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Joliot-Curie, 13453 Marseille, France
cInstitute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology

(KIT), Englerstraße 7, 76131 Karlsruhe, Germany

Abstract

In this paper, we introduce a mathematical framework for obtaining spatially
smooth semantic labelings of 3D point clouds from a pointwise classification.
We argue that structured regularization offers a more versatile alternative to
the standard graphical model approach. Indeed, our framework allows us to
choose between a wide range of fidelity functions and regularizers, influencing
the properties of the solution. In particular, we investigate the conditions
under which the smoothed labeling remains probabilistic in nature, allowing
us to measure the uncertainty associated with each label. Finally, we present
efficient algorithms to solve the corresponding optimization problems.

To demonstrate the performance of our approach, we present classifica-
tion results derived for standard benchmark datasets. We demonstrate that
the structured regularization framework offers higher accuracy at a lighter
computational cost in comparison to the classic graphical model approach.
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1. Introduction

Due to the steadily increasing availability of geospatial information, their
automated analysis has become a topic of major interest in photogrammetry,
remote sensing, robotics, and computer vision. In particular, the represen-
tation of a scene in the form of a 3D point cloud and a subsequent semantic5

interpretation of this point cloud serve as the basis for many applications,
such as scene modeling, autonomous navigation, or object detection. For
instance, the analysis of 3D point cloud data acquired within urban environ-
ments benefits from a semantic labeling since the latter can be exploited for
the creation of large-scale city models (Lafarge and Mallet, 2012) or urban10

accessibility diagnosis (Serna and Marcotegui, 2013).
The semantic interpretation typically consists in assigning a semantic

label (e.g. building, ground or vegetation) to each point of the considered 3D
point cloud, as shown in Figures 1a-1c. This assignment can be accompanied
by an estimation of the confidence of the labeling of each point in the form15

of a probability distribution over the labels, as illustrated in Figure 1d. Such
a certainty assessment can prove useful when either the precision or the
recall of the classification is more crucial for a given application. In the case
of autonomous navigation for example, merely the possibility of an obstacle
can be enough to alter course, and a probabilistic occupancy map is preferred20

to a binary one (Moravec and Elfes, 1985; Hornung et al., 2013). In the case
of reconstruction tasks which necessitate the removal of a specific semantic
class beforehand (Clode et al., 2004), precision is the focus in order to not
accidentally remove relevant information. In a context of active learning, an
assessment of the labeling certainty can guide an operator to the areas of25

the point cloud in which the classification is least certain, as they are more
prone to be labeled incorrectly and might require manual re-labeling (Jing
et al., 2004). The nature of the assignment, either a probability or a label,
depends on the choice of the method used for inference.

The semantic labeling of 3D point clouds has been addressed by numer-30

ous investigations (Munoz et al., 2009; Shapovalov et al., 2010; Mallet et al.,
2011; Niemeyer et al., 2014; Xu et al., 2014; Guo et al., 2015; Weinmann
et al., 2015a; Weinmann, 2016; Hackel et al., 2016b). However, this problem
remains challenging due to the irregular point sampling, occlusions, and the
complexity of the considered scenes, which induce a loose yet meaningful35

structure to the data. Furthermore, the consideration of larger scenes typi-
cally results in a huge amount of data and efficient techniques for semantic

2
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labeling are therefore desirable. To foster research regarding semantic label-
ing of 3D point cloud data, a variety of benchmark datasets acquired within
urban environments have been released (Munoz et al., 2009; Serna et al.,40

2014; Vallet et al., 2015; Hackel et al., 2016b).
The straightforward approach for semantically labeling a considered 3D

point cloud consists in extracting a variety of features for all points, con-
catenating these features to a feature vector, which is then classified with
a classifier trained on representative training examples. This strategy has45

for instance been followed in the framework introduced by Weinmann et al.
(2015a), in which a diversity of distinctive geometric low-level features serve
as input for a standard supervised classification scheme. While this rather
simple approach already yields good classification rates due to the use of
distinctive features, the visualization of the classified 3D point cloud reveals50

a noisy behavior as each point is treated individually by only considering the
respective feature vector for classification. To illustrate this effect, we pro-
vide a ground truth labeling for a considered 3D point cloud in Figure 1a and
a pointwise classification based on distinctive geometric low-level features in
Figure 1b. Considering the ground truth labeling, one can observe a high55

spatial regularity of the labeling. Indeed, as the number of 3D points far
exceeds the number of objects in the scene, it is reasonable to assume that
most 3D points are surrounded by points of the same label.

To impose spatial smoothness on this classification result, contextual in-
formation among neighboring 3D points is typically taken into account. For60

this purpose, the spatial structure of a 3D point cloud can be captured by a
graph encoding the adjacency relationship between 3D points. Thereby, the
adjacency relationship can be derived from the local neighborhood of each 3D
point (Weinmann et al., 2015b), pre-segmentations (Niemeyer et al., 2016),
or super-voxel structures (Lim and Suter, 2009). Based on the defined ad-65

jacency relationship, a context model is typically derived in the form of a
graphical model, e.g. a Markov random field (MRF) (Munoz et al., 2009;
Shapovalov et al., 2010; Lu and Rasmussen, 2012; Najafi et al., 2014) or its
discriminative counterpart, the conditional random field (CRF) (Niemeyer
et al., 2011, 2014; Schmidt et al., 2014; Weinmann et al., 2015b). As a70

consequence of imposing spatial smoothness on the derived labeling, the cor-
responding classification results are often significantly improved as can be ob-
served in Figure 1c. However, the choice of the inference strategy (marginal,
maximum-a-posteriori) will have a profound impact on the precision and na-
ture of the solution (probabilistic or labeling), as well as the computation75
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(a) Ground truth (b) Pointwise classification

(c) Regularized classification (d) Confidence map

Figure 1: Visualization of a 3D point cloud labeling for a part of the Paris-rue-Cassette
Database (Vallet et al., 2014). In (a), (b), and (c), the color encoding addresses the classes
Façade (gray), Ground (orange), Cars (blue), 2-Wheelers (yellow), Road Inventory (red),
Pedestrians (magenta) and Vegetation (green). In (d), the confidence is represented from
green to red: confident uncertain. Remark that misclassifications in (c) correspond
to the least confident area in (d).

times.
In this paper, we propose to consider the problem of spatially smooth-

ing semantic labelings of 3D point clouds from a structured regularization
perspective. While using such a model results in a loss of interpretability
compared to a probabilistic approach, it offers several advantages. In partic-80

ular, the structured regularization approach allows:

• the choice from a wide range of fidelity functions and regularizers 1,

1Notably, this framework allows us to express the graphical model approach as a special

4
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• the choice to retain or not the probabilistic aspect of the input labeling,
and

• the use of fast solving algorithms, compared to slow and memory-85

intensive message-passing algorithms.

After briefly introducing the used notation and the formal description of
the considered problem in Section 1, we summarize related work in Section 2.
Subsequently, in Section 3, we outline the main idea of the fundamental
framework for pointwise point cloud classification, which follows the work90

presented in (Weinmann et al., 2015a; Weinmann, 2016) but additionally
allows the choice between hard labelings, in which each 3D point is assigned
one unique class label, and soft labelings in the form of class probabilities.

As the labelings obtained via pointwise classification are not generally
spatially smooth, we present a general regularization framework that takes95

into account the fact that class labels of neighboring 3D points tend to be
correlated. In Section 4, we present the label-smoothing problem as a reg-
ularization problem structured by an adjacency graph, and we present four
fidelity functions as well as two graph-structured regularizers and two possi-
ble search spaces. The choice of a fitting minimizing algorithm hinges on the100

respective properties of the fidelity and regularizing functions. In Section 5,
we present efficient, state-of-the-art algorithms to solve the different cases
encountered. Furthermore, we present a novel extension of the ℓ0-cut pursuit
algorithm presented by Landrieu and Obozinski (2016a), allowing the input
to take the form of multi-dimensional probabilities instead of one-dimensional105

values only. To demonstrate the performance of our methodology, we present
in Section 6 experimental results for different configurations of our framework
as well as for state-of-the-art approaches. We focus on the quality of the re-
sulting classifications, and to stress the advantages of probabilistic labelings,
we present the partial coverage classification as well. Finally, in Section 7,110

we provide concluding remarks and suggestions for future work.

