physically tricky situations 
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accompanying the mechanical tests. More precisely, we chose the following 2D heat diffusion 
problem on a rectangular domain (i.e. the gauge part of the specimen), with a given heat 
source distribution s̄h:

where the parameters �x and �y were considered as constants.

•  �The rectangular domain had the dimensions of a standard thin flat sample gauge part of 
a test specimen. It was 32 mm long by 25.6 mm wide, corresponding to a 81 × 65 pixel 
image since the space resolution of the IR camera was about Δx = Δy = 0.4 mm. The 
time step Δt was 0.1 s (i.e. frame rate = 10 Hz) and 600 thermal fields were computed.

•  �The thermal boundary conditions were standard Fourier conditions:

where h was a global heat exchange coefficient. We chose a coefficient hx = kc�x = 170 
W m2 °C−1, tenfold greater than hy = kc�y, in order to distinguish the heat exchange between 
the sample and testing machine grips at x = ± L/2, from the heat exchange with the sur-
rounding air at y = ± l/2.

The value of the time constant associated with heat losses perpendicular to the specimen 
gauge part was �2Dth = 200s. This latter can be assessed using Equation (2) once the material 
under investigation and the specimen sizes are set.

•  �The analytical form of the heat source distribution was rather complex. As already men-
tioned, the goal was to superimpose several heat source patterns, namely:
○  �a homogenous oscillating source s̄the, reflecting the so-called thermoelastic coupling

effects (e.g. thermoelastic sources induced by the thermodilitability of materials [42]).
This type of source was activated throughout the test duration  = 60 s. We chose a
sinusoidal form s̄the = sthe0 sin(2𝜋fLt), where sthe0  and fL were constant parameters.

○ � between 0.1  and 0.6 , a dissipative source distribution s̄disL  was programmed, cor-
responding to the calorimetric manifestation of a Lüders band propagation [13]. This
source was written as s̄disL = s0Lexp

(
−aL

[
x − pLy − vL(t − t0L )

]2)
, where (s0L , aL, pL, vL, t

0
L ) 

are constants.
○ � for t ≥ 0.6, a progressive concentration of dissipative source distribution s̄disN  was 

introduced. This scenario can be associated with the gradual localisation of plastic 
strain during necking [11] or with the narrowing of a high dissipation zone induced 
by fatigue damage heralding the inception of fatigue crack [1]. The form of s̄disN  was 
chosen as s̄disN = s0N�t

2exp
(
−aNr

2(x, y)∕
[
1 − 𝛼N�t

])
, where t̃ is a dimensionless time 

ranging from 0 to 1 within 0.6  and , and where r2(x, y) = 4(x − x0)
2 + (y − y0)

2,
(x0, y0) are coordinates of the point where the dissipative source gradually con-
centrates. In Figure 1, a set of six heat source fields is shown. They were computed 
using the parameter values in Table 1. Note that sources were divided by ρC and 
then expressed in (°C s−1).
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•  �The thermophysical constants of the tested material were also chosen in order to dras-
tically amplify the heat diffusion losses (e.g. � = 8290 kg m−3, C = 385 J kg−1 °C−1 and
kc = 360 W m−1 °C−1). We chose the properties of pure copper, which has high diffusivity 
(D = kc/ρC ≈ 10−4 m2 s−1), i.e. dozens of times greater than that of many conventional
materials. Note that high diffusivity regularises the temperature fields (in direct prob-
lems) and, conversely, scatters the heat source estimates (in inverse problems) because 
it amplifies numerical errors induced by computation of the Laplacian operator. An
order of magnitude of the error associated with the curvature estimates can be given
by ��∕(�x)2, where δθ is the error associated with the thermal data used in the curvature 
estimates and δx is, for instance, the pixel size. To illustrate this idea in the case of copper, 
a 0.4 mm space resolution and a 0.02 °C temperature error leads to a heat source error
of about 14 °C s−1. With the same settings, this error would drop to 0.026 °C s−1 for the
polyamide composite mentioned at the end of this paper.

Figure 1. Examples of 2D fields of given heat sources s̄h: images 2, 3 show the propagation in the length 
direction (Ox) of an inclined narrow band.
Notes: Images 4–6 show a gradual concentration of heat sources. From 1 to 6 a homogeneous spatial and temporal sinusoidal 
source is superimposed.