1.1. Notation

We denote V the finite set of 3D points to label, and K the finite set of
potential semantic labels for each 3D point. Throughout this paper, we make

instance.

5
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an important distinction between hard and soft labelings. In that regard, we
denote by S the simplex:

S = {p ∈ [0, 1]K |
∑

k∈K

pk = 1}. (1)

Elements of S are called soft labelings. Similarly, we denote S the corners of
the simplex:

S = {p ∈ {0, 1}K |
∑

k∈K

pk = 1}. (2)

Elements of S are called hard labelings. For a labeling p ∈ S or S and a
semantic class k ∈ K, we denote the probability associated with class k by
pk, and consider the probability p as a vector of size |K|.115

Throughout this paper, we denote labelings of a single 3D point in lower-
case, and global labelings, relative to the entire point cloud V , in uppercase.
For such a global labeling P ∈ SV or SV , i ∈ V we denote the labeling of a
point i ∈ V by Pi and its probability for class k by Pi,k.

1.2. Problem statement120

We consider a set of 3D points V for which we have a soft labeling P ∈ SV

obtained via a classification algorithm which does not directly account for
spatial smoothness. The goal is to find P ⋆, an improved labeling with in-
creased spatial smoothness while remaining as close as possible to the input
labeling P . Our proposed approach is to define P ⋆ as the solution of a well-125

chosen optimization problem, whose objective functional is structured by an
adjacency graph capturing the spatial relationship between the 3D points.
P ⋆ can be either a soft labeling or a hard labeling depending on the param-
eterization of the regularization problem. This process can be broken down
into three parts:130

• Computing the initial labeling: The proposed regularization frame-
work is not affected by the choice of the method used to obtain the
initial classification. However, our approach is more suited when the
initial labeling is probabilistic. In this paper, we use a classification
framework which is described in Section 3 and relies on the use of a135

diversity of low-level geometric 3D and 2D features as input for a stan-
dard random forest classifier (Weinmann et al., 2015a).

6



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

• Parameterizing the regularization problem: We define P ⋆ as the
result of an optimization problem with the following structure:

P ⋆ ∈ argmin
Q∈ΩV

{Φ(P,Q) + λΨ(Q)} , (3)

where Φ is the fidelity term, Ψ the regularizer, λ > 0 the regularization
strength, and Ω the search space. The fidelity term Φ(P,Q) enforces
the influence of the initial labeling P , in the sense that it decreases as140

Q is closer to P . The regularizer Ψ favors solutions that are spatially
smooth, in the sense that most adjacent nodes share the same label.
The regularization strength λ is a user-defined parameter which dictates
the influence of the regularization with respect to the fidelity term. In
Section 4, we present the respective advantages of four fidelity terms,145

two regularizers, and two different search spaces.

• Solving the optimization problem: The choice of the minimizing
algorithm to solve the regularization problem (3) hinges on the re-
spective properties of the fidelity term and regularizer functions. In
particular, we distinguish three settings: combinatorial, convex contin-150

uous and non-convex continuous problems. In Section 5, we present
efficient, state-of-the-art algorithm for each case.

2. Related work

In recent years, a lot of attention has been paid to the semantic classifi-
cation of 3D point clouds. Many investigations focus on a pointwise classifi-155

cation (Section 2.1) which serves as initial labeling for our framework. Spa-
tially smooth labelings are subsequently obtained by computing an adjacency
structure (Section 2.2) which allows for contextual classification (Section 2.3).

2.1. Semantic classification of 3D point clouds

The classic approach for point cloud classification is to treat each point160

individually by extracting a set of handcrafted features describing that point
and using the respective feature vector as input for a standard supervised
classification algorithm. Consequently, much effort has been spent on feature
extraction and the classification procedure itself. In the following subsections,
we summarize the main ideas behind both aspects.165

A variety of handcrafted 3D shape features derived from the 3D structure
tensor have been presented in different investigations (West et al., 2004;

7
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Pauly et al., 2003). Those features are advantageously completed by further
characterization of the local 3D structure, e.g. in terms of angular statistics
(Munoz et al., 2009), height and plane characteristics (Mallet et al., 2011;170

Guo et al., 2015), low-level 3D and 2D features (Weinmann et al., 2015a), or
moments and height features (Hackel et al., 2016b).

The definition of an appropriate local neighborhood that comprises the
local 3D structure is a crucial issue as it serves as the basis for feature ex-
traction. Such neighborhoods are parameterized with a single parameter,175

commonly referred to as the scale and typically represented by the radius
(Lee and Schenk, 2002; Filin and Pfeifer, 2005) or the number of nearest
neighbors considered (Linsen and Prautzsch, 2001). To avoid invoking prior
knowledge about the scene, a data-driven solution for selecting the optimal
neighborhood size of each point is desirable. Respective approaches are for180

instance based on the local surface variation (Pauly et al., 2003; Belton and
Lichti, 2006) and the combined consideration of curvature, point density
and noise of normal estimation (Mitra and Nguyen, 2003; Lalonde et al.,
2005). Further approaches have been presented with dimensionality-based
scale selection (Demantké et al., 2011), and eigenentropy-based scale selec-185

tion (Weinmann et al., 2015a; Weinmann, 2016).
Other approaches focus on the computation of local 3D features at dif-

ferent scales. In this regard, it has been proposed to consider a collection
of spherical neighborhoods (Brodu and Lague, 2012), a collection of cylin-
drical neighborhoods (Niemeyer et al., 2014), a combination of cylindrical190

and spherical neighborhoods (Blomley et al., 2016), a combination of neigh-
borhoods in the form of voxels, blocks and pillars (Hu et al., 2013), or a
combination of neighborhoods in the form of spatial bins, planar segments
and local neighborhoods (Gevaert et al., 2016). A different strategy has been
followed with the generation of a scale pyramid by repeated downsampling195

via a voxel-grid filter (Hackel et al., 2016b), which allows for calculating fea-
tures based on a fixed, small number of nearest neighbors for each of these
scales.

Depending on the system used for data acquisition, further types of data
can be recorded in addition to spatial coordinates. Accordingly, complemen-200

tary types of features can be derived based on the additional data, e.g. echo-
based features (Chehata et al., 2009; Mallet et al., 2011; Waldhauser et al.,
2014), full-waveform features (Chehata et al., 2009; Mallet et al., 2011) or
radiometric features (Niemeyer et al., 2014; Schmidt et al., 2014).

The extracted features are concatenated to feature vectors that are pro-205

8
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vided as input to a classifier. In most cases, the focus is put on supervised
classification. Accordingly, representative training data is required to train
the involved classifier so that it is afterwards able to generalize to unseen
data and thus able to assign a (semantic) class label to each point of the
point cloud.210

A variety of techniques may be applied for supervised classification, such
as random forest classifiers (Chehata et al., 2009), support vector machine
classifiers (Mallet et al., 2011), or Bayesian discriminant analysis classifiers
(Khoshelham and Oude Elberink, 2012). Those classifiers are rather easy
to use and meanwhile available in numerous software tools. A variety of215

such standard classifiers has recently been involved in a comprehensive study
focusing on the classification of mobile laser scanning data (Weinmann et al.,
2015a; Weinmann, 2016), where the derived results reveal that a random
forest classifier provides a good trade-off between classification accuracy and
computational efficiency. However, due to the pointwise consideration relying220

only on a feature vector per point, the labeling derived with such standard
classifiers typically lacks spatial regularity, i.e. the classified point cloud
typically reveals a “noisy” behavior, although it should be taken into account
that class labels of neighboring 3D points tend to be correlated.

Since the regularization framework proposed in this paper is independent225

of the choice of the method used for the initial labeling, we focus on the
use of standard techniques. We use an existing classification framework2

presented by Weinmann et al. (2015a), which is based on the use of a variety
of low-level geometric 3D and 2D features as input for a standard random
forest classifier. The choice of this classification framework is motivated by230

the fact that it (1) focuses on a data-driven neighborhood recovery and is
thus applicable for different point clouds without involving prior knowledge
about the scene and/or the data, (2) exploits a set of informative features
that are still interpretable, (3) already provides a reasonable initial labeling,
and (4) can easily be adapted to produce a soft labeling rather than a hard235

one.