Table 1. Parameter values for the heat source field computations.

s̄
the

s
the

0
 (°C s−1) fL (Hz)

1 0.05
s̄disL

s0L (°C s−1) aL (mm2) pL vL (mm s−1) t0L  (s)
4 3.125 10−3 0.25 1.06 120

s̄disL s0N (°C s−1) aN (mm−2) αN x
0
 (mm) y

0
 (mm)

6 6.25 10−6 1.10−4 9.6 20.48



3.2.  From heat sources to noisy temperature fields

The solution 𝜗̄i of the heat diffusion problem was computed using a home-made code (Matlab®) 
with a simple Euler time integration scheme and finite difference discretization. In accordance 
with the thermosignal characteristics given by an IRFPA camera, Gaussian white noise Ng  
was superimposed over the temperature variations �i to get a noisy set of thermal images 
�r = �i + Ng (see Figure 2).

In IRT, the extent of noise is characterised by the ‘noise equivalence temperature differ-
ence’ (NETD). For example, NETD = 0.02 °C means that the camera can detect temperature 
differences as small as 0.02 °C. NETD expresses the thermal sensitivity of the camera, and 
good sensitivity allows the user to distinguish objects in a scene that have very little tem-
perature difference between them. Note that current IRFPA cameras provide standard NETDs 
of about 0.02–0.05 °C. In Figure 2, we chose a NETD of about 0.07 °C. The six thermal fields 
correspond to the heat source distributions shown in Figure 1. The high diffusion partly 
hides the traces of heat source band propagation (fields 2 and 3) and then the progressive 
localisation (fields 4–7). The instantaneous noise effects can, however, be observed. Note 
that if a single temperature colour scale had been used for the complete test, neither thermal 
noise nor temperature gradients at any time would have been visible. That is why a colorbar 
has been systematically added to each thermal field so as to be able to focus on the tem-
perature range associated with each instant.

During the numerical tests, the following NETD were used: 0.02, 0.07, 0.12, 0.16 and 0.2 °C. 
The noisy temperature fields �r were thus used to check the POD preprocessing efficiency.

3.3.  POD preprocessing

Since the heat diffusion problem is linear with respect to temperature, it is thus possible to 
use a superposition principle. We then considered the two following sub-problems: the first 
sub-problem overlooks the heat source distribution s̄h and considers the Dirichlet thermal 
boundary conditions associated with the initial problem,

(17)
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Figure 2. Examples of 𝜗̄r fields.



while the second sub-problem considers s̄h, with homogeneous thermal boundary 
conditions:

where naturally �s + �
�
= �i + Ng = �r.

Note that the �s field is always achievable once Equation (17) has been numerically solved 
and the solution �

�
 is computed. In practice, the boundary conditions �r(±L∕2, y, t) and 

�r(x,±l∕2, t) are given by the IR camera. This so-called lifting operation allows assessment 
of the heat source distribution via a heat diffusion problem (i.e. Equation (18)) which now 
has homogeneous boundary conditions. This lifting reduces the complexity of thermal fields 
coming from possibly complex heat exchanges with the surroundings.

So the POD preprocessing was consequently split into four stages:

(i)   �The lifting temperature field �
�
 is computed by solving Equation (17) using a simple 

Euler time integration scheme.
(ii)	� Once �

�
 is computed, �s can be determined via the difference �s = �r−��

.
(iii)  �The correlation matrix is then constructed using 𝜗̄s and used to derive the eigenvalues 

and eigenvectors of the correlation matrix.
(iv)  �Setting a given number NPOD of eigenvectors (POMs) finally leads to a (filtered) approx-

imation of 𝜗̄s, named 𝜗̄POD.

A discrete version of Equation (3) can then be written as (𝜗̄POD)
k
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∑NPOD

p=1
a
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k
p
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ij
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k
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ij
= Φp(xi , yj). The scalars ap

k
 represents the projec-

tions of the temperature onto the p-th POM matrix of components Pp

ij
.

In the benchmark test, the size of the correlation matrix was (65 × 81)2, the total number 
of POMs was then equal to 5265. Figure 3 just shows the POMs 1, 2, 3 … and 14. If the surface 
of the first POMs seemed to be smooth and regular, they rapidly became complex (sharp 
increase in the number of changes of curvature sign) and looked like a noise effect induced 
by the finite space discretization.

Recall that with a great number of POMs the signal and its noise is, by construction, 
reconstructed (Equation (3)). The challenge of using a small set of POMs is naturally to recon-
struct (to filter) the thermosignal limiting the noise effects. Here, 14 POMs were necessary, 
as shown in the next subsection.

The POD prefiltering efficiency can thus be illustrated by computing the temperature 
differences between 𝜗̄i − 𝜗̄

�
= 𝜗̄s − Ng on the one hand, and �POD on the other (see Figure 4).

These differences simultaneously show the noise reduction induced by POD filtering on 
the lifted temperature fields (random error), but also the relevance of the projection of the 
temperature fields onto the orthonormal POD basis (approximation error). Figure 4 indeed 
shows that the maximum residues were less than 0.02 °C. The mean value and the standard 
deviation associated with the 600 fields of the whole numerical test were about 6.8 10−4 and 
6.8 10−3 °C, respectively. The quasi-centred distribution of temperature differences showed 
an absence of systematic error, while the order of magnitude of the standard deviation 
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indicated a substantial noise reduction induced by the sole use of 14 POMs to reconstruct 
the temperature fields.

To complete the POD preprocessing illustration, Figure 5 gives the time course of the 
components ap(t), p = 1, .., 5.

A gradual decrease in the ap amplitude can first be observed. As the temperature fields 
increase in spatial complexity and temporally change, this amplitude continues to decrease 
but at a slower rate.

The benchmark test was constructed to get this slow decrease introducing heterogene-
ous, moving in space and varying in time heat source distributions, for a very highly diffusive 
material. At least 14 POMs were required to properly reconstruct the details of the 

Figure 3. First normalised proper orthogonal modes (POMs) associated with the benchmark test.

Figure 4. Examples of 2D fields of the temperature difference 𝜗̄i − 𝜗̄
�
− 𝜗̄

POD
.



temperature fields derived from these heat sources fields. However, the extent of noise 
reintroduced in the signal increases with the number of POMs.

Finally, it is worth noting that the influence of the oscillating source s̄the throughout the 
temperature variation test is reflected by the time course of a1 and probably a2, with the 
oscillation period being roughly the same.

Finally, to check the reliability of temperature approximation by the POD technique, 
Figure 6 gives the longitudinal and transversal profiles passing through M0(x0, y0), i.e. pixel 
(i = 24, j = 52). We chose a particular instant when the signal-to-noise ratio was particularly 
bad (tk = 0.35, i.e. k = 210). The three profiles correspond to �i − �

�
, �s, and�POD. The

qualities of the POD approximation underlined in Figure 4 can once again be verified.

Figure 5. Time course of the first five components ap(t) of 𝜗̄
POD

.

Figure 6. Examples of temperature profiles: comparison of 𝜗̄i − 𝜗̄
�
 (pure lifted solution-(blue )), 𝜗̄s (noisy 

lifted solution-(red )) and 𝜗̄
POD

 (approximated solution-(green )).



Although, for this pathological case, the use of 14 POMs is satisfactory to reconstruct the 
pure lifted solution, a small part of the noise is nevertheless preserved. Recall that one main 
goal of the image processing is to estimate the second derivatives (curvatures) of the tem-
perature to assess the heat source fields. Here we can see the limitations of POD use. If the 
number of POMs is reduced, the noise influence decreases but the approximation errors 
may consequently increase. At this level, it would be interesting to discuss the efficiency of 
the POD preprocessing technique by varying the noise amplitude and number of POMs.

3.4.  Efficiency of POD preprocessing

For this purpose, we introduced the dimensionless Z ratio, defined as:

where �̂Θ2 stands for the spatiotemporal average of the differences (�POD − (�i − �
�
))2, while

Θ̂2 represents the spatiotemporal average of the squared lifted temperature (�i − �
�
)2. This 

statistical ‘signal-to-error’ ratio expresses the capability of the POD techniques to approxi-
mate and filter the thermal data. Its value naturally depends on the set of thermal data 
considered to compute the ratio itself. To give examples of Z values in some pathological 
cases, we considered the profiles given in Figure 6. The lifted temperatures were particularly 
low in this case. We found Z values of about 12–13 for the �POD profiles and of about 3–4 
when considering the �s profiles instead of �POD.