2.2. Graph structure of point clouds

Statistical context models are commonly used for modeling the relation-
ship between neighboring points, and, consequently, imposing spatial reg-

2Respective implementations can be found at http://www.ipf.kit.edu/code.php.
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ularity on the semantic labelings of 3D points clouds. In general, context240

models are based on the construction of an adjacency graph defining the ex-
tent to which interactions in a local neighborhood are considered, i.e. it is
possible to take into account short-, mid- and long-range dependencies. It
is important to note that this adjacency graph is in general not the same as
the neighborhood graph used to compute local geometric features.245

There are numerous approaches to obtain such adjacency graphs. The
most common is to derive the graph from a neighborhood relationship, from
nearest neighbors graph (Shapovalov et al., 2010) to cylindrical (Filin and
Pfeifer, 2005; Niemeyer et al., 2014) or adaptive neighborhoods (Demantké
et al., 2011; Weinmann et al., 2015b). Thereby, a simplifying assumption is250

typically made by only considering short-range dependencies. This is mo-
tivated by the observation that the quality of derived classification results
reveals a saturation effect when increasing the scale parameter of the local
neighborhood used for defining the adjacency graph. In this regard, the av-
erage number of involved neighbors was 7 in an investigation focusing on the255

classification of airborne laser scanning data (Niemeyer et al., 2011, 2014).
Similar observations have been made in an investigation focusing on the clas-
sification of mobile laser scanning data (Weinmann et al., 2015b), where the
consideration of short-range dependencies already delivers classification re-
sults of high quality. However, the latter investigation also indicates that260

adapting the size of the local neighborhood used for defining the adjacency
graph with respect to the locally-adaptive neighborhood used for feature
extraction is favorable in comparison to fixed neighborhoods. In these ex-
periments, the average number of involved neighbors was between 15 and 21,
depending on the approach used for deriving locally-adaptive neighborhoods.265

Instead of defining context models on the basis of neighboring points,
different entities may be used as well. In this regard, several investigations
advocate a super-voxel-based approach to represent the higher order struc-
ture (Lim and Suter, 2009; Niemeyer et al., 2016; Guignard and Landrieu,
2017).270

2.3. Spatially smooth labeling

To derive a labeling with a higher spatial regularity, smooth labeling
techniques (Schindler, 2012) or approaches for contextual classification can
be used. The latter consider an initial labeling derived with a standard
classifier and use a statistical context model to increase spatial regularity.275

Thereby, the classification of a given point does not only take into account

10
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the feature vector corresponding to this considered point, but also the labels
corresponding to neighboring points as well.

Respective approaches have for instance been used in the form of associa-
tive Markov networks (Munoz et al., 2009), non-associative Markov networks280

(Shapovalov et al., 2010), conditional random fields (Niemeyer et al., 2014;
Schmidt et al., 2014; Weinmann et al., 2015b; Landrieu et al., 2017), simpli-
fied Markov random fields (Lu and Rasmussen, 2012), multi-stage inference
procedures focusing on point cloud statistics and relational information over
different scales (Xiong et al., 2011), and spatial inference machines modeling285

mid- and long-range dependencies inherent in the data (Shapovalov et al.,
2013).

Some of the presented approaches rely on the consideration of point cloud
segments, e.g. (Shapovalov et al., 2010; Xiong et al., 2011), whereas others
directly classify points, e.g. (Niemeyer et al., 2014). In this paper, we take290

into account that segment-based methods heavily depend on the quality of
the results of the segmentation algorithm, and we therefore focus on the
regularization of point clouds without the use of pre-segmentations or super-
voxels.

In pairwise context models, such as CRFs or MRFs, retrieving the most295

likely spatially smooth labeling is referred to as maximum-a-posteriori in-
ference. In practice, this labeling can only be approximated, using efficient
combinatorial optimization techniques, notably based on graph-cuts. This
form of inference produces a hard labeling, and hence loses the probabilistic
nature of the initial labeling.300

Alternatively the label distribution can be computed for each node with
marginal inference, which allows us to keep the probabilistic nature of the
classification. However, marginal inference is typically approximated with
message-passing algorithms such as loopy belief propagation (Niemeyer et al.,
2011, 2014; Weinmann et al., 2015b), which are significantly slower and lead305

to classifications of lower likelihood and less accurate classification results,
as detailed in (Landrieu et al., 2017).

Lellmann et al. (2013) propose a variational approach, in which the dis-
crete label set is relaxed into a continuous one. This approach permits the
use of convex optimization algorithms, and yields results with arguably less310

artifacts than the solutions of combinatorial optimization techniques. The
article shows that, with reasonable assumptions, the solution of the opti-
mization can easily be discretized into a spatially smooth labeling.
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3. Probabilistic classification of point clouds

Our framework requires first computing a pointwise probabilistic classi-315

fication P ∈ SV . While the exact method used to obtain said classification
does not impact its smoothing, provided it is reasonably good, we present the
fundamentals of pointwise semantic labeling for the sake of completeness. We
follow a slightly modified version of the framework presented by Weinmann
et al. (2015a), in which the output is a soft labeling rather than a hard one.320

In the following, we briefly address the recovery of a local neighborhood for
each 3D point (Section 3.1) which allows to compute low-level geometric 2D
and 3D features based on the point statistics within (Section 3.2), and finally
the supervised classification based on the extracted features (Section 3.3).

3.1. Recovery of local neighborhoods325

To appropriately describe the local 3D structure at a considered point of
the point cloud, we take into account that we are dealing with mobile laser
scanning data acquired in urban environments. In such scenarios, the point
density varies strongly according to the distance of the target such that it is
advisable to use a spherical neighborhood definition relying on a scale param-330

eter in the form of either a radius or the number of nearest neighbors that are
considered. To allow for flexibility with respect to the given data, we focus
on a data-driven approach to determine neighborhood size by selecting the
number of nearest neighbors in the local 3D neighborhood of each individual
point with eigenentropy-based scale selection (Weinmann et al., 2015a). This335

approach has proven to compare favorably to a variety of other approaches,
and neither involves parameter tuning nor prior knowledge about the scene.

More specifically, for varying values of the scale parameter s ∈ N, we use
the 3D coordinates of each point and its s nearest neighbors to derive the
respective 3D structure tensor T ∈ R

3×3 as a function of the scale parameter
s. The 3D structure tensor T is a symmetric positive semi-definite matrix,
i.e. its three eigenvalues exist, are non-negative and correspond to an orthog-
onal system of eigenvectors. Once normalized by their sum, the eigenvalues
µ1(s) ≥ µ2(s) ≥ µ3(s) ≥ 0 can be considered as “quasi-probabilities”, allow-
ing us to define an energy function for optimal neighborhood size selection
on the basis of the Shannon entropy:

Eµ(s) = −
3

∑

j=1

µj(s) ln {µj(s)} . (4)
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This energy function of the scale parameter s is known as the eigenentropy
and describes the order/disorder of 3D points within the local 3D neighbor-
hood. We select the parameter sopt by minimizing the eigenentropy Eµ(s)
across varying values of the scale parameter s:

sopt = argmin
s∈K

Eµ(s). (5)

In the scope of our work, we test different values of s within a predefined set,
with a lower boundary of smin = 10 neighbors to remain statistically mean-
ingful (Demantké et al., 2011; Weinmann et al., 2015a; Weinmann, 2016) and340

an upper boundary of smax = 100 to limit the computational effort.

3.2. Extraction of low-level geometric 3D and 2D features

In the scope of this work, we describe each 3D point by considering all
points within its local neighborhood of optimal size and calculating the re-
spective values for a set of handcrafted geometric features proposed in (Wein-345

mann et al., 2015a; Weinmann, 2016). These features are rather intuitive,
and each feature is only represented by a single value.

The considered feature set comprises 14 low-level geometric 3D features.
Eight of them are derived from the normalized eigenvalues µj and repre-
sented by linearity, planarity, sphericity, omnivariance, anisotropy, eigenen-350

tropy, sum of eigenvalues and change of curvature (West et al., 2004; Pauly
et al., 2003). The other features are derived from the optimal neighborhood
itself and given by the height of the considered point, the radius of the local
neighborhood, the local point density, the verticality, and the maximum dif-
ference as well as the standard deviation of the height values corresponding355

to those points within the local neighborhood.
To take into account the particular role played by the vertical dimension

in urban environments, we also consider 2D features defined in analogy to
the 3D case. More specifically, we use the normalized eigenvalues of the 2D
structure tensor derived from the 2D projections of a considered point and360

its sopt nearest neighbors onto a horizontally oriented plane. We consider the
2D features determined by the sum and ratio of these normalized eigenvalues,
as well as the radius of the local neighborhood and the local point density in
the 2D projection.

The derived values for all features extracted for a point are finally con-365

catenated to a feature vector. Taking into account that the defined features
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correspond to different quantities with different units, we introduce a normal-
ization across all feature vectors which maps each dimension onto the interval
[0, 1]. Thereby, the mapping function is defined based on the training data.

3.3. Supervised classification370

To obtain an initial labeling based on the derived feature vectors, we fo-
cus on ensemble learning which relies on the idea of strategically generating
a set of weak learners and combining them in order to create a single strong
learner. A rather intuitive combination of weak learners is realized via bag-
ging (Breiman, 1996), where bootstrapped replica of the training data (i.e.375

randomly drawn subsets) are used to train a set of weak learners of the same
type. As each of the weak learners is trained on an independent subset, the
weak learners are all randomly different from one another. This, in turn, re-
sults in a de-correlation between individual hypotheses and thus an improved
generalization and robustness may be expected when taking the respective380

majority vote over all hypotheses (Criminisi and Shotton, 2013).
The most popular example for bagging is represented by a random forest

classifier (Breiman, 2001) which relies on a set of NT decision trees as weak
learners and typically yields a good trade-off between accuracy and computa-
tional effort (Weinmann et al., 2015a; Weinmann, 2016). To obtain an initial385

global soft labeling, we use a random forest classifier whose parameters are
cross-validated, and define the probability that a point i belongs to the class
k as:

Pi,k =
Nk

NT

,

where Nk is the number of decision trees having voted for class k. This soft
labeling in the form of classwise probabilities may not be spatially regular,390

and hence may be used as the basis for a subsequent regularization as we
explain in the following section.

4. Regularizing soft labelings on a weighted graph

We consider P ∈ Sn a global soft labeling of a 3D point cloud and seek
an alternate labeling P ⋆ with increased spatial regularity. In that regard, we395

define P ⋆ as the solution of the structured optimization problem (3) with well-
chosen search space, fidelity terms, and regularizing functions. This problem
is said to be structured, as both fidelity terms and regularizers have a specific
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form derived from an adjacency graph G = (V,E,w), defined in Section 4.1.
In the following, we present and discuss the respective properties of different400

options for the search space (Section 4.2), the fidelity term (Section 4.3), and
the regularizer (Section 4.4).

4.1. Adjacency graph of point clouds

In this paper, we focus on the regularization of semantic labelings, while
investigating the respective benefits of different adjacency graphs is beyond405

the scope of our work. We chose a symmetrized 10-neighborhood adjacency
graph with constant edge weight for its simplicity of implementation (Indyk
and Motwani, 1998). However, our framework can naturally handle graphs
with weighted edges, and we directly incorporate edge weights into our ob-
jective function.410

4.2. Search space for probabilistic labelings

In this paper, we restrict the choice of Ω to hard or soft labelings: Ω = S
or Ω = S. While hard labelings assign a unique class, soft labelings assign a
probability for each class, and consequently contain more information. How-
ever, producing a hard labeling for each point remains the main objective of415

semantic classification.
The most straightforward way to produce a hard labeling from a soft

labeling is to assign the label which has the highest probability for each
point independently, assuming it is unique. If it is not, the label can be
chosen arbitrarily from the classes of highest probability, with the lowest
index for example. In other words, for a soft labeling P ∈ Sn, we define the
associated hard labeling P̂ ∈ Sn such that for all nodes i ∈ V :

P̂i,k =







1 if k = min argmax
l∈K

Pi,l

0 otherwise
(6)

The main advantage of choosing Ω = S over S is that a soft labeling
allows the confidence assessment of the associated hard labeling through
the computation of its entropy. This can be useful when the focus of the
classification is precision rather than the full coverage of the point cloud. In420

such circumstances, the global labeling can be sorted by increasing entropy,
ensuring that the first points have higher confidence.

15
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4.3. Fidelity terms for regularizing distributions
The fidelity term Φ(P, ·) : Sn 7→ R of the optimization problem defined

in (3) enforces the influence of the soft labeling P in Sn. In the scope of this
paper, we focus on fidelity terms that are separable with respect to V :

Φ(P,Q) =
∑

i∈V

φ(Pi, Qi),

where φ(p, ·) : S 7→ R is a smooth and convex function called the fidelity
function. Such a function φ(p, q) must be minimal for q = p, and increases425

as q differs from p. It is important to note that the fidelity function must be
defined on the convex domain S, but can be restricted to Ω = S since S ⊂ S.

In this section, we present four different choices for φ. This list is not com-
prehensive, and could be extended with the Riemannian distance (Aström
et al., 2016), or non-differentiable norms such as the L1-norm or its variant430

presented in (Huber, 1964).

4.3.1. Linear fidelity

The linear fidelity is traditionally used as a convex relaxation of unary
potentials for labeling problems. We define it here as the opposite of the
scalar product with the observed probability p:

φlinear(p, q)
.
= −〈p, q〉 = −

∑

k∈K

pkqk. (7)

In accordance with general results of linear programming, the linear fidelity
function encourages solutions that lie in the corner of the feasibility set, i.e.
S, as illustrated in Figure 2a. Although the choice of the regularizer can alter435

this behavior, this fidelity function should be used when a hard labeling is
preferred.

The main advantage of this fidelity function is its simplicity: it is a simple
scalar product and its gradient is constant. However linearly factoring the
observed probability might be too simplistic, in particular when it comes to440

low observed probability. For example, the penalty for choosing two labels
with probability 0.5 is the same than choosing one label with probability 0.

4.3.2. Linear-logarithmic fidelity

The linear-logarithmic fidelity is defined as the opposite of the scalar
product with the logarithm of the observed probability p:

φlog(p, q)
.
= −〈q, log(p̂)〉 = −

∑

k∈K

qk log(p̂k), (8)
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where log denotes the entrywise logarithm and p̂ is a version of the observed
probability which is smoothed to prevent numerical issues: p̂k =

α
K
+αpk with445

α ∈ [0, 1[. Due to its linearity, this function tends to induce a hard labeling
as well, as illustrated in Figure 2a. We remark that the fidelity term of the
log-likelihood in graphical models such as MRFs or CRFs corresponds to this
fidelity function. However, the probabilistic modeling setting is restricted to
hard labelings for q while we extend it to the simplex S.450

This fidelity, while still simple to compute, necessitates the tuning of a
supplementary tuning parameter. In our experiments, the influence of α was
fairly minimal and we chose α = 0.05 across all experiments. The main
advantage of this function is that it heavily penalizes choosing labels with
low probability.455

4.3.3. Quadratic fidelity

The quadratic fidelity corresponds to the sum of squared differences (SSD)
between distributions:

φquadratic(p, q)
.
= ‖p− q‖2 =

∑

k∈K

(pk − qk)
2. (9)

Unlike the two linear functions presented above, this fidelity function does
not favor hard labelings, and it hence retains the probabilistic nature of P .
The penalty is proportional to the Euclidian distance on the simplex between
the observed and the assigned probability, as represented in Figure 2b.460

4.3.4. Kullback-Leibler fidelity

The Kullback-Leibler (KL) fidelity relies on the Kullback-Leibler diver-
gence KL(p, q) which has been introduced in (Kullback and Leibler, 1951) as
a measure of similarity between two distributions p and q:

KL(p, q)
.
=

∑

k∈K

pk log

(

pk

qk

)

= −
∑

k∈K

pk log (qk) + function of p. (10)

Since we are only interested in optimizing the fidelity function with respect
to q, we can discard the constant part of the previous equation. As with the
linear-logarithmic fidelity, we smooth both p and q using a convex combina-
tion with the uniform distribution parameterized by α ∈ [0, 1[:

φKL(p, q)
.
= −

∑

k∈K

p̂k log (q̂k), (11)
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with p̂k =
α
K
+ (1− α)pk and likewise q̂k =

α
K
+ (1− α)qk.