More systematically, Figure 7 depicts variations in the Z ratio as a function of the number 
of POMs and NETD for the whole test. A rapid overview showed that, at constant NETD, the 
Z intensity rapidly increased as a function of the number of POMs and reached an asymptotic 
value. As already mentioned, 14 POMs were sufficient to get these maximum Z values and 
obtain an excellent approximation of �s (as shown in Figure 6). These asymptotic values 
started at 44 for zero noise and decreased slightly to 24 for NETD = 0.2°C. In such cases, the 
decrease in Z was solely due to the thermal noise. Conversely, for a small number of POMs, 
Figure 7 still shows that the influence of the NETD on the Z ratios remained negligible. In 
such cases, the approximation errors were substantially greater than errors induced by the 
thermal noise.

(19)Z =

√
Θ̂2∕�̂Θ2,

Figure 7. Z ratio map with respect to the number of POMs and NETD values.



3.5.  From temperature to heat source fields

The ultimate goal is now to check if POD pre-processing is sufficiently effective to directly 
derive heat sources from the �POD fields by simply using a finite difference approximation.

We have already mentioned that the tricky point was to estimate Laplacian terms depicting 
local heat losses by conduction. The reliability of heat source derivations using POD prefiltering 
is illustrated in Figure 8. Again considering the particular case (t = 0.35D, i.e. k = 210) where 
the signal-to-noise ratio was particularly bad (see Figure 6), Figure 8 shows (left column) the 
�POD field and the corresponding Δ�POD field computed using finite differences. Clearly the 
residual noise on �POD obtained with 14 POMs here generated Laplacians that were too noisy 
to be directly used in the heat source computation. However, the right column shows that a 
slight and rapid filtering operation via a Gaussian kernel is sufficient to provide a �̃POD field 
whose Laplacians Δ�̃POD are now regular.

The computed heat sources s̃POD were presented in Figure 9. They were computed using 
a simple finite difference approximation of the heat diffusion equation and �̃POD fields:

where:
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Figure 8. Left column: fields of 𝜗̄
POD

 and Δ𝜗̄
POD

 at t = 0.35D. Right column: field of 𝜗̃
POD

 slightly smoothed 
via a Gaussian convolutive filter and field of Δ𝜗̃

POD
. Outside the dashed rectangle, zero-padding was used 

to perform the convolution.



In Figure 9, the different stages observed in Figure 1 can be easily detected: in images 2 and 
3 the propagation of an inclined narrow band of heat sources can be recognised in the length 
direction (Ox). Images 4–6 show a gradual concentration of heat sources around (x0, y0). The 
main difference with regard to the original heat source distributions was a crushing of local-
isation zones, inducing a spread of heat source intensities. This classical crushing due to 
convolutive filtering is clearly visible in Figure 10, where horizontal and vertical heat source 

Figure 9. Fields of the computed heat sources s̃
POD

 (POMs = 14, NETD = 0.07).
Note: Reconstructed source fields should be compared to those in Figure 1.

Figure 10. Profiles of heat source fields passing through (x0, y0) at four different times.
Notes: Full lines represent the given heat sources s̄h while symbols (circles, crosses, etc.) give the reconstructed values s̃h

POD
.



distributions, associated with the profiles defined in Figures 6 and 8, were plotted. Full lines 
were used to plot the given heat sources s̄h, symbols (e.g. circle, cross, …) depicting s̃hPOD 
values. The correspondence between given and reconstructed heat source values were qua-
si-perfect, except in the vicinity of regions where there was marked curvature in the heat 
source field (i.e. propagation of the narrow band of heat sources).