This fidelity term is better suited for comparing distributions than the
quadratic fidelity. Indeed, it penalizes more heavily the disparity between p
and q if p is a confident labeling, meaning that one label dominates the other.465

On the other hand, if p is such that all classes have similar probabilities,
then differences between q and p should be less penalized. This property,
illustrated in Figure 2c, reflects that the observed probability should be most
influential when confident, while regularity should be the deciding factor for
ambiguous labelings.470

4.4. Penalizers inducing spatial regularity

The regularizer Ψ(·) : Sn 7→ R favors solutions of (3) which are spatially
smooth, in the sense that most adjacent nodes in the graph G share the same
label. In this section, we present two popular spatial regularity-inducing
penalizers and their respective properties. For this purpose, we consider the475

graph G = (V,E,w) defined in Section 4.1. As with the fidelity terms, all
penalizers are defined on the convex domain.

We define a global labeling Q as spatially smooth if the number of non-
zeros values in {xi − xj | (i, j) ∈ E} is small compared to the number of
edges. Indeed, for such a labeling, most nodes are surrounded by neighbors480

of the same label. Such a labeling is constant with respect to a partition of G
which is coarse, i.e. with a number of constant connected components that
is small with respect to the number of nodes.

We restrict ourselves to regularizers that factorize over the edges of G,
i.e. that can be written under the following form:

Ψ(Q)
.
=

∑

(i,j)∈E

wijψ(Qi −Qj), (12)

with ψ : RK 7→ R a functional minimal in 0, encouraging spatially smooth
solutions. Regularizers of this form were first introduced by Geman and485

Reynolds (1992), and include many of the most commonly used spatial
regularity-inducing penalties.

4.4.1. Potts penalty

Pairwise graphical models such as MRFs and CRFs encode the influence
of the context with an interaction potential between adjacent nodes whose
value is zero when the labels are identical and strictly non-negative when

18
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(a) Linear and linear-logarithmic fidelity
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(b) Quadratic fidelity
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(c) Kullback-Leibler fidelity

Figure 2: Surface plot of the fidelity functions over the simplex for |K| = 3. The observed
distribution p is represented by a green star ⋆, while the value of the fidelity function of the
corresponding point of the simplex is represented with the following normalized colormap:
low high. We remark that the quadratic divergence illustrated in (b) only
takes the radial distance into account. On the other hand, the linear fidelities illustrated
in (a) are minimal at the simplex corner closer to the observed distribution, or constant
if the distribution is uniform, as seen on the top left figure. Finally, the confidence of the
observed distribution is taken into account when estimating the Kullback-Leibler fidelity
illustrated in (c).
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they are different (Potts, 1952). This translates into choosing Ω = S and a
functional ψPotts equal to 0 in 0 and 1 everywhere else:

ψPotts(d) =

{

0 if q = 0

1 else.
(13)

This functional can naturally be extended to the case where Ω = S. In
this case, the Potts penalty corresponds to the total weighted cut between490

constant components of G, and is referred to as the total boundary size.

4.4.2. Total Variation

The graph total variation (TV) can be seen as a convex relaxation of the
above Potts penalty, which, to a certain extent, can also enforce piecewise-
constant solutions (Rudin et al., 1992). Its definition depends on the context495

but usually consists in setting ψ as a norm over RK.
Over vector spaces, the use of an Euclidean norm is often considered,

enjoying theoretical isotropy. Here, however, ψ is applied to the difference
between two discrete distributions, for which the notion of isotropy is not
relevant. Observe that the use of an Euclidean norm would enforce equality500

of neighboring distributions only as a whole, that is to say in the solution
set either the two distributions are exactly the same, or they differ over
each label for which the observation P differs. As a consequence, if two
neighboring labelings in P disagree over the probability of one given label,
and thus their equality is not favored in the solution set, then equality of the505

discrete probabilities for the other labels would not be favored either.
Although we do not investigate its practical advantage further, we pre-

fer using an ℓ1-norm, which is the separable sum of the absolute values of
the finite differences, thus favoring the equality of all neighboring discrete
probabilities more independently:510

ψTV(q) =
∑

k∈K

|qk|. (14)

5. Graph-structured optimization

The choice of a fitting algorithm to minimize objective functionals of the
form (3) hinges on the respective properties of the fidelity and regularizing
functions as well as the search space. We distinguish three settings, as they
necessitate vastly different approaches to be solved:515
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• combinatorial;

• continuous space and non-convex functional;

• continuous space and convex functional.

5.1. Combinatorial

If the search space Ω = S is discrete, the problem is said to be combinato-520

rial. The sheer number of combinations and the lack of continuity prevent the
retrieval of a global minimizer in general. When considering only two labels
however, the objective functional can be solved with graph cuts algorithms
due to its submodularity (Boykov et al., 2001).

If the number of labels exceeds two, the functional is no longer submod-525

ular and can only be approximately minimized. The α-expansion algorithm
introduced in (Boykov and Kolmogorov, 2004) allows us to approximately
solve such problems through a sequence of binary labeling problems, which
can in turn be solved efficiently with graph cuts. This algorithm is widely
used because of its performance, its theoretical guarantees and the availabil-530

ity of its implementation.

5.2. Continuous space and non-convex functional

We consider the case when Ω = S is continuous, but the regularizer
is non-convex, typically the Potts penalty extended to S. In this setting,
no guarantee on the global optimality can be established, however numerous535

approximated algorithms exist. A first approach proposed by Ishikawa (2003)
is to discretize the search space and to treat the problem as a combinatorial
one. A more recent approach proposed by Landrieu and Obozinski (2016b)
allows us to keep the continuity of the search space and provides better
results with fewer cuts. As this algorithm has only been presented for one-540

dimensional values, we focus on a natural extension to multi-dimensional,
simplex-constrained values in the following.

This greedy algorithm, dubbed ℓ0-cut pursuit, exploits the fact that spa-
tially smooth labelings can be broken down into a small number of constant
connected components to accelerate the resolution of the corresponding opti-545

mization problem. The ℓ0-cut pursuit algorithm maintains a current partition
of the graph in which the nodes of each component share the same value. This
partition is initialized such that all the nodes are in the same component,
and is then refined by computing binary partitions, called optimal binary

21



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

cuts, and enumerating their connected components. A backward-step is then550

performed to check if merging existing adjacent components can decrease the
objective function.

However, in (Landrieu and Obozinski, 2016b), ℓ0-cut pursuit is only de-
fined in the one-dimensional setting in which only one scalar value is as-
sociated with each node. In this paper, we extend this algorithm to a555

multi-dimensional setting in which we associate a multi-dimensional, simplex-
constrained value to each node. This extension is made easy by the separa-
bility hypothesis of the fidelity term, which ensures that, given a partition
of V , the associated optimal distribution can be computed independently for
each component by minimizing the sum of the associated fidelity terms.560

Furthermore, the four fidelity functions listed in Section 4.3 are such that
the constant distribution qA minimizing the sum of fidelity terms for a subset
of nodes A ⊂ V is also simplex-bound, and easy to compute. Indeed, for the
linear and linear-logarithmic fidelity, qA is the hard labeling corresponding
to the class maximizing the sum of the distributions associated to the nodes565

of A. For the quadratic and Kullback-Leibler fidelity, qA is the average of
the distributions of the nodes of A.

Computing such piecewise-constant labelings is the critical step in each
of the three main steps of ℓ0-cut pursuit, namely the computation of the
optimal binary cuts and associated optimal distribution, and the backward570

step. Consequently the extension of ℓ0-cut pursuit to multi-dimensional,
simplex-bound data can be implemented easily and remains very efficient 3.

5.3. Continuous space and convex functional

In this last setting, on top of the convexity of the search space Ω = S, we
consider a functional ψ (and hence Ψ), which is also convex. In order to favor575

the sparsity of {xi − xj | (i, j) ∈ E}, and hence a small number of constant
connected components in the set of minimizers, the graph total variation is
however non-differentiable.

Given the level of uncertainty over the data and over the parameters of
our regularization framework, high precision is not required for the mini-580

mization of the objective functional. We thus resort to first-order proximal
splitting algorithms, well-adapted to such large-scale situations where the
functional is a sum of simple terms. This approach has been considered for

3A C++ implementation can be downloaded at www.loiclandrieu.com/.

22



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

instance in Lellmann et al. (2009), where the authors use a Douglas–Rachford
splitting algorithm to solve a specific instance of (3). Since this publication,585

more powerful splitting schemes have been developed. Although primal-dual
schemes are popular thanks to their generality (Chambolle and Pock, 2011),
the preconditioned generalized forward-backward splitting algorithm (Raguet
and Landrieu, 2015) is more suited to our graph-structured problem, while
taking full advantage of the smoothness of the data-fidelity term. We refer590

to the latter and references therein for more details 4.

6. Experimental Results

In this section, we first present the involved benchmark datasets (Sec-
tion 6.1), the considered evaluation metrics (Section 6.2) and the competing
methods (Section 6.3). Subsequently, we present the derived results (Sec-595

tion 6.4). The experimental framework will be available at www.loiclandrieu.
com/.

6.1. Datasets

Since our main goal consists in testing the applicability of the involved
methods and the reproducibility of derived results, we want to facilitate an600

objective comparison to other methodologies. Hence, we test our framework
on three publicly available and labeled 3D point cloud datasets which are
described in the following subsections.

6.1.1. Oakland-5C Dataset and Oakland-3C Dataset

The Oakland 3D Point Cloud Dataset5 (Munoz et al., 2009) is a labeled605

benchmark dataset which has often been used to evaluate approaches focus-
ing on a semantic labeling of 3D point clouds. This dataset has been acquired
in the vicinity of the CMU campus in Oakland, USA, with a moving plat-
form equipped with a side-looking Sick laser scanner used in push-broom
mode (Munoz et al., 2008). During data acquisition, the speed of the plat-610

form reached up to 20km/h, and the acquired 3D point clouds reveal a point
density with significant variation. A separation of the dataset into training

4Efficient implementations in C++, interfaced with MEX for MATLAB/GNU Octave
users, can be found at https://www.ceremade.dauphine.fr/~raguet/pgfb/.

5The Oakland 3D Point Cloud Dataset is publicly available at http://www.cs.cmu.
edu/~vmr/datasets/oakland_3d/cvpr09/doc/ (last access: 17 November 2016).
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data (about 37k labeled 3D points) and test data (about 1.32M labeled 3D
points) is already provided.

The Oakland-5C Dataset refers to the provided reference labeling with re-615

spect to five semantic classes. These classes are defined as Wire, Pole/Trunk,
Façade, Ground and Vegetation.

The Oakland-3C Dataset refers to the provided reference labeling with
respect to three structural classes. These classes are defined as Linear Struc-
tures, Planar Structures and Volumetric Structures.620

For both the Oakland-5C Dataset and the Oakland-3C Dataset, the num-
ber of training examples per class is very unbalanced which can have a detri-
mental effect on the training process (Chen et al., 2004; Criminisi and Shot-
ton, 2013). To avoid such effects, we introduce a class re-balancing which
relies on randomly selecting 1, 000 labeled 3D points per class as new training625

set and discarding all other points.

6.1.2. Paris-rue-Cassette Database

To include larger MLS datasets in our experiments, we also make use of
the Paris-rue-Cassette Database6 (Vallet et al., 2014), a point cloud dataset
which has been acquired in January 2013 with the mobile laser scanning630

system called Stereopolis II (Paparoditis et al., 2012). This system involves
two plane sweep lidars of type Riegl LMS-Q120i and a 3D lidar of type
Velodyne HDL-64E to capture the local 3D geometry of the scene. The
Riegl devices are placed on each side of the vehicle and serve for observing
the building façades with a centimeter accuracy, whereas the Velodyne de-635

vice mainly serves for observing the bottom part in between. In total, the
dataset contains 12M points corresponding to a street section with a length
of approximately 200m as well as a reference labeling which includes both
pointwise labels and segmented objects. The annotation has been carried
out by recovering a regular 2D topology for the point cloud stream during640

data acquisition and an offline human interaction via a graph editing tool
based on standard 2D image segmentation techniques (Brédif et al., 2014).

In our experiments, we consider the seven dominant classes defined as
Façade, Ground, Cars, 2-Wheelers, Road Inventory, Pedestrians and Vege-
tation. All 3D points belonging to the other classes are removed as these645

6The Paris-rue-Cassette Database is publicly available at http://data.ign.fr/

benchmarks/UrbanAnalysis/ (last access: 17 November 2016).
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classes are not considered as representative (Weinmann et al., 2015c). To
separate the dataset into training data and test data, we randomly select
1,000 labeled 3D points per class as training set and all remaining labeled
3D points as test set.

6.2. Evaluation metrics650

To evaluate the performance of the benchmarked approaches, we com-
pare the derived labeling to the reference labeling on a per-point basis. For
this purpose, we consider both classwise and global evaluation metrics. The
classwise evaluation metrics are represented by recall (R), precision (P ) and
F1-score. Whereas recall represents a measure of completeness or quantity,655

precision represents a measure of exactness or quality. The F1-score is a
compound metric combining precision and recall with equal weights. The
global evaluation metrics are represented by overall accuracy (OA) and the
unweighted average of the F1-score over all classes (F̄1). In this regard, it
should be taken into account that a consideration of the overall accuracy660

might not be sufficient if the number of examples per class is very inhomo-
geneous for the test data. The indicator F̄1 allows judging about the quality
of classification results based on classwise evaluation metrics.

As stated in Section 4.2, the advantage of probabilistic labelings is that
their certainty can be estimated. To each point-level assignment we associate665

a certainty measure by computing its entropy H. A low entropy designates a
high confidence assignment (for exampleH([1 0 0]) = 0), while a high entropy
denotes an ambiguous assignment (for example H([1

3
1
3

1
3
]) = log(3)). We

define the partial assignment at coverage f% as the fraction of an assignment
P when only considering the f% lowest entropy pointwise assignments, i.e.670

only the most confident points. We can evaluate the F̄1-score of such a partial
assignment by comparing it against the corresponding partial ground-truth.

To demonstrate the benefit of this confidence assignment, we provide the
accuracy/coverage plots of the best performing methods in Figure 3. Those
plots are obtained by sorting the points by increasing entropy, and computing675

the accuracy of the partial assignment for coverage going from 70% to full
coverage.

6.3. Competing methods

In this subsection, we briefly summarize the benchmarked algorithms
(i.e. the considered configurations of our framework) and some state-of-the-680

art methods that are involved for comparison. In Section 4 we listed two
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search spaces (Ω = S or S), four fidelity functions (linear, linear-logarithmic,
quadratic andKullback-Leibler), as well as the two regularizers (Potts penalty,
total variation). Of the 16 possible combinations, only 8 are unique and
relevant. Indeed, when considering fidelity functions that induce a hard as-685

signment (namely linear and linear-logarithmic) with the Potts penalty, the
choice of Ω is irrelevant as all solutions belong to S. Consequently, ℓ0-cut
pursuit and α-expansion will minimize the same functional. As both ap-
proaches approximate the global solution, one could expect different results.
However in all our numerical experiments the difference in the final value690

of the functional was small enough that its corresponding assignment was
almost identical.

Some simple calculus shows that for the Potts penalty, the values of the
linear, quadratic and Kullback-Leibler fidelities at the corners of the simplex
amount to the same penalty with a different regularization strength. Simi-695

larly, we do not consider the total variation regularizer with a discrete search
space, as it is redundant with the Potts penalty. We list the 8 combinations
of regularizers and fidelity functions that correspond to unique algorithms in
Table 1.

To compare with the graphical models approach advocated by Niemeyer700

et al. (2014) and based on a graphical model in the form of a CRF, we com-
pute the solutions provided by loopy belief propagation, both for the marginal
inference (LBP) and MAP-inference (LBP MAP). The MAP-inference can
also be advantageously computed with α-expansion, as mentioned by Lan-
drieu et al. (2017), and corresponds to the log potts shorthand in Table 1.705

The implementations of the inference algorithms were obtained at (Schmidt,
2012).