At this level, we would like to again stress the pathological character of the benchmark 
test, which we propose here to show the limitations of the method. It must be clear that in 
the case of a more standard thermal diffusivity, the errors done on the curvature of the 
temperature fields would be less important. The cutoff frequency of the filter could then be 
increased allowing a better catch of the heat source field curvatures without increasing too 
much the noise on heat source assessments. In many situations (e.g. low diffusivity materials), 
convolutive filtering is no longer useful and a direct heat source field estimate can be done 
just using 𝜗̃POD. As a proof in Figure 11, the benchmark test was performed using the ther-
mophysical properties of the polyamide (ρ = 1200 kg m−3, C = 1600 J kg−1 °C−1, 
kc = 0.4 W m−1 °C−1), while not changing the other adjustable test parameters. Only the num-
ber of POMs were increased up to POMs = 28 to avoid high approximation errors. Indeed, 
low diffusivity induces an increase in the temperature field curvatures and temperature 
variations for the same heat source distribution and thermal boundary conditions.

The given and reconstructed heat source profiles are quasi-indistinguishable in  
Figure 11.

4. POD preprocessing applied at an experimental test

We checked the efficiency of POD preprocessing applied in standard experimental tests 
through a cyclic fatigue test on a composite polyamide that is widely used in automotive 
industries to reduce to the weight of cars [20].

Figure 11. Profiles of heat source fields passing through (x0, y0) at four different times (case of polyamide).
Notes: Full lines represent the given heat sources s̄h while symbols (circles, crosses, etc.) give the reconstructed values s̃h

POD
 

(POMS = 28, NETD = 0.07).



4.1.  Experimental context

PA6.6 was here reinforced with an E-glass fibre content of 30% by weight. The fibre orienta-
tion angle was 45° with respect to the loading direction. Tensile-tensile cyclic tests were 
conducted using an MTS hydraulic testing machine equipped with a ±25 kN load cell. The 
load ratio and the loading frequency were 0.1 and 10 Hz, respectively. Thin flat specimens 
were used with a gauge part volume of 20 × 14 × 3.14 mm3. The mean thermal diffusivity 
and the time constant �2Dth  introduced in Equation (1) were separately identified. The following 
mean values were obtained: Dc ≈ kc∕�C ≈ 1.81 × 10−7 m2 s−1 and �2Dth ≈ 200 s corresponding 
to a heat exchange coefficient h of about 13 W m−2 °C−1 [20]. As already underlined, this 
situation is considerably easier to deal with than with copper in the previous benchmark 
test. Here the heat diffusion of the material was low (552-fold lower than that of pure copper), 
thus reducing the impact of Laplacian assessment errors in the heat source estimates.

The experimental setup involved a focal plane array infrared camera. During the tests, 
the infrared device was placed in front of the specimen, with the lens axis set perpendicular 
to the specimen surface. The infrared camera was calibrated using a black body. Readers 
interested in the complex metrological aspects of IR techniques are referred to [1,13,39].

The spatial resolution of the IR camera was Δx = Δy = 0.357 mm, with an image size of 
77 × 39 pixels. A set of 13622 images was recorded at 100 frames per second.

The temperature variations, measured at the specimen surface, were assumed to remain 
close to the mean depthwise temperature variations over the sample thickness e. This 
assumption was especially relevant since the sources were regularly distributed over e and 
the Biot number Bi ≈ he∕kc was small compared to the unit. A Biot number of 10−2 was 
calculated in this case, inducing small heat exchanges by convection with the surroundings 
and consequently small temperature gradients at the sample surface.

4.2.  Thermal image preprocessing

We first used the POD preprocessing technique to filter the 𝜗̃r fields. Figure 12 shows image 
# 900 of the test. On the left side, the noisy temperature variation field 𝜗̃r can be observed 

Figure 12. Comparison of 𝜗̄r (left) and 𝜗̄l + 𝜗̄
POD

 (centre) fields.
Notes: The 𝛿𝜗̄ field (right) shows the random character of the residue obtained with just six POMs. A noise amplitude close 
to the NETD of the IR camera can be observed.



and compared to the field 𝜗̃l + 𝜗̃POD. On the right, the difference 𝛿𝜗̃ = 𝜗̃r − 𝜗̃POD − 𝜗̃l is also 
plotted. Note that this difference is the same order of magnitude as the NETD of the camera 
(NETD = 0.02 °C). Only six POMs were useful for correctly approximating the noisy temper-
ature fields throughout the test and drastically reduced the noise amplitude.