The regularizing approach proposed by Lellmann et al. (2009) for image
labeling corresponds to lin TV. However, we use the preconditioned general-
ized forward-backward splitting algorithm (PFDR) algorithm which is much710

faster.

6.4. Experimental results

In Table 2, we provide the results of the full classifications for the meth-
ods invoked in Section 6.3, and the accuracy/coverage plot is represented
in Figure 3. The classwise results are displayed in Tables 4, 5, and 6. The715

computation time, referenced in Table 3, is mainly dependent on the chosen
regularizer as it dictates the used algorithm.
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Method Fidelity Regularizer Domain Minimizing algorithm
lin potts linear Potts penalty S α-expansion
log potts linear-logarithmic Potts penalty S α-expansion
lin TV linear total variation S PFDR
log TV linear-logarithmic total variation S PFDR
l22 TV quadratic total variation S PFDR
KL TV Kullback-Leibler total variation S PFDR
l22 bound quadratic Potts penalty S ℓ0-cut pursuit
KL bound Kullback-Leibler Potts penalty S ℓ0-cut pursuit

Table 1: List of the benchmarked algorithms with their characteristics.
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Figure 3: Accuracy/coverage plot for the three datasets and the top performing methods
from 70% to 100% coverage for the Oakland-3C Dataset (top left), the Oakland-5C Dataset
(top right) and the Paris-rue-Cassette Database (bottom left).
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Method Oakland-3C Dataset Oakland-5C Dataset Paris-rue-Cassette Database
OA F̄1 OA F̄1 OA F̄1

pointwise 93.8 71.4 92.3 63.5 81.0 41.0
LBP 95.8 75.6 94.7 70.9 83.2 44.3
LBP MAP 95.5 74.9 94.5 69.8 82.6 43.6
log potts 97.3 78.2 95.7 74.4 92.5 65.4
lin potts 97.5 78.9 95.8 75.1 92.3 61.3
l22 bound 97.2 78.3 95.7 73.6 93.6 65.6

KL bound 97.0 78.3 95.7 74.7 93.7 64.4
lin TV 97.5 78.7 95.7 74.9 92.4 61.2
log TV 97.3 78.2 95.7 74.4 93.1 60.9
l22 TV 97.5 78.7 95.7 74.8 92.4 61.2
KL TV 97.5 78.7 95.9 75.3 91.4 61.2

Table 2: Classification results (in %) derived with the considered methods for the three
datasets. OA is the overall accuracy and F̄1 is the unweighted average of the F̄1-scores
over all classes.

Method Oakland-5C Dataset Oakland-3C Dataset Paris-rue-Cassette Database
(1.3M points) (1.3M points) (12M points)

LBP 45 35 720
LBP MAP 54 31 800
α-expansion 24 15 400

ℓ0-cut pursuit 27 21 600
PFDR 72 43 2100

Table 3: Required time in seconds for solving the optimization problem depending on the
dataset and the chosen algorithm on an i7-4790 CPU 3.60GHz with 8GB of RAM.

Method OA F̄1 F1(Linear Structures) F1(Planar Structures) F1(Volumetric Structures)
pointwise 93.8 71.4 28.7 97.1 88.5
LBP 95.8 75.6 36.2 98.1 92.6
LBP MAP 95.5 74.9 34.8 98.0 91.9
log potts 97.3 78.2 40.1 98.8 95.6
lin potts 97.5 78.9 41.6 98.9 96.0
l22 bound 97.2 78.3 40.5 98.8 95.5
KL bound 97.0 78.3 41.1 98.7 95.0
lin TV 97.5 78.7 41.0 98.9 96.0
log TV 97.3 78.2 40.0 98.9 95.7
l22 TV 97.5 78.7 41.0 98.9 96.1
KL TV 97.5 78.7 40.9 99.0 96.2

Table 4: Classification results (in %) for the Oakland-3C Dataset. We present the overall
accuracy (OA), the unweighted average of the F1-score over all classes (F̄1), and the
classwise F1-scores.
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Method OA F̄1 F1(Wire) F1(Pole/Trunk) F1(Façade) F1(Ground) F1(Vegetation)
pointwise 92.3 63.5 18.2 38 76.3 97.6 87.2
LBP 94.7 70.9 22.2 59.8 81.2 98.0 93.4
LBP MAP 94.5 69.8 21.2 55.6 81.0 98.0 93.0
lin potts 95.8 75.1 28.2 70.0 83.3 98.2 95.8
log potts 95.7 74.4 29.1 65.7 83.4 98.2 95.7
l22 bound 95.7 73.6 26.5 64.7 83.1 98.1 95.9
KL bound 95.7 74.7 29.4 67.3 82.9 98.2 95.7
lin TV 95.7 74.9 27.5 69.3 83.4 98.1 95.9
log TV 95.7 74.4 28.4 66.5 83.1 98.1 95.7
l22 TV 95.7 74.8 27.8 68.9 83.2 98.1 95.8
KL TV 95.9 75.3 29.1 69.6 83.2 98.1 96.3

Table 5: Classification results (in %) for the Oakland-5C Dataset. We present the overall
accuracy (OA), the unweighted average of the F1-score over all classes (F̄1), and the
classwise F1-scores.

Method OA F̄1 F1(F) F1(G) F1(C) F1(2W) F1(RI) F1(P) F1(V)
pointwise 81.0 41.0 85.4 96.8 45.4 10.6 10.7 5.0 33.3
LBP 83.2 44.3 87.0 97.6 55.5 14.3 12.8 6.4 36.4
LBP MAP 82.6 43.6 86.6 97.4 54.3 13.9 12.7 5.6 35.0
log potts 92.5 65.4 94.7 95.1 82.2 48.7 16.5 65.9 54.9

lin potts 92.3 61.3 94.5 95.8 78.9 48.1 17.7 43.7 50.6
l22 bound 93.6 65.6 95.7 97.4 83.5 66.7 19.5 46.6 50.0
KL bound 93.7 64.4 95.7 98.1 82.4 46.9 32.7 44.1 51.2
lin TV 92.4 61.2 94.4 97.4 81.8 42.4 28.7 35.7 48.0
log TV 93.1 60.9 95.0 98.2 82.9 41.2 29.8 29.2 50.1
l22 TV 92.4 61.2 94.4 96.5 80.5 44.4 23.1 38.9 50.5
KL TV 91.4 61.2 93.7 93.9 76.4 48.3 18.6 43.8 53.6

Table 6: Classification results (in %) for the Paris-rue-Cassette Database with 7 classes
represented by Façade (F), Ground (G), Cars (C), 2-Wheelers (2W), Road Inventory (RI),
Pedestrians (P) and Vegetation (V). We present the overall accuracy (OA), the unweighted
average of the F1-score over all classes (F̄1), and the classwise F1-scores.
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To obtain a visual impression about the quality of the derived classifica-
tion results, a visualization of the classified point clouds is provided for the
Oakland-3C Dataset in Figure 4, for the Oakland-5C Dataset in Figure 5720

and for the Paris-rue-Cassette Database in Figure 1. All these figures con-
tain an illustration of the ground truth labeling, the initial labeling derived
via pointwise classification, the labeling derived via structured regularization
relying on the KL bound method and the confidence of the derived labeling.

(a) Ground truth (b) Pointwise classification

(c) Regularized classification (d) Confidence map

Figure 4: Visualization of a 3D point cloud labeling for a part of the Oakland-3C Dataset.
In (a), (b), and (c), the color encoding addresses the classes Linear Structures (blue),
Planar Structures (red) and Volumetric Structures (green). In (d), the confidence is rep-
resented from green to red: confident uncertain. Remark that misclassifications in
(c) correspond to the least confident area in (d).
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(a) Ground truth (b) Pointwise classification

(c) Regularized classification (d) Confidence map

Figure 5: Visualization of a 3D point cloud labeling for a part of the Oakland-5C Dataset.
In (a), (b), and (c), the color encoding addresses the classes Wire (blue), Pole/Trunk
(red), Façade (gray), Ground (orange) and Vegetation (green). In (d), the confidence is
represented from green to red: confident uncertain. Remark that misclassifications
in (c) correspond to the least confident area in (d).

6.5. Discussion725

From Table 2 we can observe that regularization does indeed improve both
the accuracy and the F̄1-score of the pointwise classification. We observe that
message-passing algorithms such as LBP and LBP MAP underperform when
compared to other approaches, while their computation time is among the
highest, which is in accordance with the observations made by Landrieu et al.730

(2017).
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In Tables 4, 5 and 6, we observe that although our framework barely
improves the F1-score of easy-to-classify classes such as Ground or Façade,
our methods display significant improvement over hard classes, such as Wire,
Pole/Trunk, Cars, 2-Wheelers and Pedestrians. Indeed, the F1-score of Wire735

(18.2% to 29.4%) and Pole/Trunk (38% to 70%) is almost doubled for the
Oakland-5C Dataset for the best performing methods. More impressively, in
the Paris-rue-Cassette Database our methods are able to retrieve decent clas-
sifications for classes that were mostly mislabeled by the pointwise labeling.
For example, 2-Wheelers were initially classified with a 10.6% F1-score, but740

the best regularized labeling boasts a classification score of 66.7%. Likewise,
regularization was able to improve the classification of the class Pedestrians
from 5.0% to 65.9%, and the classification of the class Cars from 45.4% to
83.5%.

We explain this large improvement over hard classes because regular-745

ization removes isolated misclassified points scattered over the point cloud.
Those classes are also the least represented, their recall is particularly sen-
sitive to such misclassifications. The regularization increases the precision
as well by enforcing homogeneity of a tightly connected set of points, which
often belong to the same class. Remark that this will only improve the750

classification if the initial labeling is mostly right to begin with.
Among the methods implemented in our framework, the difference of

performance is rather small, with a difference of less than 1% in accuracy.
The benefits in choosing a given configuration lies elsewhere, namely in its
computational load and the nature of the obtained smoothed assignment.755

6.6. Choosing the fidelity

When combined with the same penalizer, the influence of the fidelity
function seems limited in terms of accuracy. However, this choice influences
qualitative properties of the solution.

For example, when combined with either the TV or boundary penalty,760

the linear and linear-logarithmic fidelity yield hard smoothed assignments,
while the quadratic and KL fidelity yield probabilistic assignments. Both the
linear-logarithmic and Kullback-Leibler fidelity involve entrywise logarithms
of probabilities, which can induce numerical issues, and consequently require
a supplementary smoothing parameter. However, a smoothing parameter of765

α = 0.05 seems to yield good results in general, and does not require exten-
sive cross-validation. Finally, both quadratic and linear fidelities have fewer
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parameters and easier computation since both their gradient and proximal
operator are very straightforward to obtain.

The linear-logarithmic fidelity takes into account the observed probabil-770

ity in a non-linear way, penalizing assignments with low probability much
more than it favors assignments with high probability. This penalty should
hence be preferred when considering hard assignments. Conversely, the KL
fidelity takes the observed probability into account linearly, while penalizing
strong confidence outputs. This penalty should hence be preferred when a775

probabilistic output is expected.
The choice of the fidelity should in general be cross-validated as a meta-

parameter. However, depending on the nature of the expected output, this
choice can be restricted.

• Hard assignment expected: When only the 100% coverage is rele-780

vant for the application, both linear and linear-logarithmic fidelity can
be employed.

• Soft assignment expected: The quadratic and KL fidelity provide a
probabilistic output when combined with the TV or boundary penalty.

6.7. Choosing the penalty785

The influence of the penalty is more drastic, as it impacts both the nature
of the output and the computational efficiency as well. The Potts penalty,
combined with the α-expansion algorithm, is the fastest of all approaches. In
terms of accuracy and F̄1-score, it offers excellent performances as well, mak-
ing it a solid choice when only a hard assignment is expected. The boundary790

penalty, when solved with the ℓ0-cut pursuit algorithm, is slightly slower to
compute, for comparable performance in terms of classification. However,
when combined with the quadratic or KL fidelity, it provides a probabilistic
classification as output which allows us to evaluate the confidence of each
assignment. Finally, the TV penalty reaches excellent performance, with a795

probabilistic output as well.
However, solving the convex problem takes more time than the other ap-

proaches. We observe that, when combined with linear or linear-logarithmic
fidelity, most of the assignments of the regularized solution lie within a corner
of the simplex, in accordance with the principles of linear programming. In800

this case, the probabilistic nature of the solution cannot be exploited beyond
removing a small proportion (about 2-4%) of uncertain points. Furthermore,
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the accuracy of assignments obtained with the TV regularizer seems to evolve
smoothly and monotonically with respect to the coverage. On the other hand,
the boundary size seems to induce an accuracy-coverage plot which is more805

subject to sharp breaks and irregularities. This can be explained by the non-
convexity of the associated objective function, and the greedy nature of its
solving algorithm.

As for the choice of the fidelity function, this choice can be cross-validated
as a meta-parameter, as the effect of regularization can vary depending on the810

dataset and the quality of the initial labeling. However, a general guideline
is presented in the following:

• Hard assignment expected: When only the 100% coverage is rel-
evant for the application, the Potts penalty should it be used, with
α-expansion a a solver, for its speed and the quality of its output.815

• Soft assignment expected:

– Speed is the priority: In this case, the boundary size penalty
combined with the ℓ0-cut pursuit algorithm is more advantageous.

– Quality is the priority: The total variation penalty offers ex-
cellent precision, both for partial and complete coverage, at the820

price of a longer computation time.

6.8. Extension

It is important to note that the cut pursuit algorithm cannot handle
different values for the transition between classes. If such a transition matrix
can be either inferred or cross-validated, then the other penalty shall always825

be favored.
The only drawback of the TV penalty in our application is its speed.

However, this issue could be addressed by adapting the cut pursuit algorithm
to multi-dimensional simplex constrained values. In this case, the TV penalty
would combine the benefits of both the Potts penalty and the boundary830

penalty, while retaining the robustness associated with its convex nature.
We did not benchmark the effect of choosing a different adjacency tree

structure, nor the different weighting schemes that can be applied. When
using varying edge weights with the TV penalty, preconditioning strategies
such as the one used by PFDR are an absolute must to avoid drastic conver-835

gence speed increase.
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7. Conclusions

In this article, we presented a regularization framework based on struc-
tured optimization to smooth semantic labelings on 3D point clouds. We
demonstrated that this approach is superior to the classically used belief840

propagation algorithm. Furthermore, we presented a family of regulariz-
ers and fidelity functions which allows to retain the probabilistic nature of
the labeling after smoothing, allowing us to estimate its confidence at each
point. We also presented an efficient algorithm to solve the subsequent opti-
mization problem, and extended the existing ℓ0-cut pursuit algorithm to our845

multi-dimensional, simplex-constrained setting.
Besides different extensions of our regularization framework, we also in-

tend to investigate the potential of Convolutional Neural Networks (CNNs)
adapted to 3D data. Among different strategies, particularly the one in-
volving a 3D-CNN to classify each 3D point of a point cloud by considering850

a voxel-occupancy grid corresponding to the respective local neighborhood
seems to be promising (Savinov, 2017; Hackel et al., 2016a; Huang and You,
2016). However, 3D-CNNs typically require a large amount of training data,
and the network architecture as well as its internal settings are often heuristi-
cally defined by the user. The framework presented in the scope of this paper855

provides a competitive baseline for such approaches, as it represents an im-
portant alternative which is given by a theoretically well-founded structured
regularization delivering classification results of high quality at a lighter com-
putational cost and also for scenarios, where only smaller amounts of train-
ing data are available. Furthermore, although labelings obtained with CNNs860

tend to be spatially smoother than pointwise labelings, the degree of spatial
regularity depends on the width of the convolutional filters, and hence is
not easily tunable. Because our framework is agnostic with respect to how
the initial labeling is obtained, it could be used to precisely set the level of
smoothness in post-processing, at a light computational cost.865

References

Aström, F., Petra, S., Schmitzer, B., Schnörr, C., 2016. Image labeling by
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