4.3.  Heat source assessments

In thermographic analysis of material fatigue, the ultimate objective of thermal data pro-
cessing is to derive an average dissipation field per cycle involved in the gauge part of the 
specimen under investigation. Indeed, this average operation per cycle allows to eliminate 
thermomechanical coupling effects (which vanish over a cycle) and then the mean dissipa-
tion, representative of the material degradation kinetic throughout the (often long) fatigue 
test, can be obtained. Considering that the microstructure degradation during a small num-
ber n of cycles is low, the intrinsic dissipation source d̃1 can in practice be computed using 
the following definition:

where fL stands for the loading frequency and n ≈ 200.
The mean intrinsic dissipation fields per cycle were computed using both a standard local 

polynomial fitting based on least-squares techniques (denoted s̃hlsq), and the POD preproc-
essing method (denoted s̃hPOD in Figure 13). Although a detailed analysis of these results is 
not within the scope of this paper, we noticed that the spatial distributions of these dissi-
pative fields were not uniform and varied similarly regardless of the data processing approach 
used.

The residue 𝛿s̃h = s̃hlsq − s̃hPOD remained very small for all of the selected images (less than 
0.01 °C s−1) while slightly increasing throughout the cyclic loading because of the progressive 
concentration of heat sources.

4.4.  Image processing times

Last but not least, the overall computation times of both approaches to process the thermal 
data file (here about 975 Mo) were computed. Indeed, it was interesting to compare the time 
necessary to filter the temperature fields and assess the corresponding heat source distri-
butions. The use of POD processing considerably reduced (∼13 min) the processing time 
compared times required for a standard local least squares fitting (∼3.5 months). The time 
savings represented about 104, which is of paramount importance for research and devel-
opment services which generally have many fatigue tests to process to identify the lifespan 
criteria. Note finally that in both cases, the memory requirements on a PC with an Intel Core 
i7 2.5 GHz processor with 16 GB of RAM were about 5 GB for the given example.

5. Conclusions

In this study, POD techniques were applied to filter 2D thermal fields before assessing the 
associated heat source distribution. The main goal was to achieve rapid derivation of the 

(22)d̃1 = s̃h = ∮n cycles

n−1 fLs̄
hd𝜏



heat sources from noisy thermal data. A penalising benchmark test was considered for the-
oretical validation of the POD method. A high diffusion material was thus chosen in order 
to regularise the temperature fields induced by heat sources and then, conversely, to com-
plexify the inverse heat source estimates from thermal data. A systematic analysis of approx-
imation errors and thermal noise induced errors was performed. For a given distribution of 
heat sources and boundary conditions, a decrease in approximation errors was observed. A 
minimal number of POMs could be identified for each source distribution to achieve an 

Figure 13. Heat source fields s̃h
lsq

 and s̃h
POD

 of mean intrinsic dissipation per cycle captured at four different 
time steps corresponding to images # 100, 300, 600, 900.



optimal reconstruction of thermal fields. In parallel, an increase in noise errors was noted 
with an increase in the number of POMs, with the noise being gradually taken into account 
in the POM approximation. Different penalising NETD were also taken into account to check 
the POD prefiltering robustness. We confirmed that the disturbing effects of standard thermal 
noise on the heat source computation could satisfactorily be controlled once an optimal 
number of POMs (limiting the approximation errors) was defined. For the pathological case 
of copper, convolutive filtering was necessary to compute reliable heat source fields. 
However, a simple finite difference computation of the heat source fields using the approx-
imated temperature fields by POD are generally sufficient to get satisfactory results since 
low heat diffusion materials are considered.

As an illustrative example, an application of POD prefiltering to several temperature fields 
extracted from a fatigue test on a composite polyamide was presented. Its heat diffusion 
coefficient was particularly low. Local fields of mean intrinsic dissipation per cycle were 
computed at different loading stages using a simple finite difference approximation and 
local least-squares fitting. We found that both distributions matched very well throughout 
the test. We also highlighted that POD led to tremendous savings in computation time 
compared with local least-squares fitting methods. Indeed, the POD method reduced the 
processing time by around 104-fold!
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